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Abstract

This submission to the binary Al detection task is based on a modular stylometric pipeline, where: public spaCy
models are used for text preprocessing (including tokenisation, named entity recognition, dependency parsing,
part-of-speech tagging, and morphology annotation) and extracting several thousand features (frequencies of
n-grams of the above linguistic annotations); light-gradient boosting machines are used as the classifier. We
collect a large corpus of more than 500 000 machine-generated texts for the classifier’s training. We explore several
parameter options to increase the classifier’s capacity and take advantage of that training set. Our approach
follows the non-neural, computationally inexpensive but explainable approach found effective previously.
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1. Introduction

The rapidly developing landscape of Large Language Models (LLMs) has revolutionised natural language
processing (NLP), enabling the use of machine-generated texts (MGTs) throughout society on a daily
basis. The use of these tools, especially in some professional environments such as academic [1] ,
medical [2], legal, or news reporting, raises concerns around issues of plagiarism, factual reliability,
and many others. The “Voight-Kampff” Generative AI Authorship Verification Task [3] at the PAN and
ELOQUENT 2025 workshop [4], and specifically Subtask 1 “Al Detection Sensitivity” answers the urgent
need to develop reliable model detection. The subtask is a classical binary text classification task, i.e.
categorising a given text as a human or machine written. The additional challenge comes from changing
the style of MGTs, mimicking specific human authors, testing on unseen models, and using obfuscation
strategies. In submission to this subtask, we strive to expand on the simplistic non-neural feature-based
classifiers that were previously found effective, using boosted trees with stylometric (linguistically
explainable) features.

2. Background

CEUR-WS.org/Vol-4038/paper_312.pdf

2.1. MGT detection methods

There is a considerable variety of MGT detection methods reviewed in [5, 6], but also in the overview of
last year’s Voight-Kampff Generative AI Authorship Verification Task at PAN and ELOQUENT 2024 [7].
They included systems based on (i) terms, (ii) perplexity or logit statistics, (iii) watermarking, and their
mixtures. The watermarking approach relies on embedding an imperceptible signature in the generated
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texts at some stage of the generator training, text generation, or post-processing that modifies character-
or word-level distributions. In the present submission, we disregard this approach due to the task’s
constraints. The logits statistics approach typically involves zero-shot white-box methods, i.e., ones
that require access to the LLM generator (or its surrogate) in order to compute either the likelihood of
a text being generated by it or features later used in a classifier. The black-box alternatives, instead,
would machine-regenerate a given text sample and subsequently compare it to the original to obtain a
similarity score. Finally, term-based systems are typically neural fine-tuned classifiers (from the BERT
family with modifications) using word embeddings or linguistic (stylometric) features.

Our submission follows works such as [8, 9, 10, 11], which either utilised various stylometric features,
augmented data, or expanded the training dataset. We especially find our approach similar to the simple
SVM classifier on the TF-IDF features [12], which outranked all neural baselines and most neural-based
submissions in the last year’s task. Classifiers based on stylometric features were also found to be
effective elsewhere [13].

2.2. MGT detection robustness

The performance of MGT detection can generally degrade due to two factors: out-of-distribution
issues and attacks [6]. The former encompasses generalisation issues such as: cross-domain (involving
changing text type, and consequently its vocabulary, style, topics, etc.), cross-language (involving
not only switching the language of the text but also linguistic interference due to non-nativity of the
authors) and cross-LLM (involving detection of text generators unseen during the detector’s training).
The latter includes: paraphrasing output of one LLM by another (therefore changing the textual feature
distribution of the former) [14], adversarial text perturbations on different levels (characters [15],
syntax, [16] or lexis, [17]), prompt engineering (taking advantage of in-context learning to change
LLM’s characteristics by varying prompts [18, 19] including mimicking specific authors or character
profiling [20]) and other attacks.

Reportedly [21], supervised detectors can generalise reasonably well across LLM scales but less so
across model families. On the other hand, issues that were found to be challenging were incorporating
unseen languages and performing simple attacks such as Unicode obfuscation or shortening text length
[7]. Our own approach has been found vulnerable to cross-domain detection [22] as tested on [23], but
on a closed domain it was robust to one-step paraphrasing. Furthermore, the unexpected performance
of the aforementioned SVM TF-IDF classifier [12] was mainly due to its robustness to obfuscation.

