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Abstract

In this work, we present our approach to the BioNNE-L 2025 task, which focuses on Named Entity Normalization
(NEN) across multilingual biomedical corpora. The task involves mapping entity mentions to standardised
concepts in a multilingual vocabulary, covering English, Russian, and mixed-language. Our system adopts
a retrieval-based strategy, leveraging BioSyn models with tailored vocabulary subsetting to address memory
constraints and enhance retrieval efficiency. For the multilingual setting, we trained a single BioSyn model
and applied post-processing using a lightweight large language model (LLM) to improve top-rank accuracy by
re-scoring candidates based on contextual meaning. Our approach achieved competitive results on the official
leaderboard at Acc@5, with improvements in Russian monolingual performance compared to the baseline (Acc@1:
0.62 vs. 0.52 baseline) and a 2% Acc@1 gain in the multilingual task after applying LLM post-processing. These
results underline the challenge of ranking in retrieval-based NEN, particularly given the considerable difference
observed between the top-1 candidate and the top-5 candidates accuracy scores. Additionally, our findings
demonstrate the limitations of retrieval-only systems in highly ambiguous settings, and demonstrate the value
of hybrid pipelines that combine candidate retrieval with contextual disambiguation. This work focuses on
low-resource multilingual biomedical NEN, especially to mitigate the risks of hallucination in resource-limited
environments.
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1. Introduction

Biomedical Named Entity Normalization (BioNEN), also known as Entity Linking (EL) [1, 2] and in the
biomedical domain sometimes referred to as (Bio)medical Concept Normalization (BCN/MCN) [3], is a
task of Information Extraction in Biomedical Natural Language Processing (BioNLP), aiming to map
entity mentions in text to standardised concepts within biomedical knowledge bases, or ontologies,
such as the Unified Medical Language System (UMLS) [4]. While significant advances have been made
in biomedical NEN for English texts, nested entity and multilingual concept normalization remain
challenging [5].

Nested entities, in which one entity mention is embedded within another, frequently occur in
biomedical literature and present difficulties for both named entity recognition and normalization
systems. To illustrate this, “vertebral”, “lumbar vertebral”, “lumbar vertebral canal”, and “lumbar vertebral
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canal stenosis” appear within the same longest entity, with entities hierarchically embedded inside one
another. This example shows how simple mentions can be progressively contained within increasingly
complex biomedical entites, complicating both detection and correct mapping to a knowledge base like
UMLS.

Furthermore, with the growing volume of biomedical/clinical applications in languages other than
English, there is an increasing need for robust multilingual NEN systems. Addressing these challenges
in languages such as Russian, where terminology resources aligned with UMLS are limited, further com-
plicates the task due to incomplete terminology coverage, language-specific variation, and multilingual
synonymy.

The BioNNE-L Shared Task [6, 7, 8, 9], organised as part of the BioASQ challenge [10], directly
addresses these challenges by providing a dataset for nested BioNEN in both English and Russian
biomedical abstracts. The task involves normalising mentions of biomedical entities from the following
categories: disease, chemical, and anatomy, to their corresponding UMLS concepts.

In this paper, we present a system developed for the BioNNE-L Shared Task that uses BioSyn [11],
a biomedical entity normalization model based on biomedical entity representations with synonym
marginalisation. As part of our approach, we applied a pre-processing pipeline incorporating FastText
embeddings [12] combined with cosine similarity and morphological distance measures to enhance
candidate concept retrieval from the vocabulary provided. Following initial candidate generation and
ranking by BioSyn, we implemented a post-processing module using a lightweight LLM called DeepSeek
R1 Distill Llama 8B [13] with reasoning ability to re-arrange the top 5 candidate predictions based on
context and coherence.

2. Related Work

2.1. Available Biomedical Named Entity Normalization Corpora

The development and evaluation of BioNEN systems depend on annotated corpora linking entities
mentioned in text to standardised concepts in biomedical knowledge bases such as UMLS. Some datasets
have been made available for this purpose in English. The NCBI Disease corpus [14] provides disease
mentions in PubMed abstracts, each mapped to either MeSH ! or OMIM [15] identifiers. Similarly,
BC5CDR [16] covers both chemical and disease entities within biomedical abstracts, offering annotations
for both Named Entity Recognition (NER) and entity normalization. For gene normalization, BC2GN
[17] links gene mentions to Entrez Gene identifiers [18], and TAC 2017 ADR [19] offers annotations
for adverse drug reactions with normalization to MedDRA concepts. These corpora have enabled
the training and evaluation of NEN systems. However, multilingual biomedical NEN corpora remain
limited.

