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Abstract
The emerging field of Quantum Computing (QC) is attracting considerable research interest due to its potential. It
is in fact believed that QC could revolutionize the way we approach complex problems by significantly reducing
the time required to solve them. Although QC is still in its early stages of development, certain problems can
already be addressed using quantum computers, offering a glimpse into its capabilities.
The goal of the QuantumCLEF lab is to raise awareness of QC and to design, develop, and evaluate new QC
algorithms aimed at solving challenges typically encountered in the implementation of Information Retrieval (IR)
and Recommender Systems (RS). Furthermore, the lab provides a valuable opportunity to engage with QC
technologies, which are often difficult to access.
In this work, we present an overview of the second edition of QuantumCLEF, a lab focused on applying Quantum
Annealing (QA), a specific QC paradigm, to three tasks: Feature Selection for IR and RS systems, Instance Selection
for IR systems, and Clustering for IR systems. A total of 44 teams registered for the lab, with 5 teams successfully
submitting their runs in accordance with the lab guidelines. Given the novelty of the topics, participants were
provided with extensive examples and comprehensive materials to help them understand how QA works and
how to program quantum annealers.
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1. Introduction

Even though IR and RS systems have been extensively studied and refined over the years, they continue
to face significant challenges. The ever-increasing volume of data and the computational complexity
required to process it pose difficult problems for these systems.

To tackle these issues, researchers are now exploring QC, an emerging computing paradigm with
the potential to revolutionize the way problems are solved. QC is not just a new hardware alternative:
it represents a fundamental shift in how problems are approached, leveraging principles of quantum
mechanics. Unlike classical computing, which uses bits that are either 0 or 1, QC employs qubits, which
can exist in multiple states simultaneously due to superposition. Furthermore, qubits can be entangled,
meaning the state of one can influence another, even across long distances.

These properties allow quantum computers to theoretically explore exponentially larger problem
spaces, offering advantages for certain types of problems, especially complex combinatorial problems
or those where quantum principles can be effectively applied. This paradigm shift holds promise for
possible improvements in terms of efficiency and effectiveness of IR and RS systems. Once QC technology
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matures enough, it could provide innovative solutions that could be integrated into traditional pipelines
to boost systems’ performance. However, at the moment QC is in its early stages of development. While
hardware is becoming more accessible and reliable, many challenges persist, primarily related to the
size of the solvable problems and the qubit fragility. In fact, present quantum computers have a limited
number of qubits, which must be isolated from environmental noise (e.g., electromagnetic interference
or temperature fluctuations), since it can easily break computations. In contrast, classical systems are
far more robust because they have been optimized over decades.

Given this exciting context, a natural question arises: can QC help solve some of the complex tasks
faced by IR and RS systems? To explore this, we launched a new CLEF lab in 2024 called QuantumCLEF
[1], dedicated to developing and evaluating QC algorithms for IR and RS. The lab has four main goals:

• Develop new QC algorithms for IR and RS, and evaluate their efficiency and effectiveness com-
pared to traditional methods;

• Create datasets and resources to support reproducibility and future research;

• Provide participants with educational materials and access to real quantum computers, which are
not yet widely available;

• Raise awareness about the potential of QC and foster a research community around this field.

This paper presents an overview of the second edition of QuantumCLEF, held in 2025. Similarly to
the previous 2024 edition [2, 3, 4], also this one focused on QA, a specific QC paradigm tailored for
optimization problems. Participants were granted access to cutting-edge quantum annealers developed
by D-Wave, a leading company in the field.

QA is more approachable than the Universal Gate-Based paradigm and is supported by a range of
tools and libraries provided by D-Wave, which simplify the development process. As a result, researchers
could engage with quantum technology without needing deep expertise in quantum physics, focusing
instead on algorithm design and testing.

The 2025 QuantumCLEF edition featured three main tasks [5]:

• Task 1: Feature Selection for IR and RS;

• Task 2: Instance Selection for IR [6];

• Task 3: Clustering for IR.

Participants were invited to develop their own algorithms using both QA and Simulated Annealing
(SA). SA is a classical optimization technique that shares conceptual similarities with QA. Given the
novelty of the subject, we provided extensive support materials such as videos, slides, and examples to
help participants understand QA and how to program quantum annealers.

To facilitate access to real quantum devices, we also relied on a dedicated infrastructure, Kubernetes
Infrastructure for Managed Evaluation and Resource Access (KIMERA) [7], that simplified workflows
and promoted reproducibility. A total of 44 teams registered, with 5 actively participating and submitting
for our proposed tasks.

Results were in line with the previous edition, showing that QA-based and hybrid approaches
performed comparably to SA and traditional methods, often with improved efficiency. These findings
confirm that QA is already a practical and effective option for tackling complex optimization challenges
in IR, RS, and potentially other domains. As the technology improves, QC and QA could be integrated
into the current state-of-the-art traditional systems’ pipelines to boost performance in terms of efficiency
and/or effectiveness.

