CEUR-WS.org/Vol-4038/paper_321.pdf

C

CEUR

Workshop
Proceedings

1

Hierarchical Generative Plagiarism Detection Method
Notebook for PAN at CLEF 2025

Zongbao Su, Yong Han*, Yihao Jia and Leilei Kong

Foshan University, Foshan, China

Abstract

Generative Plagiarism Detection is a challenging task that requires systems not only to identify literal reuse but
also to detect semantically similar text segments with different surface expressions. In the Generative Plagiarism
Detection task at PAN@CLEF 2025, we propose a hierarchical detection approach. Our method integrates multiple
embedding models and semantic similarity evaluation mechanisms to effectively identify complex paraphrased
content. Specifically, we employ Sentence-BERT, MPNet, and TF-IDF to perform sentence-level vectorization
of both suspicious and source documents, independently generating candidate pairs based on similarity scores.
These candidate sets are then merged through a multi-strategy fusion mechanism. Furthermore, a fine-tuned
BERT model is used to verify semantic similarity, enhancing the system’s ability to detect generative paraphrasing.
The final system outputs aligned text segments with high confidence. Experimental results demonstrate that our
hierarchical matching strategy exhibits robustness and generalization across multiple evaluation metrics.

Keywords

Generative Plagiarism Detection, large language model, Hierarchical

1. Introduction

Plagiarism detection, or more broadly, text reuse detection, has long been a critical research area in
natural language processing and information retrieval. With the rapid progress of large language
models (LLMs) and the widespread adoption of generative Al, a new and more challenging form of
plagiarism—generated plagiarism—has emerged. This type of plagiarism often preserves semantic
meaning while rephrasing the original content, making it difficult for traditional surface-level similarity
methods to identify such rewritten segments [1, 2]. Moreover, the proliferation of social media, Q&A
forums, and academic writing assistance tools has further increased the risk of large-scale text reuse
generated by machines [2].

The PAN (Plagiarism, Authorship, and Near-Duplicate Detection) shared task series has played a
leading role in advancing research in this domain. In recent years, PAN has significantly increased
task difficulty—from machine-translated plagiarism and synonym substitution to now confronting
systems with generated plagiarism detection challenges (PAN 2025). The current task requires systems
to identify aligned text fragments rewritten and reused from source documents using large language
models [3, 4].

To this end, we propose a hierarchical detection strategy that integrates multiple semantic repre-
sentations and verification mechanisms for the PAN@CLEF 2025 Generated Plagiarism Detection task.
The motivation behind this design is to improve candidate fragment coverage by combining various
similarity evaluation methods, while using a semantic verification model to filter out false matches,
thereby achieving a better balance between precision and recall.

!Source code available at https://github.com/CCheZi/Generative-Plagiarism-Detection

CLEF 2025 Working Notes, 9 — 12 September 2025, Madrid, Spain

*Corresponding author.

& 2199845212@qq.com (Z. Su); hanyong2005@fosu.edu.cn (Y. Han); 2310743981@qq.com (Y. Jia); kongleilei@fosu.edu.com
(L. Kong)

® 0009-0007-8512-6049 (Z. Su); 0000-0001-7832-1662 (Y. Han); 0009-0003-7352-4489 (Y. Jia); 0000-0002-4636-3507 (L. Kong)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

https://github.com/CCheZi/Generative-Plagiarism-Detection
mailto:2199845212@qq.com
mailto:hanyong2005@fosu.edu.cn
mailto:2310743981@qq.com
mailto:kongleilei@fosu.edu.com
https://orcid.org/0009-0007-8512-6049
https://orcid.org/0000-0001-7832-1662
https://orcid.org/0009-0003-7352-4489
https://orcid.org/0000-0002-4636-3507
https://creativecommons.org/licenses/by/4.0/deed.en

2. Related Works

Plagiarism detection research has evolved through multi-stage frameworks and adaptive strategies to
address diverse obfuscation techniques. We referred to some papers from the 2014 CLEF competition
and compared them, as shown in Table 1.Table 1 summarizes five prominent methods from that
competition [5, 6, 7, 8, 9].Finally, a hierarchical generative plagiarism detection method was proposed.