2.2. Biomedical Named Entity Normalization Methods

BioNEN has progressed from early rule-based and dictionary lookup approaches to embedding-based
models that leverage dense vector representations of both entity mentions and candidate concepts.
Traditional systems often relied on exact string matching, heuristic post-processing, and handcrafted
rules. Modern methods use deep learning to compute contextual and semantic similarity. Among
these, BioSyn represents an embedding-based approach. It uses an encoder setup with a language
model, for example BioBERT [20], to encode mentions and candidate names into a shared vector space,
computing similarity via dot-product. BioSyn further integrates a synonym marginalisation mechanism
to better capture variant expressions of the same biomedical concept. Other NEN methods include
SapBERT [21], which applies self-alignment pre-training for concept-level embedding alignment, and
NoteContrast [22], a contrastive pre-trained model optimised for clinical coding. While most recent
developments have focused on English biomedical text, research into multilingual NEN, particularly
for nested entity structures, remains limited. The application of Large Language Models (LLMs) to

'https://www.nlm.nih.gov/mesh/meshhome.html



BioNEN has been used in a previous challenge [23, 24, 25]. The objective of the BioCreative VIII Track
3 challenge was to extract discontinuous phenotypic key medical findings embedded within EHR texts
and subsequently normalize these findings to their Human Phenotype Ontology (HPO) terms. Recent
LLM-based approaches typically frame NEN as a retrieval or ranking problem, where mention strings
are mapped to a candidate set of concept identifiers from a knowledge base. Studies [24, 25, 5] have
explored the use of in-context learning and prompt-based strategies to adapt LLMs like GPT-3.5, GPT-4
and lightweight LLMs for biomedical concept normalization tasks. However, lightweight LLMs remain
limited when in a few-shot scenario, when the vocabulary is extremely large, or when the vocabulary
contains extremely similar terms [5].

2.3. BERT-based Models in English, Russian, and Multilingual Contexts

Transformer-based models [26] pre-trained on biomedical corpora have substantially improved both
NER and NEN tasks. For English biomedical applications, models such as BioBERT, SciBERT [27], and
SapBERT are well known, offering domain-specific embeddings fine-tuned on PubMed abstracts and
PMC full-text articles.

In the Russian biomedical domain, resources have been comparatively limited. However, recent
efforts have produced models such as Gherman/bert-base-NER-Russian, fine-tuned for Russian NER, and
nesemenpolkov/msu-wiki-ner [28], a multilingual BERT model fine-tuned on Russian entity recognition
datasets. These models have been evaluated in general biomedical NER contexts and hold potential for
adaptation to NEN. There is also RuDR-BERT? [29], which is pre-trained on 1.4 million health-related
user-generated texts collected from various Internet sources, including social media.

For multilingual biomedical tasks, models like Babelscape/wikineural-multilingual-ner [28], google-
bert/bert-base-multilingual-uncased [30], cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR?
[1], GanjinZero/coder_all* [2], and andorei/BERGAMOT-multilingual-GAT® [3] provide multilingual
embeddings. Although their biomedical vocabulary coverage is limited compared to domain-specific
English models, these multilingual transformers offer a foundation for developing multilingual NEN
systems, particularly when fine-tuned.

3. Dataset

The shared task organiser provided the participants with three datasets: two for the monolingual
sub-tasks (in English and Russian), and one for the bilingual sub-task, which represents a combination
of the two monolingual datasets. Each dataset was split into training, validation, and test, with a shared
normalization vocabulary for candidate selection. This vocabulary consisted of concept names and
their corresponding Concept Unique Identifiers (CUIs) from the UMLS. The vocabulary included a total
of 4,047,990 terms, mapping to 1,510,431 unique UMLS CUIs. Of these terms, 145,803 were in Russian,
with the remainder in English.

