
Synthesizing Joint and Deep Species Distribution
Modeling to Enhance Spatial Prediction of Plant
Communities at Continental Scale
Notebook for the LifeCLEF Lab at CLEF 2025

Gleb Tikhonov1,*, Dmitry Tikhonov2

1University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014 Helsinki, Finland
2Center for Forest Ecology and Productivity, Russian Academy of Science, Profsoyuznaya st. 84/32 building 14, 117997 Moscow,
Russian Federation

Abstract
Understanding the complex mechanisms that shape biological communities and the ability to accurately predict
them are central research objectives in statistical community ecology, which provides the methodological
foundation for data-driven biodiversity monitoring and responding to ongoing Global Change. Historically, this
predictive task has been primarily approached through species distribution modeling (SDM), which treats species
in a community independently. However, the growing recognition that a biological community is more than the
sum of its individual species led to the emergence of joint species distribution modeling (JSDM), which has been
increasingly used in community analysis over the past decade. At the same time, the increased availability of
remote sensing data and advancements in geospatial AI tools led to the development of SDMs that build on deep
learning techniques to leverage raw input data, such as satellite imagery. While JSDM and deep SDM are not
mutually exclusive, their integration has been limited to date. In this work, we aim to fill this methodological gap
by developing and evaluating a unified prototype framework that synthesizes the advances from both approaches.
Specifically, we combine a deep learning feature extractor, capable of processing the satellite imagery, with a
structured JSDM output layer represented by the Hierarchical Model of Species Communities, which enables to
account for inter-species relationships and the spatial study design structure. We demonstrate the predictive utility
of our approach using a large dataset of plant species communities across Europe, as part of the GeoLifeClef2025
data science challenge. Our solution was ranked second by predictive 𝐹1-score on the hidden test partition.
Our findings highlight that further integration of the joint and deep SDM may reveal previously unattainable
opportunities for accurate, continuous spatial predictions at regional and global scales.
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1. Introduction

The intricate interplay of life, characterized by the distribution and abundance of diverse species,
forms the fundamental topics of ecological research [1]. Understanding the complex mechanisms
that shape biological communities is a central research topic in community ecology, which seeks to
decipher how combinations of environmental filtering, species interactions, as well as stochastic spatial
and temporal processes jointly structure local species assemblages [2]. To navigate this complexity,
ecologists increasingly rely on Species Distribution Models (SDM), powerful numerical tools that
correlate species observations with environmental variables to predict species ranges across diverse
geographical, temporal and environmental ranges [3, 4]. The predictive utility of these models is the
numerical foundation of many biodiversity-focused applications that are crucial in an era of Global
Change, such as biodiversity monitoring, enabling the tracking of changes in species populations and
community compositions over time, and conservation planning, where model outputs inform the design
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of protected areas and management strategies for threatened species [5]. Moreover, the continuous
integration of novel data observation techniques, improved models for environmental forecasting,
and refinement of community-level modeling through more sophisticated analytical techniques, are
paving the path towards the ambitious goal of creating a "biodiversity Digital Twin" — a dynamic
virtual representation of ecosystems that can simulate responses to various environmental changes
and management interventions, thereby revolutionizing our approach to ecological forecasting and
management [6].

While early SDM approaches often focused on modeling species individually, in reality species
do not exist in isolation but are embedded within complex networks of interactions [7, 8]. This
limitation initiated the development of Joint Species Distribution Models (JSDM), which represent
a significant conceptual and analytical advancement [9, 10, 11]. In contrast to stacked SDMs that
merely aggregate predictions from single-species models, JSDMs account for the multivariate nature
of ecological communities. They achieve this by simultaneously modeling the responses of multiple
species to their environment while also accounting for potential co-occurrence patterns that deviate
from what would be expected based on environmental responses alone [7, 12]. These residual co-
occurrence patterns can offer insights into biotic interactions (e.g., competition, facilitation) or reflect
shared responses to unmeasured environmental factors [8]. A key strength of JSDMs is their capacity
to integrate various data types, such as species traits and phylogenetic relationships, to explore how
these species-level characteristics mediate species’ environmental niches and influence community
assembly [8, 13]. The Hierarchical Modeling of Species Communities (HMSC) framework exemplifies
this integrative approach, offering a robust statistical platform to link species occurrences, environmental
drivers, species-specific traits, and evolutionary histories to the underlying processes of community
organization [10].