Table 1
Comparison of plagiarism detection methods
Method Core Technique Adaptive Strategy

TF-ISF + Recursive Exten-
sion (PAN 2014 Winning Ap-
proach)

« TF-ISF weighting to retain stop-
words while reducing false positives

« Recursive algorithm to extend seed
matches into maximal passages
with gap tolerance

« Overlap filtering via quality func-
tion and minimum length threshold

Switches to variant B (optimized for sum-
mary obfuscation) when suspicious docu-
ment length is significantly shorter than
source document

Multi-Type N-Gram + Ellip-
tical Clustering

« Fusion of regular n-grams, stop-
word n-grams, named entity n-
grams, and context-aware features

« Noise-sensitive elliptical clustering
for feature aggregation

+ VSM cosine similarity for result ver-

Dynamically selects from 4 preset strate-
gies based on global noise level and cluster
characteristics

ification
Hybrid Architecture (Align- Clustering activated when alignment fails,
ment + Clustering) . Text alignment via Smith- with adaptive parameters for different ob-
Waterman algorithm for ordered fuscation types
plagiarism

« Clustering with Jaccard coefficient
for non-ordered cases (e.g., sum-
maries)

« Tiered content word thresholds for
precision-recall balance

TER-p + Bigram N-Gram
Dual Strategy

« TER-p (machine translation metric)
for strict sentence-level matching

« Bigram n-gram for fragmented pla-
giarism detection

« Result merging with 80-character
gap threshold

Balances precision (TER-p > 0.9) and recall
(bigram n-gram) for different obfuscation
levels

CoReMo 2.3 Self-Tuning
Model

« Extended Contextual N-grams
(XCTnG) allowing skip words for
word order adjustment

« Dynamic parameter adjustment
based on suspicious/source docu-
ment length ratio

3-stage rules (e.g., 8% filtering distance for
susp/src < 1.6) for cross-corpus adaptability

The proposed “hierarchical generative plagiarism detection method” sets up triple similarity filtering
and BERT verification by referencing and analyzing the above methods, so as to carry out more rigorous
and accurate plagiarism detection.

3. Method

Our system adopts a multi-stage processing pipeline that integrates various state-of-the-art natural
language processing techniques and similarity computation methods. It consists of four main stages: text
preprocessing and sentence segmentation, multi-model vector representation, hierarchical similarity
matching with block merging, and result output. The following sections provide a detailed description
of the entire processing workflow.

3.1. Text Preprocessing and Sentence Segmentation

Given a pair of input documents (a suspicious document and a source document), we first perform text
preprocessing and sentence segmentation:

1. Use the English language model en_core_web_sm from the spaCy library (version 3.8.5) for
accurate sentence segmentation [10].

2. Record character-level offsets (start position and length) for each sentence.
3. Normalize sentence text (e.g., strip leading/trailing whitespace).

The output of the preprocessing stage includes:

1. A list of sentences: textual content of all sentences in the document.
2. A list of offsets: positional information (start offset, length) of each sentence in the original text.
3. Original raw text: retained for precise offset calculation in later stages.

3.2. Multi-Model Vector Representation

To comprehensively capture the semantic features of text, we employ three different vectorization
methods:

1. Sentence-BERT encoding
(a) Encode sentences into semantic vectors using a pre-trained Sentence-BERT model [11] from
HuggingFace (al1-MiniLM-L6-v2).
(b) Generate 384-dimensional dense vector representations.
(c) Build efficient vector indices using the FAISS library (version 1.9.0) [12].

2. MPNet encoding

(a) Use a pre-trained MPNet model [13] from HuggingFace (al1l-mpnet-base-v2) to obtain
alternative semantic embeddings.