The paper is organized as follows: Section 2 discusses related works; Section 3 presents the tasks of the
QuantumCLEF 2025 lab while Section 4.1 introduces the lab’s setup and the design and implementation
of our ad-hoc infrastructure; Section 5 shows and discusses the results achieved by the participants;
finally, Section 6 draws some conclusions and outlooks some future work.



2. Related Works

In this section, we provide an overview of QA and SA, followed by a summary of the tasks and outcomes
from the 2024 edition of QuantumCLEF.

2.1. Background on Quantum and Simulated Annealing

2.1.1. Quantum Annealing

QA is a QC paradigm based on specialized hardware called quantum annealers designed to solve
optimization problems framed according to specific mathematical formulations. The core principle is
to encode the problem into the energy landscape of a physical system and use quantum phenomena
such as superposition, entanglement, and tunneling to guide the system toward its lowest energy state,
which represents the optimal solution. This evolution is driven by the tendency of each natural system
to reach its minimum energy state.

To leverage quantum annealers, a problem must first be expressed in the Quadratic Unconstrained
Binary Optimization (QUBO) format [8], a standard formulation for combinatorial optimization:

min 𝑦 = 𝑥𝑇𝑄𝑥 (1)

Here, 𝑥 is a vector of binary variables, and 𝑄 is a matrix encoding the problem, representing the
relationships between the considered variables.

Before execution on quantum hardware, a crucial step known as minor embedding is required to map
the logical problem onto the specific topology of the Quantum Processing Unit (QPU). In fact, each
QPU has a fixed hardware graph, with nodes representing qubits and edges representing couplers (i.e.,
connections between qubits). When a logical variable needs more connections than the ones physically
available, a chain of physical qubits is used. As a result, the number of physical qubits required for
a problem may exceed the number of logical variables. This embedding step is an NP-hard problem
typically handled by heuristics [9]. When problems exceed the capacity of the QPU, D-Wave provides a
Hybrid (H) approach that decomposes them into sub-problems solved via a hybrid classical-quantum
method.

Constraints can be integrated into the objective function using penalty terms 𝑃 (𝑥) [10], leading to
the following formulation:

min 𝐶(𝑥) = 𝑦 + 𝑃 (𝑥) (2)

These penalties act as soft constraints, discouraging infeasible solutions without enforcing strict
exclusion. The effect of these constraints can be adjusted through hyperparameters.

Solving a problem with a quantum annealer generally involves the following pipeline [10]:

1. Formulation: Model the problem as a QUBO.

2. Embedding: Map the logical variables onto the physical architecture.

3. Data Transfer: Send the embedded problem to the quantum device.

4. Annealing: Run the annealing process, typically repeating it many times to sample a distribution
of possible solutions. The best result is selected based on feasibility and optimality.

Once submitted, the actual annealing step takes only a few milliseconds, although preprocessing can
take significantly longer.



2.1.2. Simulated Annealing

SA is a classical metaheuristic optimization method [11, 12, 13], capable of finding global optima even
in landscapes with many local optimal solutions. Like QA, it is able to optimize cost functions that
can be expressed as QUBO formulations, but it runs entirely on conventional hardware and does not
require any embedding phase.

It is crucial to note that SA is not a simulation of QA done on traditional hardware: they are distinct
algorithms which share only some of their aspects. However, SA can serve as a strong benchmark to
compare against QA when evaluating performance and scalability on classical devices.

In the context of QuantumCLEF, access to quantum resources is limited to ensure fair usage. Therefore,
SA can be used for preliminary tests to validate QUBO models without consuming quantum device
time, thus understanding the validity of the proposed approaches.

2.2. QuantumCLEF 2024

The QuantumCLEF 2024 lab [2, 3, 4], presented at CLEF 2024, explored the application of QA in the
fields of IR and RS. The lab was structured around two main tasks:

• Feature Selection: Focused on identifying the most relevant feature subsets for training IR and
RS models using QA.

• Clustering: Based on document embeddings, this task aimed to group similar documents using
QA to improve the efficiency of dense retrieval.

Participants accessed D-Wave’s quantum annealers via the CINECA supercomputing center and
utilized the KIMERA infrastructure [7] for streamlined access, experiment comparability, and repro-
ducibility.

Of the 26 registered teams, 7 submitted official runs [14, 15, 16, 17, 18, 19, 20]. The results demonstrated
the practical feasibility of using quantum annealers in IR and RS, encouraged cross-disciplinary research,
and laid the groundwork for benchmarking future QC-based systems.

