Genre-Aware Contrastive Learning for Al Text Detection:

A RoBERTa-Based Approach
Notebook for the PAN Lab at CLEF 2025

Junlong Yang, Kai Yan

Foshan University, Foshan, China

Abstract

This paper presents a detection method for the PAN 2025 Voight-Kampff Generative Al Detection task, which
combines RoBERTa with a contrastive learning mechanism. Building on RoBERTa, we introduce genre embeddings
and contrastive loss to enhance the model’s sensitivity to the textual genre and semantic differences. Experimental
results show that our method achieves excellent performance on the official validation set with genre information,
and also performs robustly on a custom validation set without genre labels, demonstrating strong generalization
capabilities. Our findings validate the effectiveness of integrating deep semantic modeling with structured
representation learning ,offering a novel approach to generative text detection.
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1. Introduction

In recent years, the rapid advancement of natural language processing technologies has enabled large
language models, such as GPT-4, Gemini, and LLaMA, to generate fluent, coherent, and semantically
rich text [1, 2, 3, 4]. While these models have transformed areas such as content creation and in-
telligent customer service, they also pose potential risks, including misinformation dissemination,
academic dishonesty, and opinion manipulation. For example, students may use Al-generated content
for assignments, and malicious actors may generate large volumes of fake news using AL

Against this backdrop, distinguishing Al-generated content from human-written text has become
a critical challenge for both academia and industry. To promote progress on this problem, the PAN
2025 shared task [5] introduced the Voight-Kampff Generative Al Detection Task [6], which requires
participants to classify whether a given text is human-written or Al-generated based on its linguistic
properties. All models are evaluated through the TIRA platform [7], which ensures standardized and
reproducible experimental setups.

In this study, we propose a detection framework that integrates genre embedding and contrastive
learning for the PAN 2025 Voight-Kampff task. The task requires predicting a confidence score for
each input text: scores below 0.5 are classified as human-written, scores above 0.5 as Al-generated, and
exactly 0.5 as undecidable.

2. Related Work

CEUR-WS.org/Vol-4038/paper_333.pdf

As the quality of Al-generated text improves, distinguishing it from human-authored content has
emerged as a major research focus. Traditional detection methods often rely on handcrafted features
such as statistical indicators, stylistic differences, or perplexity scores. For example, GLTR uses a
language model to compute word probabilities and assess whether the text aligns with natural language
patterns[8, 9]. Similarly, OpenAT’s Text Classifier models output distributions from GPT to detect
anomalous word choices.

CLEF 2025 Working Notes, 9 — 12 September 2025, Madrid, Spain
& 1836257095@qq.com (J. Yang); yankai@fosu.edu.cn (K. Yan)
® 0009-0008-4507-5969 (J. Yang); 0000-0002-4960-7108 (K. Yan)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

CEUR
E Workshop
Proceedings


mailto:1836257095@qq.com
mailto:yankai@fosu.edu.cn
https://orcid.org/0009-0008-4507-5969
https://orcid.org/0000-0002-4960-7108
https://creativecommons.org/licenses/by/4.0/deed.en

However, such approaches often depend heavily on the internal mechanics of the language model
and tend to generalize poorly, especially when applied across different domains and genres[10, 11, 12].
As a result, researchers have turned to discriminative deep learning methods. Pretrained models like
BERT and RoBERTa have been widely adopted, showing strong performance in binary classification
tasks due to their deep semantic modeling capabilities[3, 13, 14, 15].

Contrastive learning has also gained traction in NLP as a means of learning better representations,
drawing inspiration from vision-based models like SimCLR and MoCo[10, 11]. Approaches such as
SimCSE, CoSent, and CPT have proven effective in semantic matching and representation learning[16,
17, 18]. In the context of generative text detection, some studies incorporate contrastive learning by
treating samples from the same genre or model as positive pairs to optimize embedding space structures
or by including stylistic features in classification[19, 18, 20] .

Despite these advances, the integration of genre labels with representation learning remains under-
explored. Our work addresses this gap by combining RoBERTa, genre embeddings, and contrastive
learning within a unified framework and empirically validating its effectiveness and generalization
capabilities on the PAN 2025 dataset.

3. Method

Our method consists of two main components: a RoBERTa-based classifier and a contrastive learning
module.

3.1. RoBERTa Text Classifier

We adopt RoBERTa-large as the encoder to extract deep semantic representations of input texts[3].For
each input, the vector at the [CLS] position is used as the global representation. This representation is
passed through a dropout layer and a linear classifier to produce a scalar output for binary classification,
trained using the Binary Cross-Entropy loss:

Lpck = — [y - log(y) + (1 —y) - log(1 — J)] (1)

To enable contrastive learning, we add a projection head and incorporate genre information as an
embedding vector. Specifically:

« We define a learnable genre embedding lookup table (dimension 64), assigning each genre a
unique vector.
« The [CLS] representation is concatenated with the corresponding genre embedding:
[CLS; egenre) -
+ The concatenated vector is fed into a two-layer MLP with ReLU activation to produce a contrastive
embedding:
z = MLP([CLS; egenre]) € R™® )

The model thus outputs:

» logits:used for classification with BCE loss
« contrastive embedding:used to compute the contrastive loss

This dual-branch architecture allows the model to jointly optimize classification and representation
learning jointly,enhancing generalization [19, 18].
3.2. Contrastive Learning Module
To improve representation separability, we employ an InfoNCE-style contrastive loss[10, 16]:

« For each sample pair 7 and j, if their labels match, they are treated as a positive pair; otherwise, a
negative pair.