(b) Serve as a complement to Sentence-BERT, offering a different semantic perspective.
(c) Also indexed with FAISS for fast similarity search.

3. TF-IDF representation

(a) Generate sparse feature vectors using TF-IDF with 1-2 grams.
(b) Capture lexical-level frequency-based features.

3.3. Hierarchical Similarity Matching with Block Merging

To achieve efficient and accurate sentence-level plagiarism detection, we propose a hierarchical similarity
matching algorithm that integrates multiple similarity metrics in a tiered decision structure.

Given two sentence sets from a suspicious and a source document, we compute similarity scores
using three distinct methods:

» Sentence-BERT similarity (simgggrT): We encode sentences using a pre-trained Sentence-
BERT model and compute cosine similarity between their 384-dimensional embeddings. A
sentence pair is considered matched if simspgrr(, y) > « (Where o = 0.35).

« MPNet similarity (simppnet): We encode the same sentences using the MPNet model and
compute cosine similarity between embeddings. A match is accepted if simypnet(z,y) > 5
(where 8 = 0.50).

« TF-IDF similarity (simtppg): Using 1-2 gram TF-IDF vectors, we compute cosine similarity
between sparse representations. A match is accepted if simrppr(z, y) > v (Where v = 0.55).

These three methods are applied in sequence, and the first method to surpass its threshold results in
early acceptance. If none of the methods exceed their thresholds, we invoke a fallback scoring procedure
using a fine-tuned BERT model:

« BERT re-evaluation (simpgrt): A sentence pair (x, y) is passed to a pairwise classifier based
on BERT, and the predicted similarity score is used. If simpggrr(z,y) > ¢ (with § = 0.45), the
match is accepted.To reduce computational overhead, the BERT re-evaluation is applied only as a
fallback mechanism. Specifically, the set of candidate sentences y is constructed by taking the
union of the top-k most similar sentences retrieved by Sentence-BERT, MPNet, and TF-IDF. This
ensures that BERT operates exclusively on a compact, high-quality candidate pool, balancing
precision with efficiency.

Once sentence-level matches are identified, we apply a block merging algorithm to group adjacent
matches into longer plagiarized spans. Two sentence pairs (s;,t;) and (s;4+1, tj+1) are considered part
of the same block if:

1. 841 > s; and t;41 > t; (strictly increasing order),
2. 8iy1 — s; < B and ;11 —t; < n(gap constraints),
3. The resulting block contains at least § matched pairs (length constraint).

This merging logic is encapsulated in a function isABlock (), which determines whether two pairs
can be joined based on the above criteria. The final result is a set of merged blocks indicating contiguous
regions of potential plagiarism.

Algorithm 1 Hierarchical Similarity Matching with Block Merging

Input: Sentence sets from suspicious and source documents

Output: Merged matching blocks
1: Compute sentence embeddings using Sentence-BERT, MPNet, and TF-IDF
2: Initialize match list as empty
3. for each sentence z in suspicious document do

4 Retrieve top-k similar sentences y from source document using each method
5: if simSBERT(x, y) > « then
6: Accept match
7: continue
8: end if
9: if simrppp(x,y) > [then
10: Accept match
11: continue
12: end if
13: if simypnet(2,y) > 7 then
14: Accept match
15: continue
16: end if
17: for each candidate y in the union of top-k results do
18: if SimBERT(SC, y) >) then
19: Accept match
20: break
21: end if
22: end for
23: end for

24: Sort all accepted matches by sentence position
25: Initialize empty block list

26: for each pair of adjacent matches b;, ;11 do
27: if isABlock(b;, bi+1, 0, n, 0) then

28: Merge b; and b;41 into one block
29: end if
30: end for

31: return all merged blocks

Our approach combines deep learning-based models (Sentence-BERT, MPNet) with traditional TF-IDF
features to perform complementary semantic and surface-level analysis. The fine-tuned BERT classifier
is used to resolve borderline cases, while the multi-stage merging strategy significantly improves the
detection of continuous plagiarized segments.