We did not explicitly design our detector to target any of these issues; however, we follow the
general recommendation [6] that supervised detectors can effectively defend against some of them by
continually expanding training datasets (with adversarial examples, examples of LLM families, examples
of text types, etc.) and fine-tuning even on small samples.

3. System Overview

In general, our submission employed (i) gradient-boosted tree models together with (ii) feature engineer-
ing and, crucially, (iii) a large training dataset. We did not target any obfuscation techniques. Similarly
to our previous work [22, 24], we used a modular Python pipeline for interpretable stylometric analysis
being developed for CLARIN-PL![25]. It is designed to connect text preprocessing and linguistic feature
extraction with various existing NLP tools, classifiers, explainability modules, and visualisation.

3.1. Data source

Following our unremarkable attempt [22] (F1 = 0.54 compared to an ensemble of stylometric features
and transformers [26] and the highest ranked result 0.81) in cross-domain MGT detection on AuTexTifi-
cation [23] benchmark — where training was performed on tweets, how-to articles and legal documents,
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while testing on reviews and news — we decided that our model needs as comprehensive and varied
training data as possible in order for the validation result to hold on test set.

For that purpose, we have collected in total 563 571 text samples from several openly accessible
datasets [3, 23, 27, 18, 28, 29, 30, 31] designed as benchmarks in MGT detection, see Table 1. The
number reported above already takes into account dropouts due to issues with special characters or
incompatibility of data structure that we were not able to solve within the time constraints of the PAN’s
task. In particular cases, not all data were incorporated (e.g. training but not validation set in the case
of AuTexTification and PAN’s Voight-Kampff Generative Al Detection; consequently, not all available
genres were included). Some of these datasets themselves were collected from other openly available
datasets and augmented with the generated texts. The total number of LLM labels available in that
dataset was 348.

The source, genre and model labels were not used in the training.

3.2. Stylometric Features

We considered two options: either a closed set of predefined but more interpretable features or an open
set features generated programmatically but still partly based on linguistic analysis.

Regarding the first, when analysing our own Wikipedia-based dataset [22], we used StyloMetrix [32].
This open-source stylometric text analysis library calculates the appearance of 195 predefined features
that include grammatical forms (tenses, modal verbs, etc.), parts of speech, lexical items (types of
pronouns, hurtful words, etc.), aspects connected to social media (e.g. sentiment analysis), syntactic
forms, and general text statistics (e.g. type-token ratio). StyloMetrix uses the spaCy model for English
to extract these features. The classifiers based on this small feature set consistently scored lower than
the alternative, so the final submission comprised only the second option.

The second option follows the basic ideas used in the R package stylo [33], which is mainly
computing token n-grams, but augmented with the various annotations. At present, for preprocessing
steps and said annotations (tokenisation, named entity recognition, dependency parsing, part-of-speech
tagging, and morphology annotation) we use spaCy [34] model en_core_web_1g. Specifically, we
computed the normalised frequencies of:

+ lemmas (from uni- to trigrams), excluding named entities,

« part-of-speech tags (from uni- to quadrigrams) including punctuation,

« dependency-based bigrams (where token neighbourhood is defined by the distance in the depen-
dency tree), excluding named entities,

« morphological annotations (unigrams) including entity types (i.e. using Named Entity Recognition
to find named entities and replacing them with their types)

Each of the four feature classes could contain a maximum of 1500 items. This particular set of features
admittedly comes from some unresolved technical issues, but also from repeated trial and error on
yet other authorial attribution datasets. For instance, elsewhere [22] we have found that punctuation
features, such as the ‘SPACE’ token, can detect human mistakes or artefacts in LLM processing or
further data post-processing (a redundant whitespace character, e.g., at the beginning of a paragraph or
a second one between words). In that choice of feature classes we also try to minimise, although not
strictly enforce, the generation of duplicate versions of the same feature in separate classes.

As presented in Table 2 we also testes so-called culling (i.e., ignoring features with document frequency
strictly higher or lower than the given threshold). In the present submission, a majority of our models
did not use culling. In one case, we set the minimum document frequency to 0.1 (that is, about 50k out
of 500k documents), which reduced the number of features from the initial 4594 to 3264.