Despite their profound conceptual advantages and growing adoption, the application of JSDMs has
faced multiple computational challenges, particularly to the increasingly large community datasets
that emerge as the sampling techniques evolve. Initial JSDM formulations, such as those based on
multivariate probit (MVP) models, encountered significant scalability hurdles, primarily because the
number of parameters in the species-to-species covariance matrix grows quadratically with the number
of species [12]. Generalized Linear Latent Variable Models (GLLVMs) were widely adopted as a more
scalable alternative, using a smaller number of unobserved latent variables to represent the structure
of species associations and reduce model dimensionality [8, 9]. However, as datasets continued to
expand, encompassing hundreds or thousands of species and vast numbers of spatial locations, GLLVMs
also started facing limitations, especially when incorporating spatially explicit structures. Addressing
these persistent challenges became a critical research focus. For instance, Tikhonov et al. [14] achieved
significant advances by integrating modern spatial statistical scalability techniques such as Gaussian
predictive processes and nearest-neighbor Gaussian processes into the HMSC framework, enabling
the analysis of community datasets with hundreds of species distributed over hundreds of thousands
of spatial units. Concurrently, algorithmic innovations have been adopted : Pichler and Hartig [11]
developed sjSDM, a JSDM approach that circumvents latent variables by employing approximate
Monte Carlo integration for the joint likelihood, coupled with elastic net regularization, achieving
substantial speed-ups especially with GPU execution and demonstrating scalability to thousands of
species. More recently, efforts like the Hmsc-HPC extension package have focused on accelerating
existing, well-established JSDM software by porting its computations to GPUs, resulting in potentially
over 1000-fold performance speedup for large datasets without altering the core model structure [15].
These developments are crucial for leveraging the full potential of modern ecological datasets.

Another recent and rapidly evolving paradigm in species distribution modeling involves the utilization
of deep learning techniques, giving rise to the deep SDMs [16]. These models, frequently employing
computer vision architectures such as Convolutional Neural Networks (CNN) or Visual Transformers
(ViT), are designed to learn intricate non-linear patterns directly from the raw data without the need to
conduct careful feature extraction [17]. The development of robust deep SDMs largely benefits from
emergence of dedicated, pre-trained foundation models for Earth observations. Such foundation models,
trained on massive volumes of unlabeled satellite and/or environmental data, can learn generalizable



representations of the Earth’s surface, which can then be fine-tuned for specific downstream tasks [18].
However, modern deep SDM limitedly reflect the well-established practices from the JSDM literature.
First of all, as far as we are aware, published deep SDMs approaches predominantly can be classified
neither as stacked SDM nor as JSDMs: they resemble JSDM in the sense that the training is done for all
species simultaneously, but in their final network layer they treat all species as effectively independent
outcomes like stacked SDMs. Further, while traditional JSDMs place a strong emphasis on parameterizing
and interpreting ecological processes, such as species interactions or trait-mediated environmental
responses, deep SDMs typically prioritize predictive accuracy at the expense of direct ecological
interpretability. On the other hand, recent studies emphasise that both DNN-specific interpretability
tools and generic classification assessment techniques can be employed to facilitate the transition from
the fitted "black-box" deep SDM model towards human-intelligible insights desired by ecologists [17].