4. Experiments

4.1. Experimental Settings

To assess the performance of our hybrid similarity computation and block merging algorithm, we used
the following hyperparameters:

« Threshold « for Sentence-BERT similarity: 0.35
« Threshold 3 for MPNet similarity: 0.50

+ Threshold for TF-IDF similarity: 0.55

« Fallback threshold § for BERT similarity: 0.45

+ Maximum allowed position gap 6 for block merging: 5
« Minimum block length 7: 2
« Top-k retrieved candidates per method: 5

These parameters were selected empirically based on performance on the training set. Sentence
pairs passing any of the first three thresholds are accepted. If none qualify, BERT re-evaluation with
threshold ¢ is applied. Finally, adjacent sentence matches are merged into blocks using a context-aware
policy governed by 6 and n

All experimental code and configurations used in this study have been released as open-source and
are available at: https://github.com/CCheZi/Generative-Plagiarism-Detection

4.2. Results

Our system achieved a Plagdet score of 0.496 on the llm-plagiarism-detection-spot-check-20250521-
training dataset. Table 2 shows the detailed evaluation performance, including precision, recall, and
granularity. These results demonstrate the effectiveness of the hybrid similarity scoring and block
merging strategy.

Table 2

Evaluation results on the dataset
Corpus Plagdet | Recall | Precision | Granularity
lIm-plagiarism-detection-spot-check-20250521-training | 0.496 0.578 0.600 1.275

5. Conclusion and Future Work

Our plagiarism detection system achieves initial detection capabilities by integrating multi-model
semantic representations (Sentence-BERT, MPNet) with traditional TF-IDF features, combined with a
hybrid similarity computation strategy. While the current method demonstrates basic effectiveness,
there is still considerable room for improvement. Experimental results show that the system performs
well in detecting overt plagiarism (e.g., verbatim copying), but remains limited in handling texts that
have undergone complex rewrites.

The main contributions of this work include: (1) Multi-model fusion architecture: This is the first
approach to compute Sentence-BERT, MPNet, and TF-IDF in parallel, enabling early-stage matching
decisions through a threshold-based mechanism; (2) Hybrid similarity computation: A three-stage
matching strategy is designed—direct matching — candidate merging — BERT-based verification—to
balance efficiency and accuracy; (3) Dynamic block merging algorithm: Non-contiguous plagiarized
segments are handled via adjustable gap parameters (mnax_susp_gap/max_src_gap), allowing more
flexible detection.

For future work, we plan to optimize the current method from the following aspects: (1) Parameter
tuning: Currently, most parameters are heuristically set. We plan to adopt more advanced parameter
optimization algorithms, such as genetic algorithms, to achieve global optimization. This will enable
more precise adaptation to the characteristics of different corpora, thereby improving detection perfor-
mance; (2) Incorporation of linguistic features: To better handle paraphrasing and semantic shifts, we
aim to incorporate linguistically informed techniques, such as semantic role labeling and dependency
parsing. These methods can help capture deeper semantic similarities between texts and reduce false
positives; (3) Utilization of contextual information: The current detection approach primarily focuses
on sentence-level similarity and overlooks document-level context. We will explore incorporating
contextual information, taking into account sentence positioning and discourse context to further
enhance detection accuracy.

In conclusion, although this study has made progress in plagiarism detection, there is still room for
performance improvement. With the proposed enhancements, we believe our approach can be further
refined to become more competitive for future real-world applications.

https://github.com/CCheZi/Generative-Plagiarism-Detection

Acknowledgments

This work is supported by the National Social Science Foundation of China (Grant No. 22BTQ101).

Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT-4 for the following activities: content
drafting, grammar and spelling check, paraphrasing, and rewriting. After using this tool/service, the
authors reviewed and edited the content as needed and take full responsibility for the publication’s
content.