3.3. Classifier

We take advantage of the existing solutions: Light Gradient-Boosting Machine (LGBM) [35] as the
state-of-the-art boosted trees classifier and Scikit-learn [36] for feature counting and cross-validation.



Table 1

Overview of datasets used in training. Items in parentheses refer to all the collected samples, while items without
parentheses refer to the samples used in training.

Dataset Samples Word Count Genres Models
PAN’25 Generative 23704 14 727 408 essays human, deepseek-r1-distill-qwen-32b
Al Detection (23 707) fiction falcon3-10b-instruct, gemini-1.5-pro
news gemini-2.0-flash, gemini-pro
gemini-pro-paraphrase, gpt-3.5-turbo
gpt-4-turbo, gpt-4-turbo-paraphrase
gpt-4.5-preview, gpt-4o, gpt-4o-mini
llama-2-70b-chat, llama-2-7b-chat
llama-3.1-8b-instruct, llama-3.3-70b-instruct
mistral-8b-instruct-2410
mistral-7b-instruct-v0.2
mixtral-8x7b-instruct-v0.1, 03-mini
gwen1.5-72b-chat-8bit, text-bison-002
Autextification [23] 21 832 1367 323 news human, BLOOM-1B7, BLOOM-3B,
(21 832) reviews BLOOM-7B1, babbage, curie,
(tweets text-davinci-003
how-to
legal)
CHEAT [27] 15394 165 584 abstracts  gpt-3.5-turbo
(15 395)
HC3 [18] 0 12492921  Q&A human, ChatGPT
(48 644) finance
medicine
Wikipedia
HC3 Plus [28] 148 237 11 250 436 news human, GPT-3.5-Turbo-0301
(148 402) summaries
translations
question
paraphrases
MAGE [29] 318 958 67 471 388 opinions human, gpt-3.5-turbo, text-davinci-002,
(319 071) reviews text-davinci-003, gpt_j, gpt_neox, opt,
news flan_t5, t0, bloom_7b, GLM130B
Q&A
stories
reasoning
Wikipedia
abstracts
Multitude [30] 29 459 6175907 news human, alpaca-lora-30b, gpt-3.5-turbo
(29 460) gpt-4, text-davinci-003, vicuna-13b
llama-65b, opt-66b, opt-iml-max-1.3b
M4 [31] 5987 XXX Wikipedia  human, GPT-4, ChatGPT
abstracts text-davinci-003, Cohere

peer reviews Dolly-v2, BLOOMz 176B

news briefs

Following our previous experience on other, smaller datasets — mainly in English and Polish lan-
guages — during pipeline development, the LGBM classifiers parameters were set to: DART boosting,
learning_rate = 0.5, enabled bagging (randomly selecting bagging_fraction = 0.8 of data without
resampling every bagging_freq = 3 iterations). At this time, we used the binary classifier, but it is
possible — and in fact in can be beneficial [22] - to train a multiclass model using the LLM labels, see
Table 1, and then map it back to the binary ‘human vs. machine’ labels.



Table 2
Overview of submitted model parameters and their sizes. The Model size refers to the size of model saved in a
.txt file.

Model name . LGBM parameters
Feature culling

Model size [kB]

num_leaves num_iterations max_depth

small 0 10 100 8 229
medium 0 12 500 10 851

big 0 20 1500 12 3685

culled 0.1 20 1500 12 3648

The following parameters were used to produce separate submissions with increasing model capacity:

» maximal number of leaves per tree (num_leaves),
« number of boosting iterations (num_iterations)
- maximal depth of the tree model (max_depth),

In our smaller pre-submission experiments (e.g., human authorship attribution on 2-100 novels, resulting
in the number of samples of the order of thousands or tens of thousands at most) satisfactory results
were obtained with num_leaves = 5, num_iterations = 100, max_depth = 5. We decided that with
500k text samples, 4k features and 348 LLM labels, the LGBM classifier required a higher capacity, hence
we submitted three classifier versions: small, medium and big, listed in Table 2. Further hyperparameter
optimisation is possible, but was not performed in the present submission.

Since LGBM training is fast, we used the stratified 10-fold cross-validation (CV) scheme to obtain
more reliable validation and test error estimation. We then decided to validate both a classifier from a
single fold (-single) and the probability scores averaged over classifiers trained on all CV folds (-cv).