In the English monolingual dataset, the training set had 2,690 entities, the validation set 2,494 entities,
and the test set 6,661 entities. The training set contained 1,119 unique CUIs, while the validation set
contained 932 unique CUIs. For reference, 966 CUIs in the training set did not appear in the validation
set, and 779 CUIs in the validation set were absent from the training set, resulting in a limited overlap
between the training and the validation datasets. For the Russian monolingual dataset, the training
set had 24,255 entities, the validation set 2,334 entities, and the test set 6,215 entities. The Russian
training set contained 4,214 unique CUIs, of which 3,745 CUIs were not present in the validation set.
The validation set had 875 unique CUIs, with 406 CUIs absent from the training data, indicating a close
train/validation ratio overlap with the English dataset.

The bilingual dataset was constructed by combining the English and Russian monolingual datasets.

*https://huggingface.co/cimm-kzn/rudr-bert
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4. Methodology

Unlike nested NER, which requires identifying multiple overlapping or nested spans within a text, the
BioNNE-L Shared Task dataset provides pre-annotated entity mentions, including any nested terms.
This allowed us to treat each nested entity independently during normalization, without needing to
infer its hierarchical relation to a larger entity mention. However, a key challenge remained as the
vocabulary still contained both the nested terms and their parent entities, often with highly similar
embedding values. As a result, the systems needed to learn to retrieve the most relevant concept for
each mention individually, despite the presence of closely related or overlapping candidates in the
vocabulary.

4.1. Monolingual English Task

For the English sub-task, the initial pre-processing step involved reducing the size of the vocabulary,
which was too large to be loaded in full by BioSyn on our hardware. To achieve this, we computed both
morphological and embedding similarities between each entity mention in the test set and every term in
the vocabulary. We used the FastText English model (cc.en.300.bin)to generate word embeddings,
and used cosine similarity to compute embedding-based similarity (dense similarity) alongside
morphological similarity (sparse similarity). A similarity threshold of 0.7 was applied, retaining only
those vocabulary entries with at least one test entity similarity above this threshold. This reduced the
vocabulary size from over 4 million to 338,209 entities, potentially covering 98% of the test set entities.

Following the vocabulary reduction, we did model selection by evaluating three BioSyn variants on
the validation set:

« dmis-lab/biobert-v1.1 ¢ Acc@1: 0.79
. allenai/scibert_scivocab_uncased ’ Acc@1: 0.78
. cambridgeltl/SapBERT-from-PubMedBERT-fulltext ® Acc@1: 0.81

SapBERT had the highest Acc@1 and Acc@5, and was selected as the final model for the English task.
No post-processing steps were applied to the monolingual English predictions.

4.2. Monolingual Russian Task

A similar approach was adopted for the Russian sub-task. Here, we used the FastText Russian
model (cc.ru.300.bin) to compute embedding and morphological similarity scores using cosine
similarity. Applying the same threshold of 0.7 reduced the vocabulary to 294,824 entities, potentially
covering 91% of the Russian test set entities.

For the model selection, we evaluated the following Russian-language BERT-based models:

« Gherman/bert-base-NER-Russian ° Acc@1: 0.91
« nesemenpolkov/msu-wiki-ner ' Acc@1: 0.90
« KoichiYasuoka/bert-base-russian-upos ' Acc@1: 0.92

bert-base-russian-upos had the best validation performance in terms of Acc@1 and Acc@5, and
was selected for the final system. No post-processing steps were applied to the monolingual Russian
predictions.

Shttps://huggingface.co/dmis-lab/biobert-v1.1
"https://huggingface.co/allenai/scibert_scivocab_uncased
$https://huggingface.co/cambridgeltl/ SapBERT-from-PubMedBERT-fulltext
*https://huggingface.co/Gherman/bert-base-NER-Russian
Phttps://huggingface.co/nesemenpolkov/msu-wiki-ner
"https://huggingface.co/KoichiYasuoka/bert-base-russian-upos



4.3. Multilingual Task

For the multilingual task, the same pre-processing procedure was applied, with one modification: the
similarity threshold was increased to 0.8. This adjustment was necessary as the combined English and
Russian reduced vocabulary at a threshold of 0.7 remained too large to be loaded on our hardware.
Applying the higher threshold reduced the vocabulary to 59,234 entities, potentially covering 84% of
the multilingual test set entities.

Model selection was done using the following multilingual models:

- Babelscape/wikineural-multilingual-ner'” Acc@1: 0.85
. google-bert/bert-base-multilingual-uncased > Acc@1: 0.82

wikineural-multilingual-ner was the best-performing model on the validation set for both Acc@1
and Acc@5.