The GeoLifeCLEF initiative is an annual data science competition with a long history of innovation
in biodiversity analysis, which pushes the boundaries of species distribution modeling [19]. The expert-
validated presence-absence data, derived from European Vegetation Archive (EVA), is unique in its
sheer scale compared to typical ecological datasets available for model development. This extensive
dataset, while invaluable, is aggregated from multiple distinct surveys and sources, which introduce
heterogeneity and potential biases that modeling approaches must robustly address. Furthermore,
the GeoLifeCLEF contest offers a vast dataset of presence-only records, primarily sourced from GBIF.
Incorporating this GBIF-extracted data to the analysis presents both significant challenges due to
inherent sampling biases and lack of systematic absence information, but also great scientific interest, as
presence-only data constitutes the most abundant and widely available form of biodiversity information
globally [20].

This working note summarizes our analysis undertaken within the GeoLifeCLEF 2025 competition,
where our best solution was ranked second by predictive 𝐹1 score on the hidden test partition. Our core
research objective was to assess the comparative performance of JSDM and deep SDM approaches, and
to partially fill the gap between these methodologies by developing and evaluating a prototype method
that will leverage the features of both frameworks. We additionally seek to compare the performance
of our focal methods against the solutions produced by other competitors of the GeoLifeCLEF 2025
challenge. By testing these distinct modeling approaches with the massive data and rigorous evaluation
criteria of GeoLifeCLEF 2025, our aim is to provide insight into their relative advantages and limitations
for subsequent applied use cases of biodiversity assessment and high-resolution predictive mapping.

2. Data

The GeoLifeCLEF 2025 dataset contains species observation data, including Presence-Only (PO) oc-
currences and Presence-Absence (PA) surveys, paired with numerous environmental predictors. The
predictors provided by the competition organizers include a rich set of environmental rasters, Sentinel-2
satellite images, 20 years of monthly climatic time series, and 21 years of quarterly Landsat time-series
point values. There are around 5 million PO occurrences, 89 thousand PA survey records and 14.8
thousand of test locations. PA data features 5016 unique species, PO data contains 9709 species, and
there are 11255 species totally in both PA and PO. All species names are anonymized and replaced
with numerical indices. The dataset includes survey records in 43 European countries, covering nine
biogeographic regions: Alpine, Anatolian, Atlantic, Black Sea, Boreal, Continental, Mediterranean,
Pannonian, and Steppic. The data were collected between 2017 and 2021.

Notably, the spatial coverage of the data is highly heterogeneous in the study area. In particular,
many regions contain only PO observations or PA test records, but totally lack training data from the PA
training set. This spatial imbalance introduces limitations for model development, especially in areas
without labeled PA training data for supervised learning. A visualization of the spatial distribution of
the PA train, PO train is provided in Figure 1.

PA train data include information on the survey index, the list of species recorded in each survey, the
country and biogeographic region, the geographic coordinates of the site along with their uncertainty, the



Figure 1: Spatial distribution of the PA train surveys (left), test surveys (center) and PO train observations (right)
in GeoLifeCLEF 2025 competition. 90% of the test surveys are located in 8 countries: Bulgaria (22%), Ukraine
(20%), Switzerland (13%), France (10%), Denmark (10%), Netherlands (6%), United Kingdom (6%) and Italy (4%).
At the same time 90% of PA train surveys are located in 4 countries: Denmark (55%), Netherlands (17%), France
(15%) and Italy (3%). Some test surveys on the eastern fringe of the study area are over 500 km away from the
closest PA train or PO train data.

area of the surveyed plot, and the year of the survey. The test data are similar to PA train, with the obvious
difference that the species lists are not available. PO occurrence data include the observation index, the
recorded species, the date of the observation, the geographic coordinates with their uncertainty, and
the publisher source from which the data were obtained.

In our final modeling approaches we used multiple environmental data sources provided within the
GeoLifeCLEF dataset. Specifically, we relied on:

• Sentinel-2 satellite imagery, including RGB and near-infrared bands, capturing data over a 640
meter × 640 meter area at a 10-meter resolution, formatted into 64 × 64 pixel patches.

• Landsat time series (2000–2017), providing quarterly composites of six spectral bands at 30-
meter resolution. We omitted the data from the years 2018-2020 as we noticed that for many PA
train surveys some of that data was corrupt.

