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Abstract

This paper describes our system for the Multi-Author Writing Style Analysis shared task for the PAN Lab at CLEF
2025. We design and train an ensemble model from multiple fine-tuned transformer models. Each model in the
ensemble follows our custom BertStyleNN architecture, a PyTorch neural network consisting of a fine-tuned
encoder model and a feed-forward neural network classification head. We train each BertStyleNN model
end-to-end on a combined difficulty (easy, medium, and hard) training dataset, using five different pre-trained
feature extractors. We then conduct an exhaustive search over three ensembling methods and model combinations
for each difficulty level. Our final system achieves a macro F1 of 0.8 averaged over the three difficulty levels,
significantly outperforming the baseline.
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1. Introduction

The PAN Lab at CLEF hosts stylometry and text forensic shared tasks, such as the Multi-Author Writing
Style Analysis task which has been run in various forms since 2016 [1]. This task has applications in
plagiarism detection and authorship attribution for historical or anonymous works. In 2025, the style
analysis task is to classify pairs of consecutive sentences as exhibiting a style change (label 1) or not
(label 0) [2]. Software systems are submitted to TIRA.io [3] and evaluated on the hidden test set on the
basis of macro F1 scores.

The data is split into three difficulty levels: easy, medium, and hard. The easy and medium difficulty
levels consist of data with semantic differences in addition to stylistic ones. In contrast, sentences in
the hard difficulty dataset cover the same topic.

This paper describes our ensembled transformer model system for sentence-level style analysis. In
Section 2, we present related work to this task. In Section 3, we explore the class imbalance in our data
and experiment with data augmentation. Section 4 and Appendix A describe the design and training
for our custom neural network model BertStyleNN and the final system Ensembled-BertStyleNN.
We use different ensemble models for each difficulty level due to the aforementioned differences in the
data. Finally, we present the results of our system on the test set in Section 5 and conclude in Section 6.

2. Related Work

Early techniques for style analysis employed manual feature engineering of lexical or syntactic fea-
tures [4]. More recent work uses embeddings from pre-trained language models. Since many sentence
embedding models are trained with semantic similarity objectives, fine-tuning the pre-trained models
on data labeled for style change is common and often necessary.

The goal of the PAN 2024 Multi-Author Style Analysis task was to identify style changes between
paragraphs as opposed to between sentences as it is in 2025 [5]. Of the top two submissions to the 2024
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version of this task, one fine-tuned the open-source large language model Llama-3-8b [6] with low-rank
adaption [7], and the other ensembled three pre-trained transformer models with additional semantic
similarity checks applied for the easy and medium difficulty levels [8].

Document-level authorship attribution approaches include using static embeddings as input to
Siamese networks trained with contrastive loss to perform classification [4].

3. Dataset Exploration

The most notable observation from our data exploration is the class imbalance. Only 19.9% and 20.4%
of sentence pairs in the combined difficulty training and validation sets respectively are instances of
a style change. To investigate the significance of this class imbalance, we constructed a 50/50 class
balanced training set. This balanced training set was augmented with problems randomly chosen from
the PAN 2024 Multi-Author Style Analysis task dataset [9]. We use both the balanced and original
imbalanced training sets to extract sentence embeddings from the pre-trained all-MiniLM-L12-v2
model and train a feed-forward neural network (FFNN) as a binary classifier. We do not fine-tune the
embedding model at all, only the FFNN. The validation set metrics for both training runs are shown in
Table 1; we evaluate each run on the original imbalanced validation set.

Table 1

Validation Performance on Balanced & Original Training Data. All metrics are macro.

Training Data Type F1 Precision Recall

Original (imbalanced) 0.762 0.766 0.758

Balanced (50/50) 0.729 0.679 0.463

The Macro F1 score from the model with a balanced train set is 0.033 less than the model with the
original train set. For our final system, we assume that the test set also exhibits the class imbalance
present in the training and validation data. Therefore, we conduct all further training with the original,
imbalanced training data.