Unlike the monolingual tasks, a post-processing step was introduced for the multilingual task. After
generating the top-5 candidate predictions with BioSyn, we used DeepSeek-R1-Distill-Llama-8B (via
the Hugging Face Transformers library [31]) in a few-shot setting, part of the prompt can be found in
Figure 1. We selected DeepSeek R1 for our LLM re-ranking step due to its reasoning capabilities, which
were essential for assessing contextual differences and resolving ambiguities between morphologically
similar candidates. The model was prompted to reorder the candidate list based on the surrounding
textual context of the entity mention. In cases where none of the candidate CUIs appeared contextually
appropriate, the model was allowed to output a special placeholder label, CUTLESS, indicating that no
suitable candidate was identified.

[

{
"role": "system",
"content": "You are a world-class expert in named entity normalization (NEN) for
clinical and biomedical text, trained to disambiguate ambiguous entities based on context.
Your task is to select the most appropriate identifier for a target entity mention using
the provided context, entity candidates, and their definitions."

}s

{
"role": "user",
"content": "### Instructions
- You will receive:
- A short text snippet with the entity to normalize, marked by ~<ENTITY>" ~</ENTITY>  tags.
- A list of identifier candidates in the format: “Cx: Definition™ (may include synonyms,
semantic variants, or contextual descriptions)
- A target entity term (string) to normalize, which may be a substring of the marked text.
- If none of the candidates fit based on the nested entity or context, return:
<OUTPUT>CUILESS</OUTPUT>
- Otherwise, output up to **5 candidates max**, ranked in order of best fit,
comma-separated inside ~<OUTPUT></OUTPUT>" tags.
Example:
<OUTPUT>C3,C1,C2</0UTPUT>

Figure 1: Example LLM Prompt for candidate re-ranking.

“https://huggingface.co/Babelscape/wikineural-multilingual-ner
Phttps://huggingface.co/google-bert/bert-base-multilingual-uncased



5. Experimental Setup

All experiments were done on a Linux workstation equipped with an Intel 24-core i9-13900K CPU,
192GB RAM (4x48GB), and an Nvidia GeForce RTX 4090 GPU featuring 24GB of memory.

We trained BioSyn!* with the following training parameters: topk set to 20, 10 epochs, a
train_batch_size of 16, an initial sparse weight of 0, a learning rate of 1 x 107°,a max_length of
25, and a dense_ratio of 0.5. A key component of the BioSyn architecture is its combination of sparse
lexical retrieval (using TF-IDF scores) and dense semantic retrieval (using entity embeddings). The
dense encoder component is fine-tuned using a marginal maximum likelihood (MML) objective. This
joint retrieval strategy enables BioSyn to balance exact string matching with semantic similarity. We
fine-tuned BioSyn separately for each setting (English, Russian, and multilingual) using domain-specific
transformer encoders selected through validation set performance. Model evaluation was performed
using BioSyn’s Hybrid method, which combines the sparse and dense retrieval scores for candidate
ranking.

For the multilingual post-processing step, the same system configuration was used. The "deepseek-
ai/DeepSeek-R1-Distill-Llama-8B" model was loaded via the Hugging Face Transformers library, con-
figured with do_sample=False and dtype=torch.bfloat16 for improved inference speed and memory
efficiency.

No hyperparameter tuning was performed for either the BioSyn training or DeepSeek post-processing
phases.

6. Results and Discussion

6.1. System Performance

This section presents the official test set results of our system submitted to the leaderboard for the
two subtasks (monolingual and multilingual), compared against the provided baselines. All results are
reported as accuracy at Acc@1, meaning the correct normalization was our top candidate, and accuracy
at Acc@5, meaning the correct normalization was part of our top 5 candidates.

6.1.1. Monolingual English

After applying the vocabulary subsetting strategy and training the SapBERT-based BioSyn model, our
system achieved the results reported in Table 1. While the baseline performed better at Acc@1, our
system barely surpassed it in Acc@5.

Table 1

Monolingual English Results
System Acc@1 Acc@5
Baseline 0.57 0.78
Ours (BioSyn + SapBERT-from-PubMedBERT-fulltext) 0.51 0.79

6.1.2. Monolingual Russian

For the Russian subtask, applying the same vocabulary subsetting strategy with BioSyn using the
bert-base-russian-upos model achieved the results shown in Table 2. In this case, our system
outperformed the baseline on both metrics.