+ A binary mask is used to prevent self-pairs: mask; ; = 0
+ Cosine similarity is computed using L2-normalized vectors:
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where 7 is a temperature hyperparameter.
The contrastive loss for a sample ¢ is defined as:

L= Z log exp(sim; ) @

| peP ) #l exp(sim; ;)

where P(i) denotes the set of positive pairs for sample i.
The final loss function is:

£t0tal = EBCE +A- Econtrastive (5)

with A controlling the balance between the two objectives.

4. Experiments

4.1. Datasets

We evaluate our method using the official PAN 2025 Voight-Kampff dataset and a custom validation set
named VK-CleanBench-2024. The official dataset includes fields such as text, label, model, genre, and
id. Labels are binary: 0 for human-written, 1 for Al-generated. Genre values include categories like
essays and fiction. We concatenate the genre with the text during tokenization and pad or truncate to a
maximum length of 512 tokens for RoBERTa-large[3].

To assess generalization in the absence of genre information, we construct the VK-CleanBench-2024
validation set using publicly available data from PAN 2024 Voight-Kampft Authorship Verification. This
set contains only id, text, and label fields. No genre is included during inference. The dataset is cleaned
and de-duplicated to ensure independence from the training set and simulate real-world detection
scenarios without structured metadata.

4.2. Experimental Setup

In our experimental setup, we employ RoBERTa-large as the pre-trained language model[3], with a
maximum input sequence length of 512 and a batch size of 32. The optimizer used is AdamW/{3, 13]
with an initial learning rate of 2e-5. For the contrastive learning component, the temperature parameter
is set to 0.5, and the loss weight coefficient lamda is set to 0.1 to balance the training objectives between
classification and representation learning. The model is trained for up to 10 epochs, with an early
stopping strategy based on the F1 score on the validation set (patience = 2) to prevent overfitting and
enhance generalization[19].

4.3. Experiment Results

The validation performance on the official PAN 2025 Voight-Kampff dataset is shown in Table 1. During
tokenization, the genre is concatenated with the input text, allowing the model to leverage contextual
cues beyond the raw text. The model achieves near-perfect results across all evaluation metrics,
indicating strong performance under well-structured and annotated conditions.

To assess the model’s robustness and generalization, we further evaluate it on the VK-CleanBench-
2024 dataset, shown in Table 2. This setup removes genre metadata at inference time, simulating more
realistic scenarios. Although performance drops slightly, the model remains competitive, demonstrating
its adaptability to genre-agnostic inputs.

In response to reviewer suggestions, we conducted additional ablation studies to evaluate the in-
dividual contributions of the genre vector and the contrastive loss. The results are summarized in



Table 3. Removing the genre vector leads to a noticeable performance decline across all metrics, par-
ticularly in F; (from 0.997 to 0.911), confirming that genre provides valuable contextual information.
Similarly, excluding the contrastive loss slightly degrades performance, suggesting its role in enhancing
representation learning.

Finally, our model achieves strong generalization on the official test set, ranking 4th on the PAN
2025 leaderboard. The test-time results are presented in Table 4. Compared to the validation scores,
there is a moderate drop, which is expected due to domain shift and label noise in the test environment.
Nevertheless, the model maintains high robustness across all metrics.The full leaderboard can be found
at: https://pan.webis.de/clef25/pan25-web/generated-content-analysis.html#task1-leaderboard.

Table 1
Evaluation results of our model on the official validation set.

ROC-AUC Brier C@1 Fy Fy.5,, Mean
1.000 0996 0.996 0997 0.996 0.997

Table 2
Evaluation results of our model on the custom VK-CleanBench-2024 validation set.

ROC-AUC Brier C@1 F Fy.5,, Mean
0.994 0959 0953 0933 0.965 0.961

Table 3

Ablation study: removing the genre vector and contrastive loss on the official validation set.
Setting ROC-AUC Brier C@1 F Fy.5., Mean
without genre vector 0.987 0946 0939 0911 0953  0.947
without contrastive loss 0.980 0.945 0.934 0.898 0.951  0.942

Table 4
Official PAN 2025 test set results (ranked 4th on the leaderboard).

ROC-AUC Brier C@1 P Fo.5.. Mean
0.845 0.878 0.871 0.856  0.881 0.877

5. Conclusion

We propose a RoBERTa-based text classification framework that integrates genre embeddings and con-
trastive learning for the PAN 2025 Voight-Kampff Generative Al Detection task. By incorporating genre
information and optimizing the representation space, our method improves the modeling of fine-grained
differences between human and Al-generated text[3, 19, 18]. Experiments confirm its effectiveness
across datasets both with and without genre metadata, demonstrating robust generalization.

In future work, we plan to explore additional auxiliary signals such as writing style features and
multimodal data[21, 22, 23], aiming to enhance detection in multi-genre and cross-lingual scenarios,
with special attention to low-resource genres.
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