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Abstract
This paper presents our work done by team RAND (University of Padua) on LongEval-Web Retrieval challenge,
which investigates the robustness and stability of Web search engines in the context of evolving document
collections.
Our team began by analyzing the dataset and applying standard IR techniques to establish baseline performance.
We then iteratively refined our approach by focusing on methods that demonstrated improved effectiveness in
handling temporal changes across snapshots.
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1. Introduction

This report aims at providing a brief explanation of the Information Retrieval system built for Task
1. LongEval-Web Retrieval. The primary objectives are to assess how search engine performance is
affected as the underlying Web data changes over time, and to determine when an information retrieval
(IR) system requires updates in response to such changes. The task relies on a dataset includes a series
of document and query snapshots that reflect the changing nature of the Web over time. The documents
and queries were collected monthly, covering the period from June 2022 to February 2023, and are
based on real-world user interactions from the Qwant search engine. The main idea of the RAND group
was to design and implement a modular and extensible Information Retrieval (IR) system as part of
the CLEF 2025 LongEval lab. The core of the system is a Java-based framework designed to handle
the full IR pipeline (including parsing, indexing, searching, and evaluation) while supporting different
document formats through a parser structure for processing both .trec and .json files (Section 2.2.2). To
complement this, Python-based components were integrated for experimentation and benchmarking.
Special attention was given to exploring the impact of preprocessing strategies (e.g., stopword filtering)
and query variations on retrieval effectiveness, allowing the system to adapt to temporally evolving
document collections. This dual-language approach provided both performance and flexibility in
evaluating IR techniques over time.
The paper is organized as follows:
Section ?? introduces related works;
Section 2 describes our approach;
Section 3 explains our experimental setup;
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Section 4 discusses our main findings;
Section 5 draws some conclusions and outlooks for future work.

2. Methodology

We developed this information retrieval system by applying the theoretical foundations covered in
the course alongside the practical implementations introduced during the tutoring sessions. The
development began with the creation of the RANDDocument class and the RANDUniversalParser,
which together enable the conversion of document collections in different formats (.trec and .json)
into a unified RANDDocument object. Subsequently, we implemented the RANDAnalyzer class, capable
of performing tokenization, stopword removal, and stemming operations, configurable for multiple
languages. We would like to highlight that the Vocabulary Statistics class and its implementation was
inspired by the project created by a group from the same course two years ago, specifically Team
GWCA1 [1]. The next step involved designing the search component, which executes topic-based
searches over the indexed collections using a query file and produces output in standard TREC format.
The final stage of the pipeline is evaluation, carried out through the Evaluator class. This module
leverages the trec_eval tool to compute standard information retrieval metrics such as the number
of retrieved and relevant documents, DCG, and more. Finally, all components are integrated through
the Main class, which orchestrates the execution pipeline with the support of the FileCollector
utility—allowing for recursive file retrieval from nested directories.

2.1. Workflow and Foundations

2.1.1. Base System

The base information retrieval pipeline is structured into three primary stages: parsing, indexing, and
searching. During the parsing phase, the system supports input in both JSON and TREC formats. Text
content is preprocessed to remove unwanted elements such as HTML tags, hyperlinks, special characters,
and other noise, ensuring a clean and consistent representation of the data. In the indexing phase, the
cleaned documents are transformed into a searchable format using the Lucene indexing framework.
This stage supports extensive customization of text processing operations, including tokenization,
normalization, and similarity modeling, allowing flexibility in how documents are represented and
ranked. The searching phase involves executing queries over the constructed index. The system
loads a predefined set of queries and processes them using the same text analysis pipeline employed
during indexing. Advanced techniques such as tokenization and synonym-based query expansion are
supported to improve recall and relevance. Additionally, semantic enhancement tools can be integrated
into the process to further refine the search results. Finally, the retrieved and ranked documents are
exported in a standardized TREC format, ensuring compatibility with established evaluation tools.