• Monthly climatic time series from CHELSA. We used only mean temperature and total
precipitation. We aggregated the monthly data to quarterly data and truncated to years 2000-2017
to match the temporal support of the Landsat time series.

• Soil variables, describing physical and chemical soil properties.
• Elevation data.
• Land cover information, derived from global classification schemes. We reduced the originally

provided data to 7 classes so that we avoid inclusion of highly correlated predictors.

In addition to the datasets provided by the organizers, we incorporated two auxiliary environmental
characteristics to enrich the analysis. Specifically, we derived land cover information from the Sentinel-2
WorldCover product, which offers a global land cover classification at 10-meter spatial resolution for the
year 2020. This dataset enables a detailed characterization of land use and vegetation structure across
the study area. Furthermore, we utilized the CHELSA Snow Cover Duration dataset, which provides
high-resolution data on the average duration of seasonal snow cover.

During the data exploration phase, we identified a high level of regional heterogeneity in the properties
related to the vegetation sampling effort. For instance, plot area in the PA train data ranged from 0.01 m²
to 8,000 m². Such high variation most likely also imply substantial variation in the applied surveying



Figure 2: Log-log plots displaying the survey plot area vs number of species recorded in the survey. The
patterns are visualized for top-10 countries with most PA train surveys. For majority of presented countries the
expected pattern of positive relationship between survey area size and the species richness is visually recognizable.
However, the PA training data contains both very large surveys (e.g. 707 m² in Denmark) with very low number
of species and very small surveys with relatively large number of species (e.g. 0.01 m² in Austria). According
to our domain knowledge, this is more expected to be an artifact of multiple data sources aggregation, where
data was collected with different survey protocols, rather than the true ecological result. Unfortunately, such
variation is notoriously difficult to account for in the predictive modeling.

protocol. Furthermore, some countries have highly standardized plot sizes (e.g. in Denmark all plots
are either 79 m² or 707 m²), while other countries exhibit a broad variation of sampling plot areas (for
instance, the Netherlands has 258 different plot sizes). Though our initial exploratory analysis showed
only a very obscured relationship between recorded survey plot area and the number of species in that
plot once considering all PA train data at once, the patterns became much more clear once we split the
data according to the country from which it was collected (Figure 2). Once we recognized this major
variation between different countries in the study, we made an attempt to assist our models to account
for that. For this purpose we introduced 5 indicator variables, coding whether the survey was made in
Denmark, Netherlands, France, Italy or any other country. In addition to that, we used the log of survey
area.

Some predictors that we used in our modeling contain missing values. Whenever we had to make a
choice with the missing values, we imputed them with the mean value of the corresponding predictor.

3. Methods

In this section we summarize the collection of modeling methods that we have tried in the GeoLifeCLEF
2025 competition. We order them in the chronological order in which we developed their corresponding
analytical pipelines. We focus on the high-level descriptions of the final version of the methods that
we developed and refer the interested reader to our publicly available GitHub repository that contains
all the analytical code developed in scope of the competition. The lighter computational tasks and
prototyping were done on a local desktop, equipped with NVIDIA 4070s GPU, while the more heavy
computational jobs were executed in the GPU partition of Mahti HPC cluster with NVIDIA A100 GPUs.

3.1. Deep SDM

We started our participation in GeoLifeCLEF 2025 by expanding the "Single Modality baseline with
Landsat data" example code based on ResNet-18 architecture that was generously provided by the
organizers. We incorporated the climatic time series by aligning their temporal support to the Landsat
data and adding them as extra channels for the Landsat+Climate cube. For the Sentinel rasters we
employed the foundation ViT-type Prithvi-EO-2.0-300M model [18], for which we froze the encoder

https://github.com/gtikhonov/geolifeclef


Figure 3: Final architecture of the DNN in our deep SDM approach. The same model without last FC layer was
used as the deep feature extractor for the DNN-1 + HMSC approach.

and used a two-layer decoder motivated with examples distributed by this foundation model developers.
We stacked the outputs of these networks with the rest of the non-raster covariates and added fully
connected (FC) layer, ReLU activation and final FC layer with output corresponding to unique species
in PA train data. Figure 3 visualizes the resulted DNN architecture. We used binary cross entropy loss
and AdamW optimizer with cosine learning rate scheduler.