2.3. Related Challenges Outside CLEF

Outside CLEF, we are not aware of other challenges or shared tasks that have been done in the past
involving the use of QC for IR and RS. There are instead other challenges offered by big-tech companies
such as IBM1 and Google2. These challenges involve the development of QC algorithms, which will be
executed on quantum computers to solve some practical real-world challenges.

3. Tasks

QuantumCLEF 2025 addresses three distinct tasks involving computationally intensive problems: Feature
Selection, Instance Selection, and Clustering. The main objectives across these tasks include:

• Designing suitable QUBO formulations for each problem;

• Mapping the formulated problems onto quantum annealing hardware;

• Comparing the performance of QA against traditional approaches in terms of both efficiency and
effectiveness.

1https://challenges.quantum.ibm.com/2024
2https://www.xprize.org/prizes/qc-apps

https://challenges.quantum.ibm.com/2024
https://www.xprize.org/prizes/qc-apps


To support participants, we provided Jupyter Notebooks demonstrating how to develop and run
quantum annealing solutions, alongside tutorial slides presented at ECIR and SIGIR [21, 22], which
introduce the foundational concepts of QC and QA. A video tutorial3 also helps users through the usage
of our KIMERA infrastructure and the provided materials.

Participants are asked to submit runs using both QA and SA for each task. The use of SA during
development is strongly recommended due to the limited availability of quantum resources.

3.1. Task 1 - Quantum Feature Selection

This task addresses the challenge of solving the NP-Hard feature selection problem through QA, building
on prior research [23, 24].

Feature Selection plays a critical role in both IR and RS, aiming to identify the most relevant subset
of features for training learning models. By reducing feature dimensionality, models can benefit from
improved efficiency and potentially better generalization.

In a QUBO context, this translates to mapping one binary variable per feature, indicating whether it
is selected. The main challenge lies in designing the appropriate objective function, i.e., the matrix 𝑄 in
Equation 1.

Task 1 includes two sub-tasks:

• Task 1A: Feature Selection for IR, using selected features to train a LambdaMART [25] model in
a Learning-To-Rank framework.

• Task 1B: Feature Selection for RS, where the selected features are used to train a kNN-based
recommender using cosine similarity and fixed hyperparameters.

For Task 1A, the MQ2007 [26] and Istella S-LETOR [27] datasets are used. MQ2007, with 46 features,
allows direct embedding onto current QPU hardware, while Istella’s 220 features require preprocessing
or hybrid methods. Task 1B uses a custom music recommendation dataset with 1.9k users, 18k items,
and 92k implicit interactions. It includes two item feature sets: a smaller 100-feature version and a
larger 400-feature version. The larger set requires dimensionality reduction or hybrid methods. The
official metric for both sub-tasks is nDCG@10.

Each sub-task will have a corresponding baseline approach:

• Task 1A: Recursive Feature Elimination with Linear Regression.

• Task 1B: kNN recommender using all features with fixed parameters (cosine similarity, shrinkage
5, 100 neighbors).

Participants may submit up to 5 runs per dataset using either QA/Hybrid or SA. Each QA/Hybrid
run should have a corresponding SA run to ensure comparability.

3.2. Task 2 - Quantum Instance Selection

This task explores solving the Instance Selection problem through QA, aiming to reduce training data
while preserving or improving model effectiveness.

Instance Selection is crucial in large-scale settings. Selecting representative data instances can
reduce training time and resource usage. Previous work has demonstrated that QA can reduce dataset
size significantly without degrading model performance [6]. In this task, participants select training
instances to fine-tune a Llama3.1 7B model [28] for text classification and sentiment analysis.

Two datasets are considered, each split into 5 folds using cross-validation:

• Vader NYT: Sentiment-labeled news articles.

• Yelp Reviews: Sentiment-labeled customer reviews.

3https://www.youtube.com/watch?v=fKrnaJn40Kk/ (accessed June 17, 2025)

https://www.youtube.com/watch?v=fKrnaJn40Kk/


Different evaluation measures are used to evaluate both the efficiency and effectiveness of the model
trained on the extracted subsets:

• Macro-F1 score on the test set from each fold;

• Training time for fine-tuning;

• Reduction rate of the dataset.

The baseline approach for this task is the Llama3.1 7B model trained on the full training set.
Participants may submit up to 5 runs per dataset using either QA/Hybrid or SA. Each quantum-based

run should have a corresponding traditional one.

3.3. Task 3 - Quantum Clustering

This task involves clustering documents using QA, aiming to group similar documents and support
efficient retrieval.

Clustering benefits IR and RS by organizing data, enhancing exploration, and improving retrieval
speed. This task applies clustering to document embeddings derived from transformer models, with
clustering performed for 10, 25, and 50 groups. Clustering is naturally suited to QUBO, though it
poses scalability challenges. Existing methods often require one variable per document, making minor
embedding difficult for large datasets. Approaches such as coarsening or hierarchical clustering can
help overcome these limitations [29, 30, 31].