2.1.2. Re-ranking

To enhance the precision of retrieval and promote more relevant documents to higher ranks, a re-ranking
mechanism has been implemented within the RANDSearcher class. This step is optional and is triggered
only when the top-scoring document from the initial Lucene-based search does not meet a configurable
similarity threshold. The reranking phase functions as a post-retrieval adjustment, reevaluating the
list of retrieved documents using semantic similarity techniques. After Lucene retrieves the initial list
of documents (as ScoreDoc[] objects), the system computes semantic relevance between the query
and the document bodies using one of two models: a Deep Learning (DL) model or a Large Language
Model (LLM). The choice between these is defined in the system’s SearcherParams configuration.
The reranking process unfolds as follows:

1GWCA Team’s repository: https://bitbucket.org/upd-dei-stud-prj/seupd2223-gwca/src/master/.
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1. Initial Retrieval: A Lucene query is generated and executed using BM25 scoring. If synonym
expansion is enabled, the query terms are augmented using data from the WOLF lexical database
for French, and corresponding SynonymQuery terms are added.

2. Reranking Trigger: If the highest initial score is below a set threshold, re-ranking is activated.
The threshold is used for time saving purposes, this addition is something counterintuitive for
the standard re-ranking process, anyway the concept is the following:
To optimize processing time in our search engine pipeline, we introduce a threshold-based
mechanism in the re-ranking phase. Specifically, if a document receives a relevance score below
6 during the initial ranking stage, it is passed through the re-ranking process. Conversely,
documents with a score equal to or above 6 are considered sufficiently relevant and are excluded
from re-ranking. This strategy is based on the observation that high-scoring documents in the
initial stage typically already align well with the user’s query, making additional re-ranking
unnecessary. By applying this threshold, we reduce computational overhead in terms of time,
while maintaining high retrieval effectiveness.
Each document in the top-𝑘 list is then semantically compared to the query.

3. Semantic Scoring:
• In the DL configuration, a pre-trained sentence embedding model (e.g., Sentence Trans-

formers) is used to compute vector representations and similarity scores.
• In the LLM configuration, a large language model (such as GPT-like APIs) is employed to

assess the query-document semantic match.

4. Score Adjustment: The semantic similarity score is scaled and added to the original Lucene
score. This score fusion ensures that both lexical and semantic signals contribute to the final
ranking. The following formula is applied:

sd[i].score += (float)(5 * semanticScore[i]);

5. Output Generation: The re-ranked list is written to a TREC-compatible run file. Duplicates are
avoided to maintain evaluation consistency.

This reranking module is particularly effective in addressing vocabulary mismatches and handling
queries that require deeper semantic understanding. It is fully configurable and can be toggled between
DL, LLM, or disabled modes via system parameters. Empirical results confirm that semantic reranking
significantly improves early precision metrics (e.g., nDCG@10), without compromising the stability of
the overall ranking.

Deep Learning Models For the deep learning reranking phase, we evaluated two pre-trained
sentence embedding models: multi-qa-MiniLM-L6-cos-v1 and multi-qa-L6-cos-v1 [2], both
optimized for multilingual semantic similarity tasks. While the multi-qa-L6-cos-v1 model offers
richer representations, its high computational cost made it impractical on large document sets. We
therefore selected the lighter multi-qa-MiniLM-L6-cos-v1, which balances speed and semantic
accuracy effectively. To keep runtimes reasonable, we limited reranking to the top 100 Lucene-retrieved
documents. We observed a clear tradeoff: retrieving fewer than 100 documents yielded poor precision
metrics (e.g., nDCG@10, MAP), whereas increasing the number of retrieved documents improved these
metrics but caused runtime to increase exponentially due to the quadratic growth in pairwise similarity
computations.

Large Language Model As an alternative, we explored reranking using the
unsloth/Llama-3.2-1B-Instruct model [3], a Large Language Model designed for instruction-
following tasks. In this setup, the system constructs a custom prompt that includes the query and
candidate documents, and the LLM returns a relevance score for each pair. While the LLM provided
advanced semantic reasoning, we ultimately excluded it from the final system due to its excessive
runtime and high computational demands, especially when processing large document batches.