“https://github.com/dmis-lab/BioSyn
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Table 2
Monolingual Russian Results

System Acc@1 Acc@5
Baseline 0.52 0.59
Ours (BioSyn + bert-base-russian-upos) 0.62 0.72

6.1.3. Multilingual

In the multilingual setting, after vocabulary subsetting with a stricter similarity threshold, BioSyn was
trained with wikineural-multilingual-ner. Additionally, a post-processing step was applied us-
ing "deepseek-ai/DeepSeek-R1-Distill-Llama-8B". Results before and after post-processing are presented
in Table 3, together with the baseline.

Table 3

Multilingual Results
System Acc@1 Acc@5
Baseline 0.53 0.70
Ours (BioSyn + wikineural-multilingual-ner) 0.56 0.76
Ours + LLM Post-processing 0.58 0.76

6.2. Strengths and Limitations

While BioSyn could not load the full vocabulary provided by the organisers due to hardware limitations,
our Acc@5 remained competitive, despite using only about 10% of the full vocabulary size.

A limitation of BioSyn on this dataset was the considerable gap observed between Acc@1 and Acc@5
scores, averaging a 20% difference across all tasks. One likely explanation is that BioSyn does not
leverage the surrounding textual context for disambiguating entities with similar morphological forms
(C0003467 Anxiety, C0003469 Anxiety). As a result, candidate CUIs receive the same score regardless of
context, i.e. always predicting C0003467.

One major challenge was the vocabulary size. The full English vocabulary contained 3,902,187 terms,
compared to only 145,803 for Russian. The size of the English vocabulary made vocabulary reduction
and candidate selection substantially more difficult for English. The high number of English terms
increased the risk of overlapping or near-identical candidates with very similar embedding values,
often leading to false positives among closely related concepts, as observed in the gap between Acc@1
and Acc@5. In contrast, the smaller Russian vocabulary reduced this risk and enabled more effective
subsetting, which likely contributed to the higher Acc@1 observed in the Russian monolingual setting.
Nevertheless, due to the limited number of biomedical Russian embedding models, the challenge of
selecting the correct Russian candidate remained.

However, in the multilingual task, applying a post-processing step using "deepseek-ai/DeepSeek-R1-
Distill-Llama-8B" demonstrated better performance. By providing the lightweight LLM with the top-5
candidates from BioSyn, the corresponding text, and all synonyms from the vocabulary sharing the
same CUI (C0003467 Anxiety|Anxiety finding, C0003469 Anxiety|Anxiety disorder), we achieved a 2%
improvement in Acc@1 on the multilingual test set.

Although lightweight LLMs are not yet competitive on NEN task [5], our pipeline helps reduce
the risk of hallucination and preserves the expected output format, showing the potential for hybrid
approaches combining dense retrieval-based methods with controlled generative reasoning.



7. Conclusion

In this paper, we explored the performance of a retrieval-based named entity normalization system
for biomedical texts, applying BioSyn models across monolingual English, monolingual Russian, and
multilingual tasks. Given the constraints of loading the full candidate vocabulary, a vocabulary subset-
ting strategy was introduced, which allowed our system to remain competitive on accuracy at Acc@5
despite working with a reduced candidate set. The system demonstrated strong results in the Russian
monolingual task compared to the baseline and showed improvements in the multilingual setting
after incorporating a lightweight post-processing step using DeepSeek 8B. DeepSeek 8B was able to
disambiguate among the top candidates provided by BioSyn by considering contextual meaning and
synonym groups, leading to improvements in accuracy at Acc@1.

Our results show both the strengths and weaknesses of retrieval-based NEN models for multilingual
biomedical text. BioSyn retrieves candidates efficiently, but without using the surrounding text, it
struggles to consistently pick the correct option at Acc@1, causing a noticeable gap between Acc@1
and Acc@5. Adding a post-processing step with an LLM helped address this by re-ranking candidates
based on context, improving top prediction accuracy while keeping the output format reliable. In future
work, we will explore context-awareness during retrieval and test this type of hybrid approach with
complex but smaller vocabulary, allowing BioSyn to load all the candidates.
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