We normalized each channel in Landsat+Climate cubes and Sentinel images, and each covariate
to zero mean and unit standard deviation on the PA train data. We used flip, rotation and rescaling
data augmentation for the Sentinel images. For the Landsat+Climate cubes we used circular shift
augmentation along the years axis of the cube. We used dropout in the two last hidden layers (except
the covariates nodes) and L2 normalization in the last two FC layers of the resulted DNN.

The resulted DNN was trained with 90% random subset of the training PA data and the rest 10%
of data used as validation for early stopping. We did a minor manual search for the more suitable
included covariates, hyperparameters of the model (number of layers and nodes in hidden layers) and
hyperparameters of the fitting algorithm (batch/layer normalization, dropout rate, 𝐿2 penalty, learning
rate, scheduler strategies).

3.2. HMSC

While there are plenty of JSDM software available, we focused solely on the HMSC approach [8, 10].
This choice was largely motivated by the fact that one of the authors is among the HMSC framework
developers, therefore having a particular research interest in the testing the boundaries and comparing
specifically this framework. We used the Hmsc-HPC extension to accelerate the time-consuming MCMC
model fitting through its placement to GPU device [15].

We modified the data feeding pipeline developed for the deep SDM training to compile a single
species presence-absence matrix 𝑌 and single covariate dataset 𝑋 , which are required by the HMSC.
We extracted the mean value for each channel of Sentinel images, and the mean values for each channel
× season pair from the Landsat+Climate cube, and combined these with other included covariates,
resulting in 68 predictors. We dropped the species that were observed less than 15 times in the PA train
data.

We tested HMSC models both without and with spatial random effects. For the latter we reduced
the computational burden by using spatial random surfaces, approximated with piecewise-constant



Gaussian Process based on k-mean centroids of the PA train survey locations. We conducted the analysis
with 10-40 latent factors and 100-400 centroids.

3.3. DNN-1 + HMSC

In our focal approach we combined the methodological components from deep SDM and HMSC model.
Namely, we selected the trained deep SDM variant, which was performing best on the public leaderboard
(PLB), and removed the last FC layer from it. We compiled the single covariate dataset 𝑋̂ consisting of
1128 features extracted by the truncated DNN layers of the selected deep SDM. We proceeded with
HMSC modeling using 𝑌 and 𝑋̂ similar to the pure HMSC approach. Unfortunately, the Hmsc-HPC
execution of the model variants with spatial random effects failed with out-of-memory (OOM) error for
that many covariates. To mitigate this issue we used a principal component (PC) dimension reduction
either down to 228 PCs that encapsulated 90% of variance in 𝑋̂ or to 408 PCs that captured 95% of
variance.

3.4. Predicted species list

All the modeling approaches described above produce in predictions of the probabilities that each species
in the community is present at the set of test surveys. However, the GeoLifeCLEF 2025 evaluation criteria
is based on 𝐹1 score, which requires predicting species lists. Therefore, converting vector of species
presence probabilities to the list of predicted species is a pivotal task. A simplistic solution, exemplified
by the organizers in their example code is to predict a constant number of species, which presence
probabilities are the highest. Alternatively, some highly-ranked participants of the GeoLifeCLEF
competitions in previous years reported that they achieved superior performance by building a regression
model for the length of predicted species list.