2.2. Implementation

This section provides an overview of the key classes developed to construct the information retrieval
system. The final execution and orchestration of all components are managed by the Main class.

2.2.1. RANDDocument

The RANDDocument class serves as an abstraction layer for indexed and searchable documents. It is
designed to handle both TREC and JSON input formats, providing a unified structure for the indexing
pipeline. Upon ingestion, this class parses the raw data and converts it into a format compatible with
the Lucene indexing engine. Specifically, it defines two main fields:

• IdField: A unique identifier for each document. This field is stored but not tokenized, ensuring
fast and precise retrieval.

• BodyField: Contains the main textual content of the document. It is tokenized for full-text search
and also explicitly stored to support potential re-ranking operations based on semantic similarity.

By supporting both TREC and JSON formats, the RANDDocument class allows the system to seamlessly
process heterogeneous datasets while maintaining efficient indexing and retrieval.

2.2.2. RANDParser

Given the need to manage different input formats (i.e., JSON and TREC), we developed a flexible parser
named RANDUniversalParser.java. This class dynamically selects the appropriate parser based on
the input file’s extension:

• If the file is in JSON format, it is handled by RANDJsonParser.java.
• If the file is in TREC format, it is delegated to RANDTrecParser.java.
• Files with unsupported extensions trigger an error message.

RANDJsonParser.java is based on the WapoParser.java presented during the tutoring sessions.
It uses the Jackson library to process JSON content. The core method, next(), iterates through the
collection and cleans each document by removing elements such as emojis, URLs, and HTML tags
before returning it.
RANDTrecParser.java, derived from the TipsterParser.java example discussed in class, is a
lightweight parser for TREC-formatted files. It identifies documents enclosed within <DOC> and </DOC>
tags, extracts the document ID and content, and applies similar cleaning steps via the cleanContent()
method.

2.2.3. RANDAnalyzer

The RANDAnalyzer class defines the text analysis pipeline used in our Information Retrieval system. It
was designed to offer maximum flexibility during experimentation, making it a fully hybrid component
capable of processing documents in both English and French. Thanks to the use of an external XML
configuration file, all analysis parameters can be flexibly defined without modifying the codebase.
This setup enables the selection of different tokenizers and filters depending on the chosen language
configuration. The system supports three tokenizer types, configurable via the TokenizerType
parameter:

• WhitespaceTokenizer

• LetterTokenizer

• StandardTokenizer

After tokenization, terms are passed through a series of filters:



• LowerCaseFilter: converts terms to lowercase,
• LengthFilter: removes terms based on length,
• StopFilter: eliminates stopwords.

Two main analysis pipelines were developed: one for English and one for French.
English configuration:

• EnglishPossessiveFilter: removes possessive suffixes.
• Followed by a selectable stemmer:

– EnglishMinimalStemFilter

– PorterStemFilter

– KStemFilter

– SnowballFilter

French configuration:

• FrenchLightStemFilter

• ICUFoldingFilter

• ElisionFilter (initially included but later excluded due to negative performance impact)

After extensive testing, the French pipeline—excluding the ElisionFilter—demonstrated the best
retrieval performance, especially given that most relevant documents in the dataset were in French.
These findings are further illustrated in the results shown in Section 4.2.

2.2.4. VocabularyStatistics

To verify index integrity and inspect the terms it contains, we initially considered using Luke (Lucene
Index Toolbox). However, due to its limited usability for our specific needs, we explored alternative tools.
Through prior projects, we identified a custom Java utility called VocabularyStatistics, developed
by a previous student group (GWCA2 [1]), which proved well-suited to our requirements. This utility
generates a text file listing all terms indexed by Lucene, along with their frequency statistics. The
main output file, vocabulary.txt, contains all terms sorted in descending order by raw frequency.
Additionally, the tool can automatically append the most frequent terms to the stoplist (removing any
duplicates). However, our testing showed that the manually curated oracleFrench.txt stoplist was
already highly optimized. As a result, we chose to retain the original file and disable the automatic
expansion feature, which had shown to degrade performance.