4. The BertStyleNN

We introduce the BertStyleNN, our custom neural network based model which contains a binary
sequence classification head and is implemented with PyTorch. The code and links to download our
trained models from HuggingFace can be found at https://github.com/denizbt/pan-styleAnalysis25.

In this section, we describe the architecture and training process for BertStyleNN models.

4.1. Model Architecture

A BertStyleNN has two parts: a transformer encoder for feature extraction and a FFNN for binary
classification. BertStyleNN supports a variety of pre-trained SentenceTransformers models and
general feature extractors as its encoder. No architectural changes are made to any pre-trained encoder;
it is only fine-tuned.

The architecture of the FFNN is relatively straightforward and is the same for every encoder model.
It consists of 4 hidden layers with ReLU activation functions, a 1D BatchNorm layer, and a Dropout
layer with 𝑝 = 0.4. The details of the architecture were determined from experimentation with the
all-MiniLM-L12-v2 sentence embedding model; each sentence pair in the PAN dataset (all difficulties
combined) was embedded using the all-MiniLM-L12-v2 model out-of-the-box and then used to train
the FFNN. The architecture that resulted in the highest validation macro F1 was chosen.

The forward pass of a BertStyleNN proceeds as follows. The pair of sentences to check for style
changes are passed in as input. Then, BertStyleNN extracts embeddings independently for each
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sentence using its encoder, concatenates the embeddings, and finally applies the FFNN to get one-
dimensional output for the binary classification. The complete architecture for BertStyleNN is shown
in Figure 1.

Sentence 1 Sentence 2

Encoder

Mean Pooling Mean Pooling

Embedding 1 Embedding 2

Concatenation

Output Projection (logits) 

Linear

ReLU

BatchNorm

Dropout (p=0.4)

FFNN

Figure 1: Architecture diagram of BertStyleNN (shown with a generic encoder).

4.2. Training

Training a BertStyleNN involves simultaneously fine-tuning a pre-trained encoder model and training
a FFNN for classification (i.e. end-to-end training).

We select and fine-tune five different pre-trained encoder/sentence embedding models as the encoders
for the BertStyleNN, listed below. All models are downloaded from HuggingFace.

• roberta-base [10] improves upon BERT [11] by training it on more data, using dynamic masking,
and removing the next sentence prediction task. It was chosen due to its popularity and high
performance as a general feature extractor.

• microsoft/deberta-base [12] achieves higher performance compared to BERT and RoBERTa
by using disentangled attention which uses two separate vectors for position and content and
improving the decoding for the masked LM task. This model was also chosen for its popularity
and high performance on natural language understanding tasks.

• sentence-transformers/all-MiniLM-L12-v2 [13] was finetuned with a contrastive similarity
objective from the pre-trained microsoft/MiniLM-L12-H384-uncased model [14]. As of the
writing of this paper, it is the fourth highest performing model for sentence embeddings in the
SentenceTransformers library [15].

• sentence-transformers/all-mpnet-base-v2 [16] was finetuned from using self-supervised
contrastive learning objective from microsoft/mpnet-base model [17]. It is currently the highest
performing model for sentence embeddings in the SentenceTransformers library [15].

• sentence-transformers/sentence-t5-base [18] is a PyTorch version for the encoder of a T5
base model [19]. It was chosen to add to the diversity of our set of models.



Our training and validation sets are a combination of the data from all three difficulty levels. We
make no other alterations or augmentations to the data. We choose to use a combined training set since
each difficulty level subset is too small on its own.

We holistically select different hyperparameters and learning schedules for every encoder model
(see Appendix A for the choices). We also conduct a linear search for the best probability prediction
threshold to apply to the output and choose the best epoch for each model based on the macro F1.
It is important to note that while the training hyperparameters differ, the architecture of the FFNN
(including hidden layer dimensions) remains the same for all styles of encoder models. Table 2 displays
the validation performance for each fine-tuned model.

Table 2

Individual Model Validation Metrics (trained on combined difficulty dataset).