In our approach we decided to avoid introducing an extra predictive model, but to rely on the
evaluated and predicted species presence probabilities. Thus, given a predicted vector of species-specific
presence probabilities at a test site [𝑝1, 𝑝2, · · · , 𝑝𝑛𝑠 ], we locate the optimal threshold 𝑝* for this site so
that each species 𝑗 satisfying 𝑝𝑗 > 𝑝* are included in the prediction list (𝑦𝑗 = 1) and the rest species
are excluded (𝑦𝑗 = 0). We denote the predicted vector of species presences as ŷ) = [ŷ1, ŷ2, · · · , ŷns ].
The threshold is selected so that the expected 𝐹1 score is maximized under the predicted presence
probabilities of species in this site.

𝑝* = argmax
𝑝∈[0,1]

𝐸𝑦𝑗∼Bern(𝑝𝑗) [𝐹1(y, ŷ)]

Such approach enables to produce the species lists of variable length that are justified by the predictive
model’s belief about estimated species presence probabilities. On the downside, this method is prone to
the miscalibration of the probability estimates and ignores the potential species co-occurrence patterns.
The expectation term probably does not have any simple analytical expression and was approximated
with Monte-Carlo method.

3.5. PO data aggregation

Combining PO data with PA data is an ever-going challenge in statistical community ecology. While
the PO data is the most commonly available type of ecological data nowadays, it is generally subject to
multiple flaws that discourage its usage. The fact that most PO data does not bear any information on
the sampling effort is a principal concern, which complicate the distinction between true missingness
and missingness due to lack of sampling effort. Furthermore, many PO datasets exhibit high preferential
sampling — both in terms of spatial distribution of sampling effort and in terms of what species could
be recorded.

Yet, as the spatial coverage of PO data largely exceeds the coverage of much more structured PA
train data (Figure 1), we made an attempt to aggregate it towards pseudo PA samples and use for model
training. Specifically, we a) divided the study region with a square grid splitting it into 2244 cells, b) for



each grid cell we listed what WorldCover classes appear at the locations of PO data, c) for each grid cell
× WorldCover class pair we aggregated the occurrences into a vector of species presence-absences,
which we added as extra rows to the species matrix 𝑌 . We also calculated the mean coordinates and
covariate or deep features values, which were added as extra rows of the 𝑋 and 𝑋̂ matrices. We added
an indicator covariate, which coded whether the data row originated from the PA train data or from
aggregated PO data, and recoded the logarithm of the total number of occurrences that were attributed
to the grid cell × WorldCover class pair as a proxy of the sampling effort. This procedure resulted in
approximately 13 thousands of presence-absence pseudo surveys being added to the training PA data.
We reran our analytical pipelines of HMSC and integrated DNN-1 + HMSC using this combined data
instead of the original PA train.

3.6. Ensemble

Ensembling multiple different predictions is a very common post-modeling strategy in data science
competitions. Not surprisingly, many top competitors of GeoLifeCLEF from previous years reported
that it boosted the performance of their predictive models. On the other hand, ensemble solutions
generally decreases the interpretability, which greatly reduce their scientific value. Therefore, we put
only very limited effort in an ensemble solution with a single final submission in the last minutes of the
GeoLifeCLEF 2025 challenge. We used 15 predicted species lists from previous submissions that we
designated as sufficiently different from each other. For each test survey we weighted the species from
the considered solutions at this survey proportionally to their corresponding PLB scores and summed
them up. Our ensemble solution consisted of the species with top summed weights, where the number
of reported species was taken as the PLB-weighted average of the length of individual solutions.

4. Results

Altogether our team made 164 technically successful submissions to the Kaggle web platform hosting
GeoLifeCLEF 2025 competition. However, due to the Kaggle’s design of limited submissions per day,
a good portion of these were merely minor variations of the previous prominent solutions. We used
their PLB score to obtain a slightly better comprehension of the test set, as otherwise these submission
attempts would be simply lost. We summarize the results of notable distinct model variants in the
Table1, generally presenting only few top results per model class.

Due to the chronological order in which we conducted our method developments, our submissions
with deep SDM framework exhibit huge variation. Our mature variants with this method achieved
private LB scores of around 0.21. Notably, both our early stopping criteria and public LB score were not
sufficient to robustly identify the model variants and fits that performed best on the private LB. Thus,
the model with best private LB score actually fared mediocre on the public LB.