2.2.5. RANDIndexer

The RANDIndexer class is responsible for constructing a Lucene index from a collection of parsed
documents. Its primary functions include:

• Creating the Lucene index based on RANDDocument objects produced by the parser.
• Avoiding duplicate entries and filtering out invalid documents.
• Enabling configuration of analyzers and similarity functions (e.g., BM25) to tailor the indexing

behavior.

The indexer is composed of the following core components:

2GWCA Team’s repository: https://bitbucket.org/upd-dei-stud-prj/seupd2223-gwca/src/master/.
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Constructor Parameters:

• An Analyzer for tokenizing and processing document content.
• A Similarity model for scoring (e.g., BM25).
• An integer value defining the amount of RAM allocated for document buffering before flushing

to disk.
• The path specifying where the index is stored.
• A Parser instance responsible for reading and transforming the source documents.

index() Method:

• Validates input documents, skipping null entries or those without a valid ID.
• Converts each RANDDocument into a Lucene Document using the parser’s
toLuceneDocument() method.

• Adds the documents to the index and finalizes the process with a commit and close operation.
• Outputs a report detailing the number of indexed, skipped, and duplicated documents.

2.2.6. RANDSearcher

The RANDSearcher class implements the search functionality of our system. It leverages Lucene’s
indexing infrastructure to retrieve documents relevant to a given set of queries in TREC format.
Queries are read from a tab-separated file where each line contains a query ID and its corresponding
description. These are analyzed using a RANDAnalyzer, ensuring consistency with the indexing phase.
A BooleanQuery is then constructed, targeting the Body field of the indexed documents. Each query
term is converted into a Lucene TermQuery. If query expansion is enabled, the WolfManager class
provides synonym terms using the WOLF (Wordnet Libre du Français) resource. These synonyms
are incorporated into the search via SynonymQuery objects with weighted contributions. The search
process proceeds as follows.
The search process includes:

1. Initial Retrieval: Lucene search using BM25 (with optional synonym expansion).
2. Optional Re-ranking: Semantic similarity via DL or LLM models.
3. Score Fusion: The system combines lexical and semantic scores, as previously described in the

Re-ranking section
4. Output: Results saved in TREC format, ensuring no duplicates.

This entire search and re-ranking pipeline is controlled by an XML configuration (SearcherParams).
It supports customization of analyzers, similarity models, synonym expansion, and re-ranking methods.
The getReRanker() parameter can be set to DL, LLM, or None, enabling fine-grained control over the
system’s semantic capabilities.

3. Experimental Setup

3.1. Collection

For our project, we utilized the LongEval 2025 Web Retrieval Train Collection, curated by TU
Wien in collaboration with Qwant.
This dataset is designed to support research in temporal information retrieval and the evaluation of
long-term relevance persistence.
Dataset Composition:

• Queries: 9,000 user-issued queries focused on trending topics, extracted from Qwant’s search
logs between June 2022 and February 2023.



• Documents: Approximately 18 million web documents retrieved in response to those queries,
including both clicked results and randomly sampled content from Qwant’s index.

• Relevance Judgments: Graded relevance labels derived from a click model, reflecting user
interaction and engagement patterns.

Data Characteristics:

• The dataset includes original French versions of both queries and documents, adding a multilingual
dimension to retrieval tasks.

• Documents are stored in JSON format, with metadata such as document ID, URL, and timestamp,
enabling structured parsing and temporal analysis.

• The temporal coverage of the data captures language evolution and topical drift, challenging
systems to maintain performance over time.

This collection is used as the official training set for the LongEval 2025 Information Retrieval Lab at
CLEF and provides a robust benchmark for evaluating retrieval systems in dynamic and realistic web
search scenarios.

3.2. Evaluation Measures

We evaluate the performance of our information retrieval system using three key metrics: Mean
Average Precision (MAP), Normalized Discounted Cumulative Gain (nDCG), and Normalized
Discounted Cumulative Gain at rank 10 (nDCG@10).