All metrics are macro and are reported for the best probability prediction threshold for the model.

Encoder F1 Precision Recall

roberta-base 0.791 0.797 0.789

microsoft/deberta-base 0.794 0.803 0.785

sentence-transformers/all-MiniLM-L12-v2 0.785 0.803 0.771

sentence-transformers/all-mpnet-base-v2 0.756 0.787 0.736

sentence-transformers/sentence-t5-base 0.768 0.796 0.748

4.3. Ensembling

At this point, we have trained several BertStyleNN models on the combined difficulty dataset. We
now turn our attention to finding the best ensemble model for each difficulty level.

We experiment with three ensembling methods: majority voting, unweighted average of output
probabilities, and unweighted average of output logits. For each difficulty level, we test all three methods
on the validation set for every subset of trained models size three or more. We report the metrics for
the highest performing subset and method for each difficulty level in Table 3. Figure 2 illustrates our
complete system pipeline, including ensembling: the Ensemble-BertStyleNN.

Table 3

Best Ensemble Model Validation Metrics for each difficulty level.

Ensemble Macro F1 Threshold Method

Easy: (deberta-base, all-MiniLM-L12-v2,

sentence-t5-base)

0.909 0.67 avg-logits

Medium: (deberta-base, roberta-base,

all-mpnet-base-v2)

0.801 0.58 avg-probs

Hard: (deberta-base, roberta-base,

all-MiniLM-L12-v2, all-mpnet-base-v2)

0.702 0.57 avg-probs

5. Results

For the final system submission, we use the ensemble models along with the prediction thresholds that
performed best on the validation set; details for the ensemble used for each difficulty level are given in
Table 3. The results of our Ensembled-BertStyleNN approach on the hidden test set are in Table 4.
Our system significantly outperforms the naive baseline of predicting the majority class (0).
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Figure 2: Full pipeline of the Ensembled-BertStyleNN system. Note that we use 3 different BertStyleNN

models for the easy and medium subtask ensemble (consistent with the diagram), and 4 models for the hard

subtask ensemble.

Table 4

Results of Ensembled-BertStyleNN on hidden test set, compared with naive baseline.

Approach Easy (task1) Medium (task2) Hard (task3) Average

Ensembled-BertStyleNN 0.909 0.793 0.698 0.8

Baseline (predict all 0s) 0.439 0.44 0.453 0.444

6. Conclusion

This paper describes an ensemble model system for the Multi-Author Style Analysis task. We fine-tune
and ensemble new BertStyleNN models with 5 distinct pre-trained encoder models and a FFNN for
binary classification. Our final system Ensembled-BertStyleNN achieves 0.8 macro F1 averaged over
the three difficulty levels, indicating promise for ensemble transformer model approaches to the style
analysis task.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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A. Training Configuration

In this section, we provide more details about our training parameters. For all training runs, we use
nn.BCEWithLogitsLoss with the pos-weight parameter set to 0.8

0.2 , i.e. the approximate imbalance
between positive (1) and negative (0) labels in the train and validation set. The pos-weight parameter
penalizes false negatives (predicting a 0 when it should be a 1 more harshly than false positives
(predicting 0 on true label 1), encouraging the model to predict more 1s. This mitigates some of the
negative effects of the imbalanced training data.

Table 5 shows the complete list of hyperparameters used in training all models. Additionally, we
used the AdamW optimizer, a consistent batch size of 16, and mean pooling of the encoder output for
all models.

Table 5

Training configuration for each encoder model.

Encoder Epochs Encoder LR FFNN LR LR Scheduler Warmup Ratio Weight Decay

roberta-base 5 1e-5 1e-4 Linear 0.1 0.01

deberta-base 5 5e-6 1e-4 Linear None 0.01

all-MiniLM-L12-v2 5 1e-5 1e-6 Reduce LR

on Plateau

None 0.01

all-mpnet-base-v2 12 3e-6 8e-5 Linear 0.1 0.01

sentence-t5-base 17 5e-6 1e-4 Linear None 0.05
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