References

(1]

[10]
[11]
[12]

[13]

A. Barron-Cederio, M. Vila, M. A. Marti, P. Rosso, Plagiarism meets paraphrasing: Insights for the
next generation of automatic plagiarism checkers, Computational Linguistics (2013).

S. M. Alzahrani, N. Salim, A. Abraham, Understanding plagiarism: Linguistic patterns, textual
features, and detection methods, IEEE Transactions on Systems, Man, and Cybernetics (2012).
M. Potthast, et al., Overview of the pan 2023 shared tasks on digital text forensics, in: Working
Notes of CLEF, 2023.

PAN@CLEF Lab, Generated plagiarism detection - pan at clef 2025, https://pan.webis.de/clef25/
pan25-web/generated-plagiarism-detection, 2025. Accessed: May 28, 2025.

M. Sanchez-Perez, G. Sidorov, A. Gelbukh, A winning approach to text alignment for text reuse
detection at pan 2014, in: Working Notes for CLEF, 2014.

Y. Palkovskii, A. Belov, Developing high-resolution universal multi-type n-gram plagiarism
detector, in: Working Notes for CLEF, 2014.

D. Glinos, A hybrid architecture for plagiarism detection, in: Working Notes for CLEF, 2014.

P. Shrestha, S. Maharjan, T. Solorio, Machine translation evaluation metric for text alignment, in:
Working Notes for CLEF, 2014.

D. Rodriguez Torrejon, J. Martin Ramos, Coremo 2.3 plagiarism detector text alignment module,
in: Working Notes for CLEF, 2014.

Explosion Al spacy: Industrial-strength natural language processing in python (version 3.8.5),
https://spacy.io, 2024.

N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks, in:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019.
J. Johnson, M. Douze, H. Jégou, Billion-scale similarity search with gpus, IEEE Transactions on
Big Data (2019). FAISS Library: https://github.com/facebookresearch/faiss.

K. Song, X. Tan, T. Qin, J. Lu, T.-Y. Liu, Mpnet: Masked and permuted pre-training for language
understanding, in: Advances in Neural Information Processing Systems (NeurIPS), 2020.

[14] J. Bevendorff, D. Dementieva, M. Frébe, B. Gipp, A. Greiner-Petter, J. Karlgren, M. Mayerl, P. Nakov,

A. Panchenko, M. Potthast, A. Shelmanov, E. Stamatatos, B. Stein, Y. Wang, M. Wiegmann,
E. Zangerle, Overview of pan 2025: Voight-kampff generative ai detection, multilingual text
detoxification, multi-author writing style analysis, and generative plagiarism detection, in: CLEF
2025, Lecture Notes in Computer Science, Springer, 2025.

M. Frobe, M. Wiegmann, N. Kolyada, B. Grahm, T. Elstner, F. Loebe, M. Hagen, B. Stein, M. Potthast,
Continuous integration for reproducible shared tasks with tira.io, in: Advances in Information
Retrieval. 45th European Conference on IR Research (ECIR 2023), Springer, 2023, pp. 236—-241.
A. Greiner-Petter, M. Frobe, J. P. Wahle, T. Ruas, B. Gipp, A. Aizawa, M. Potthast, Overview of the
generative plagiarism detection task at pan 2025, in: Working Notes of CLEF 2025 — Conference
and Labs of the Evaluation Forum, CEUR Workshop Proceedings, CEUR-WS.org, 2025.

https://pan.webis.de/clef25/pan25-web/generated-plagiarism-detection
https://pan.webis.de/clef25/pan25-web/generated-plagiarism-detection
https://spacy.io
https://github.com/facebookresearch/faiss

	1 Introduction
	2 Related Works
	3 Method
	3.1 Text Preprocessing and Sentence Segmentation
	3.2 Multi-Model Vector Representation
	3.3 Hierarchical Similarity Matching with Block Merging

	4 Experiments
	4.1 Experimental Settings
	4.2 Results

	5 Conclusion and Future Work