• MAP (Mean Average Precision): MAP provides an overall measure of the retrieval ability of
the system to return relevant documents.
It calculates the average precision for each query and then averages these values across all queries.
This metric is useful for assessing how well the system ranks relevant documents throughout the
entire result list.

• nDCG (Normalized Discounted Cumulative Gain): nDCG evaluates the ranking quality of
the top documents by giving more weight to relevant documents at the top of the result list.
It is particularly valuable for assessing systems where the relevance of documents in higher ranks
is more significant.

• nDCG@10 (Normalized Discounted Cumulative Gain at rank 10): This variation of nDCG
emphasizes the relevance of the top 10 documents.
It applies a logarithmic discount to the relevance of documents at lower ranks, giving more
importance to those ranked near the top.

We used the official trec_eval tool to calculate both MAP and nDCG metrics based on our system
outputs and the provided qrels file.

The results will be discussed in detail in Section4.2.

3.3. Git

To develop the project, our group made use extensively of git in order to collaborate and organize the
files.
The full source code is available on our BitBucket Repository.3

3RAND bitbucket repository: https://bitbucket.org/upd-dei-stud-prj/seupd2425-rand/src/master/.

https://bitbucket.org/upd-dei-stud-prj/seupd2425-rand/src/master/
https://bitbucket.org/upd-dei-stud-prj/seupd2425-rand/src/master/


3.4. Hardware

The used hardware involved different systems to manage the heavy workload on the machines more
time-efficiently.
These were the machines that were used:

Table 1
Hardware specification of the four machines used in the experiments

Machine 1
CPU 11th Gen Intel Core i7-1165G7
RAM 8GB 3200 MHz
OS Windows 11
GPU Intel Iris Xe Graphics

Machine 2
CPU AMD Ryzen 5 3600
RAM 16GB 3600 MHz
OS Windows 11
GPU NVIDIA GTX 1650 Super

Machine 3
CPU 12th Gen Intel Core i5-12400F
RAM 16GB 3600 MHz
OS Windows 11
GPU AMD 6650XT

Machine 4
CPU AMD Ryzen 3 5300U
RAM 8GB 3200 MHz
OS Ubuntu
GPU Integrated Radeon Graphics

Machine 5
CPU 8th Gen Intel Core i5-8250U
RAM 16GB 2400 MHz
OS Windows 10
GPU Intel UHD Graphics 620

4. Results

4.1. Runs description

Here we describe the configurations of our system and their results, with a summary of tokenizer, filters,
stoplist, stemmer used for the runs.

Run ID Tokenizer Filters Stoplist Stemmer Description
seupd2425-rand-nofilters Whitespace LowerCase, Length None None Baseline configuration without stoplist or

stemmer; standard analysis applied to all
text.

seupd2425-rand-englishFilter Whitespace LowerCase, Length, English Possessive Azure (Igor Brigadir) Porter Focus on English documents: possessive
suffix removal, English stoplist, and Porter
stemming.

seupd2425-rand-queryLength Whitespace LowerCase, Length Oracle French FrenchLight French configuration with relaxed match
threshold (≥1 term) to improve retrieval
for short queries.

seupd2425-rand-frenchFilter Whitespace LowerCase, Length Oracle French FrenchLight Same French setup but with stricter query-
doc match threshold (≥2 terms) to improve
precision.

seupd2425-rand-DL Whitespace LowerCase, Length Oracle French FrenchLight Adds a Deep Learning re-ranker to prior-
itize relevant documents in top ranking
positions.

seupd2425-rand-synonyms Whitespace LowerCase, Length Oracle French FrenchLight Synonym support enabled with weights
0.5, 0.8, and 1; balances recall and precision,
no re-ranker.

seupd2425-rand-elision+synonyms0.5 Whitespace LowerCase, Length, Elision Oracle French FrenchLight Adds ElisionFilter for French contractions
and uses synonym weight = 0.5 for optimal
results.

seupd2425-rand-ICU Whitespace LowerCase, Length, ICUFolding Oracle French FrenchLight ICU Folding removes accents and normal-
izes Unicode; achieves the highest nDCG
score.