4. Results

4.1. Evaluation setup

The environment for running and evaluating submissions to Subtask 1 “Al Detection Sensitivity” of the
PAN: Voight-Kampff Generative Al Detection 2025 task was TIRA [37]. This platform allows dockerised
submissions in order to ensure their reproducibility. Upon submission our contribution was validated
on two datasets, to which we refer as: "Validation 1" - the validation split of the dataset available for
training (available texts and labels), "Validation 2" — the dataset used for evaluation at TIRA (not available
to see its contents). Both datasets could be used for classifier evaluation and selection; see Table 3. TIRA
platform produced the following six evaluation metrics (all on scale 0-1, with 1 representing the perfect
score):

« ROC-AUC: The area under the ROC (Receiver Operating Characteristic) curve
« Brier: The complement of the Brier score (equivalent to mean squared loss)

« C@1: A modified accuracy score that breaks ties by assigning non-answers (class probability =
0.5) the average accuracy of the remaining cases

« F'1: The harmonic mean of precision and recall

« Fo5u : A modified Fjy 5 measure (where precision weighs more than recall) that treats non-
answers as false negatives

o The arithmetic mean of all above.

The final evaluation was also appended with the False Positive Rate (FNR) and False Negative Rate
(FNR). The submissions were ranked by a macro-average of the arithmetic mean over all individual
data sources (all individual datasets contained in the test and the ELOQUENT collections).



Table 3
Mean performance on validation sets and the unobfuscated test set against the best baseline (TF-IDF) and the
best contribution ‘mdok’). The values are arithmetic means of evaluation metrics.

Approach Validation 1 Validation2  Test
small-single 0.943 0.885 0.885
medium-single 0.967 0.93 0.905
big-single 0.972 0.926 0917
big-cv 0.976 0.933 0.921
big-cv-culled 0.972 0.951 0.915
TF-IDF 0.978 0.971 0.94
best - 0.979 0.991

Table 4

Detailed performance of big-cv model (top three rows) on test sets against the best baseline and the best
contribution. (a) The main test set without obfuscation, (b) test set incorporating most of the ELOQUENT
obfuscation contributions, (c) final evaluation (macro-averages over all individual datasets).

Evaluation set ROC-AUC Brier C@1 F1 Fgsu Mean FPR FNR

(a) Test 0.958 0912 0.882 0911 0.943 - - -
(b) ELOQUENT-01 0.884 0.749 0.625 0.746  0.877 - - -
(c) Final 0.793 0.866 0.821 0.823 0.853  0.844 0.131 0.201
Final TF-IDF 0.838 0.871 0.836 0.827 0.862 0.856 0.128 0.153
Final best 0.853 0.896 0.894 0.898 0903 0.899 0.094 0.108

4.2. Evaluation results

Table 3 presents the arithmetic mean scores of our submissions on the validation sets (available during
submission) and the unobfuscated test set together with the best-ranked baseline and participant
contribution. Both model capacity (model size and no feature culling) and cross-validation visibly led to
higher scores on both datasets. The results from the obfuscated ELOQUENT dataset available at TIRA
showed the same pattern in ROC-AUC metric, but there was no generally discernible dependence on
the model size in the other metrics. The detailed test results for the selected big-cv model are shown in
Table 4 (a).

The final results are shown in Table 4. In general, one can observe Fo 5, > F; > C@1 which is
probably due to FN > FP and TP > TN and consequently a higher recall of MGTs.

5. Conclusion

Two general observations are: (1) larger capacity of boosted trees increased the detection performance,
and (2) obfuscation considerably reduced it, Although the our model have not reached the baseline
TF-IDF scores, in the outlook, the boosted trees have the capacity to learn on a larger number of
features, so incorporating TF-IDF features [12] or standardising feature frequencies, found to be greatly
effective in stylometry [38, 33], and other classic feature engineering techniques could be beneficial.
The straightforward augmentation of the training set with obfuscated samples can further improve the
results. The other unexplored avenue is simply hyperparameter optimisation (both in terms of feature
set and LGBM parameters). The main computational overhead in our method is feature extraction on the
large training dataset. Classifier training (and training continuation), inference and explanation [39] is
inexpensive. In summary, we perceive it as a trade-off between the smaller cost and greater explainability
of boosted trees and the better generalisation of neural-based systems.
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