Rather surprisingly, our solutions with non-deep HMSC approach scored relatively well in the range of
0.186 to 0.198 on the private LB. The non-spatial HMSC were consistently inferior compared to the spatial
counterpart, but the increase of the spatial random field approximation quality beyond the simplest
100-centroid approximation did not yield any predictive improvement. Also HMSC model slightly
benefited from incorporation of pseudo PA training data that was aggregated from PO occurrences.
According to the published results, our best solutions from this class would secure a Top-6 place.

Our solutions of DNN-1 + HMSC class achieved the best performance among the non-ensemble
models, though the exact score varied from 0.209 to 0.217, depending on the chosen HMSC features.
Similar to non-deep HMSC case, inclusion of spatial random effects improved the predictive performance,
but this time the margin was smaller. The non-spatial models with PC dimension reduction tended
to produce better results than their counterparts that were using the original extracted deep features,
though both results were very close to the deep SDM that was used as deep feature extractor. In contrast
to non-deep HMSC, extending the training dataset with pseudo PA data decreased both the public and
private LB scores.



Table 1
Public and private score results for selected subset of model classes and variants that we submitted during the
GeoLifeCLEF 2025 competition. Our ensemble solution (bottom line) achieved the best result among all our
submissions both on the public and private LB. Apart of that, the best and second best result of individual models
are marked with bold and underscore font respectively.

model description key hyperparameters public private

PA
on

ly

Multimodal DNN, used in DNN-1 + HMSC ResNet18(1000), MLP(1128), 75 epoch 0.24136 0.21146
Multimodal DNN ResNet18(1000), MLP(1128), 70 epoch 0.24120 0.21258
Multimodal DNN ResNet14(500), MLP(1128), 75 epoch 0.24002 0.20862
Multimodal DNN ResNet14(500), MLP(628), 67 epoch 0.23864 0.21294
HMSC without spatial random effects 𝑛𝑠 = 2519, 𝑛𝑐 = 69 0.20526 0.18562
HMSC with spatial random effects 𝑛𝑠 = 2519, 𝑛𝑐 = 69, 𝑛𝑓 = 20, 𝑛𝑝 = 100 0.21734 0.19686
DNN-1 + HMSC without spatial random effects 𝑛𝑠 = 2519, 𝑛𝑐 = 1129 0.23740 0.21036
DNN-1 + PC(408) + HMSC without spatial r.e. 𝑛𝑠 = 2519, 𝑛𝑐 = 409 0.24183 0.21461
DNN-1 + PC(408) + HMSC with spatial r.e. 𝑛𝑠 = 2519, 𝑛𝑐 = 409, 𝑛𝑓 = 10, 𝑛𝑝 = 100 0.24168 0.21481
DNN-1 + PC(228) + HMSC with spatial r.e. 𝑛𝑠 = 2519, 𝑛𝑐 = 229, 𝑛𝑓 = 20, 𝑛𝑝 = 100 0.24343 0.21727

PA
+P

O

HMSC without spatial random effects 𝑛𝑠 = 2269, 𝑛𝑐 = 71 0.21071 0.19112
HMSC with spatial random effects 𝑛𝑠 = 2269, 𝑛𝑐 = 71, 𝑛𝑓 = 20, 𝑛𝑝 = 100 0.22009 0.19849
DNN-1 + HMSC without spatial random effects 𝑛𝑠 = 2269, 𝑛𝑐 = 1131 0.23541 0.20883
DNN-1 + PC(408) + HMSC without spatial r.e. 𝑛𝑠 = 2269, 𝑛𝑐 = 411 0.23786 0.21221
DNN-1 + PC(408) + HMSC with spatial r.e. 𝑛𝑠 = 2269, 𝑛𝑐 = 411, 𝑛𝑓 = 20, 𝑛𝑝 = 100 0.23997 0.21402
DNN-1 + PC(231) + HMSC without spatial r.e. 𝑛𝑠 = 2269, 𝑛𝑐 = 231 0.24111 0.21487
DNN-1 + PC(231) + HMSC with spatial r.e. 𝑛𝑠 = 2269, 𝑛𝑐 = 231, 𝑛𝑓 = 20, 𝑛𝑝 = 200 0.24158 0.21588