Table 2
Detailed summary of system configurations and approaches tested.



4.2. Results on the training set

The table below presents the final averaged evaluation metrics for each system configuration (run).
We report three key metrics: nDCG, nDCG@10, and MAP. These metrics provide a comprehensive
view of the retrieval performance across different strategies applied during the experiments, including
language filtering, synonym expansion, and reranking.
The reported values represent the average scores obtained over nine monthly runs. These results help
to highlight the relative strengths of each configuration and guide the selection of the most effective
retrieval strategy.
As discussed previously, the ICU configuration (2) was revealed to have the best performance in terms
of each of the three evaluation measures considered for the comparison.
The FrenchFilter (2) runs turned out to have the second-best nDCG, while the re-ranking mechanism
adopted in the DL configuration (2) leads to higher nDCG@10 and MAP values, as expected.

Table 3
Final averaged evaluation metrics (nDCG, nDCG@10, MAP) for each run

Run Name nDCG nDCG@10 MAP

seupd2425-rand-nofilters 0.1423 0.0951 0.0804
seupd2425-rand-frenchfilter 0.1638 0.1071 0.0950
seupd2425-rand-englishfilter 0.1223 0.0803 0.0679
seupd2425-rand-elision+synonyms0.5 0.1482 0.1004 0.0851
seupd2425-rand-DL 0.1401 0.1086 0.0972
seupd2425-rand-synonyms0.5 0.1475 0.1001 0.0849
seupd2425-rand-synonyms0.8 0.1393 0.0934 0.0789
seupd2425-rand-synonyms1 0.1318 0.0965 0.0762
seupd2425-rand-ICU 0.1707 0.1170 0.0995

Figure 1: Comparison of nDCGs of different system configurations over the collection months.

The chart (Fig.1) shows the nDCG trend over time, evaluating the effectiveness of different parameter
configurations in search runs; in particular, for re-ranking we retrieved a maximum of 100 documents
per query, due to the execution time being too long to retrieve 1000 documents per query, this is also
why the nDCG parameter is particularly low.



Figure 2: Comparison of system configurations using various synonym weights.

In particular, we can deduce the following trends from the graph:

• All configurations show a clear improvement starting around October 2022, probably due to the
higher quality of the collections (e.g., better structured, less noisy), making it easier to return
relevant documents.

• The most notable gains are seen with French-specific filters (2). Probably the reason is that the
queries and documents are matched in the same language or tokenization style, reducing noise
greatly and improving ranking quality.

• Without filters (2), irrelevant terms or tokens might be included in both indexing and querying
stages, causing mismatches and drops in performance compared to runs with filters applied.

• reRanking (2) uses more sophisticated models (e.g., DL or LLM-based) to reorder the top results,
improving the placement of highly relevant documents, but due to the fact that we set the
parameter maxDocsRetrieved to 100, we have a drop in metrics.

• synonyms+elision (2) offers a moderate boost over noFilter, indicating that query expansion
helps but is not as impactful as filtering.

The second graph (Fig.2) compares the different configurations of our system using various synonym
weights (2) for query expansion. Runs with weight = 0.5 achieve better results in terms of nDCG, while
increasing the weight leads to a drop in performance.
The comparison also includes the runs with the frenchFilter (2) and the elisionFilter (2), the latter using
query expansion with a synonym weight of 0.5. Across all months in the collection, query expansion
results in a degradation of system performance when compared to the frenchFilter configuration. The
introduction of the ElisionFilter does not cause significant changes in the nDCG values compared
to the weight = 0.5 configuration, but performs slightly better on average in terms of nDCG, nDCG@10
and MAP.