Ensemble of multiple predicted species lists, weighted by PLB-score 0.24784 0.22153

Our final ensemble solution resulted in a significant predictive performance boost, both in terms of
the public (0.248) and private (0.222) LB scores.

5. Discussion

Our team entered the GeoLifeCLEF 2025 competition with several clear goals in mind. The first objective
was to improve our knowledge and skills in how deep learning can be applied to the SDM tasks, and
specifically how to incorporate large pre-trained foundation models into the multimodal DNN architec-
tures. Overall, we evaluate our experience and results in achieving this task positively, even though
we cannot claim that we properly mitigated the negative overtraining effects or explored the models’
and training strategies’ hyperparameter space comprehensively. We identified several prospective
directions for further educating ourselves in this context, such as deepening our practical skills in
rigorous tracking of numerous training instances of DNN variants and automated hyperparameter
tuning.

Our second and primary goal was to prototype an integrative framework that would combine the
benefits of both deep SDM and JSDM. Due to the tight competition schedule, we made a strategic
decision to avoid the development of an all-rounded end-to-end training approach, and opted for a
simpler two-stage model fitting scheme relying on existing software solutions. Given that our best
non-ensemble model results were achieved with this approach, we obtained solid evidence that such an
approach is justified, operational and possible to implement with existing software.

Yet, we would like to point out that generalization of our specific GeoLifeCLEF 2025 experience to a
typical applied spatial community analysis and prediction task should be conducted with caution.

First of all, we largely relied on the public LB scoring for model assessment and decision-making
concerning further development. This approach is clearly viable only for the particular design of
Kaggle-hosted competition but not suited for general community analysis setups. Nevertheless, in our
opinion, the dramatic mismatch in spatial coverage between training and test data in GeoLifeCLEF 2025



very likely causes non-negligible degree of variation in sampling methodologies, making performance
assessment using classical validation schemes inferior, and even impossible for those countries that are
very poorly represented in the training data.

Another key applied limitation of our study is that is that we did not assess the relative contribution of
individual predictor variables to the final model predictions. This decision was again primarily dictated
by the evaluation design of the GeoLifeCLEF 2025 competition, which focused solely on predictive
performance on a hidden test set. As a result, our modeling and submission pipeline prioritized
maximizing predictive accuracy rather than interpretability or variable importance analysis.

Finally, the amount of compromises that we had to make in our two-step DNN-1 + HMSC approach
clearly highlights its limitations. First, we relied on binary cross entropy loss in our DNN stage that
statistically corresponds to the assumption of no co-associations between species, and may limit the
quality of extracted deep features that we used in the HMSC stage. Next, we have to admit that the
extracted deep features were pushing the Hmsc-HPC package to its current computational limits and
even slightly beyond them, largely eliminating the benefits of its rigid MCMC-based Bayesian inference.
Furthermore, out of the multiple beneficial JSDM features of HMSC, we managed to exploit only spatial
random effects. The key reason is that anonymized species identities in the GeoLifeCLEF 2025 dataset
do not allow inclusion of species traits or phylogenies, which would potentially improve the inference
for the rare species through borrowing statistical signal from their common relatives.

Nevertheless, we are strongly convinced that our experience and results represent a lower bound
of what a combined deep + joint SDM framework is potentially capable of. The competitive predic-
tive performance of our prototyped DNN-1 + HMSC solution in GeoLifeCLEF 2025 serves as a solid
proof of concept, but uncovering its full potential requires a considerable amount of further research,
development and testing that we leave for subsequent studies.
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