4.3. Results on the Test Collection

This section outlines the results of the runs submitted to CLEF, presenting both raw performance scores
and accompanying statistical evaluations to allow for a clearer comparison of system behavior and
the impact of the implemented strategies. As in Section4.2, we show the graph that represents the
evolution of the nDCG over the months of the test collection, calculated for our four submitted systems



(Fig.3). This general comparison confirms that the ICU configuration (2) is the best in terms of nDCG.
In order to follow the initial LongEval task, which consists in the development of an IR system capable

Figure 3: Comparison of nDCGs of the submitted system configurations over the collection months of the test
set.

of managing data changes over time, the following analysis will focus on three different snapshots of
the test collection: short-term (2023-03), middle-term (2023-06), and long-term (2023-08). For each of
the three cases, we compare our submitted systems with boxplots, to visualize their mean and variance.
After that, we compute the two-way ANalysis Of VAriance (2-ANOVA), considering as hypothesis
the null hypothesis 𝐻0: 𝜇𝑥 = 𝜇𝑦 (where 𝑥 and 𝑦 represent two generic systems to be compared), and
Multiple Comparisons with Tukey’s HSD Test. All tests are performed with a significance level 𝛼 = 0.05.

4.3.1. Short-term analysis

Just for the short-term analysis, we also show the results of the one-way ANOVA (Table 4). However,
we will focus only on the two-way ANOVA for the remaining tests. The reason for our choice is that
the two-way ANOVA considers both the topics and the systems’ variabilities, while the one-way
ANOVA only considers the system’s variability.

Table 5 shows that both factors (systems and topics) are statistically significant (p < 0.001), with
topics contributing substantially more to variance, indicating strong variability across queries. These
considerations lead to rejecting the null hypothesis.
In Figure 5 we notice that the ICU system (in blue) is statistically different from the elision+synonyms0.5
and DL systems (in red), while it is not significantly different from the frenchfilter system (in gray).



Table 4
Results of the One-Way ANOVA test for 2023-03 month

Statistic p_value Reject null hypothesis H0

17.689 1.84 Some systems have significant different means

Table 5
Two-Way ANOVA results for nDCG on Short-term data.

Source Sum of Squares Degrees of freedom Mean Squares F p-value

Columns (systems) 4.9110 3 1.6370 25.6115 <0.0001
Rows (topics) 818.5685 4588 0.1784 2.7914 <0.0001
Error 879.7479 13764 0.0639
Total 1703.2274 18355

In figure 4 we can see that all systems show relatively low medians, around 0.15–0.2. and The IQRs are
quite similar for all systems, indicating comparable variability.
Each system has positive outliers (near 1.0), meaning that a few instances achieved high effectiveness.

Figure 4: Short-term Boxplots

Table 6
Multiple Comparison of Means with Tukey HSD Test - Short-term (2023-03)

Systems mean_diff q_stat p_value

frenchfilter vs ICU 0.0132 3.5438 0.0590
frenchfilter vs elision+synonyms0.5 0.0117 3.1438 0.1170
frenchfilter vs DL 0.0313 8.3869 <0.0001
ICU vs elision+synonyms0.5 0.0250 6.6876 <0.0001
ICU vs DL 0.0445 11.9307 <0.0001
elision+synonyms0.5 vs DL 0.0196 5.2431 0.0012



Figure 5: Short-term Tukey HSD Test

4.3.2. Middle-term analysis

In this second experimental setting, the results confirm that both the systems and the topics significantly
affect performance, with p-values < 0.0001 for both factors (Fig.7). In particular, the F-value for the
systems increased from 25.61 to 27.28, indicating a slightly stronger differentiation among the systems
in this setting. In contrast, the F-value for the topics decreased from 2.79 to 2.26, though still statistically
significant. The Sum of Squares for topics (1051.42) remains considerably higher than that of systems
(5.83), showing that topic variability still accounts for the largest portion of the total variance. These
findings support the conclusion that system performance differences are consistent and significant,
even when accounting for the large variance introduced by the topic dimension.

Table 7
Two-Way ANOVA results for nDCG on Middle-term data.

Source Sum of Squares Degrees of freedom Mean Squares F p-value

Columns (systems) 5.8347 3 1.9449 27.2824 <0.0001
Rows (topics) 1051.4181 6513 0.1614 2.2645 <0.0001
Error 1392.8991 19539 0.0713 – –
Total 2450.1520 26055 – – –

In Figure 6 median values and overall IQRs are fairly consistent across months, and the number of
high-end outliers increased slightly, especially for elision+synonyms0.5, indicating more sporadic
high-performance cases in comparison with the previous boxplot.



Figure 6: Middle-term Boxplots

Figure 7: Middle-term Tukey HSD Test



Table 8
Multiple Comparison of Means with Tukey HSD Test - Middle-term (2023-06)

Systems mean_diff q_stat p_value

frenchfilter vs ICU 0.0109 3.2877 0.0925
frenchfilter vs elision+synonyms0.5 0.0094 2.8504 0.1822
frenchfilter vs DL 0.0298 9.0178 <0.0001
ICU vs elision+synonyms0.5 0.0203 6.1381 <0.0001
ICU vs DL 0.0407 12.3054 <0.0001
elision+synonyms0.5 vs DL 0.0204 6.1674 <0.0001



4.3.3. Long-term analysis

The table 9 confirms a statistically significant difference among the systems and topics (p-values<0.0001).
The Sum of Squares for topics is very high again (1456.32), which is consistent with the other tables (e.g.,
1051.42 in the middle-term analysis). However, because the number of topics (df = 10554) is larger, the
Mean Square is the smallest (0.1380) among all the different snaphots. The F-statistic for topics (2.1174)
is slightly lower than the other monthly snapshots (e.g., 2.7914 in short-term snapshot), suggesting a
significant effect of topic variability.

Table 9
Two-Way ANOVA results for nDCG on Long-term data.

Source Sum of Squares Degrees of freedom Mean Squares F p-value

Columns (systems) 4.7298 3 1.5766 24.1919 <0.0001
Rows (topics) 1456.3233 10554 0.1380 2.1174 <0.0001
Error 2063.4058 31662 0.0652
Total 3524.4588 42219

Figure 8: Long-term Boxplots

Finally in boxplot 8 we can also see that median values are lower than previous months, especially for
DL, which shows a very low central tendency, close to 0.
All four systems have a large number of outliers, particularly concentrated near the top (nDCG near
the ’1’ value). This suggests rare but highly successful retrievals.
The IQR is small, especially for DL, meaning most of its performance lies in a low range with little
variability — except for many strong outliers.



Figure 9: Long-term Tukey HSD Test

Table 10
Multiple Comparison of Means with Tukey HSD Test - Long-term (2023-08)

Systems mean_diff q_stat p_value

frenchfilter vs ICU 0.0072 2.9125 0.1666
frenchfilter vs elision+synonyms0.5 0.0088 3.5330 0.0602
frenchfilter vs DL 0.0212 8.5126 <0.0001
ICU vs elision+synonyms0.5 0.0160 6.4454 <0.0001
ICU vs DL 0.0284 11.4251 <0.0001
elision+synonyms0.5 vs DL 0.0124 4.9797 0.0024



5. Conclusions and Future Work

This work presented a modular information retrieval system built on top of the Lucene framework,
enhanced with custom query formulation strategies and optional query expansion through Wolf, using
optionally deep learning or large language models for the re-ranking phase.
The system demonstrated flexibility in handling TREC and JSON topics and produced standardized run
files suitable for evaluation.
Initial experimentation were based on few filters configuration, then French-dedicated stoplist and
stemmer were introduced to improve our system performance.
The implementation of a Deep Learning model for reranking seemed to be promising in terms of
nDCG@10, but its high computational cost forced us to retrieve a maximum of 100 documents per
query, and this led to a drop of nDCG .
Future developments will focus on integrating deep learning models and large language models (LLMs)
for more effective and efficient query rewriting and document re-ranking.
These enhancements aim to boost semantic understanding and retrieval precision.
Further work will also explore improved query expansion with synonyms, incorporating relevance
feedback mechanisms, a better management of short queries, and refining scoring models to better
capture user intent.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT and Writefull in order to: Grammar
and spelling check, Paraphrase and reword. After using these tools/services, the authors reviewed and
edited the content as needed and take full responsibility for the publication’s content.
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