The task uses a split of the ANTIQUE dataset [32], containing 6,486 documents and 200 queries.
Embeddings were generated using the all-mpnet-base-v2 model. Of the queries, 50 are used for
training, and 150 for testing. The effectiveness is measured through 2 evaluation metrics: the Davies-
Bouldin Index to assess intrinsic clustering quality and nDCG@10 to measure retrieval effectiveness
using the clustered structure.

A traditional k-Medoids clustering algorithm using cosine distance is used as a baseline approach.
Participants can submit up to 5 runs for each number of clusters using either QA/Hybrid or SA.

4. Lab Setup

This section briefly describes the computational infrastructure used in the lab and outlines the guidelines
participants were required to follow for submitting their runs.

4.1. Infrastructure

Direct access to quantum annealers is limited by D-Wave through the use of API keys and monthly
time quotas. To address this and ensure fair and reproducible experimentation, we adopted KIMERA, a
platform that enables participants to access quantum annealers without requiring individual API keys
or separate agreements with D-Wave. KIMERA provides each team with an identical computational
workspace, standardizing CPU and RAM resources across all participants. This ensures consistency
in development environments and facilitates reproducible performance measurements. The platform
allows participants to develop, test, and run code directly from their browsers, eliminating the need
for local setup or dedicated hardware. All submissions are stored in a centralized database to track
quota usage and support analysis and reporting. The infrastructure was deployed on a machine hosted
at the Department of Information Engineering, University of Padua. Table 1 details the hardware
specifications of the host machine and participant workspaces. Table 2 shows the monthly quotas
allocated for quantum resource usage per task.



Table 1
Hardware specifications for the host machine and participant workspaces.

Component CPU RAM Hard Drive
Infrastructure 32 cores 128 GB 1 TB

Workspace 1200 millicores 12 GB 20 GB

Table 2
Monthly quotas for quantum resource usage by task.

Task February March April May
Task 1: Feature Selection 30 seconds 30 seconds 30 seconds 30 seconds*
Task 2: Instance Selection 120 seconds 120 seconds 120 seconds 120 seconds*
Task 3: Clustering 120 seconds 120 seconds 120 seconds 120 seconds*

* Quantum annealers were unavailable from 05/05/2025 to 10/05/2025 (submission deadline).

Table 3
The teams that participated and submitted to QuantumCLEF 2025.

Team Affiliation Country
DS@GT qClef [33] Georgia Institute of Technology United States
FAST-NU [34] National University of Computer and Emerging Sciences Pakistan

GPLSI [35]
Language Processing and Information Systems (GPLSI),
University of Alicante.

Spain

Malto [36] Politecnico di Torino Italy
SINAI-UJA [37] Universidad de Jaén Spain

Table 4
The breakdown of the runs submitted by the participating teams for each task and subtask.

Team Task 1 Task 2 Task 3A B
DS@GT qClef 13 - 9 3
FAST-NU 5 - - -
GPLSI - - 12 12
Malto - 3 2 -
SINAI-UJA 10 - - -

Total 28 3 23 15

4.2. General Guidelines

Each team was provided with credentials granting access to their personal workspace within the
infrastructure. All runs had to be executed exclusively within these designated environments, ensuring
fairness and reproducibility across participants. Teams were required to stay within their allocated
quantum usage quotas (see Table 2). A real-time dashboard was made available to each team to monitor
their usage statistics across the different methods: QA, H, and SA. To support automated evaluation, all
submissions were required to follow the standardized file formats.

5. Results

In this section, we present the results achieved by the participants and discuss their approaches. Out of
the 44 registered teams, 5 teams managed to upload some final runs. In total, the number of runs is 69,
considering both SA, QA, and H (H was introduced in Section 2.1.1). Table 3 reports the 5 teams that
correctly participated and submitted some final runs.

In total, participants submitted 7,183 problems throughout the lab, a significant increase compared to
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Figure 1: The distribution of the participating teams’ submissions over time, considering also the Annealing
time used per day.

the 976 submissions in QuantumCLEF 2024 [2, 3]. Of these, 6,333 were solved using SA, 848 using QA,
and 2 using the H approach. The total execution time for SA exceeded 4 hours, whereas the combined
execution time for QA and H was approximately 1 minute.

It is important to note that the reported QA execution time refers solely to the Annealing phase, as
defined in Section 2.1.1. This includes QPU programming, sampling, and result readout, but excludes
embedding and network latency, which are left for consideration in future QuantumCLEF editions.

Figure 1 shows the temporal distribution of participant submissions. A pronounced spike is observed
during the final days of the lab, highlighting a period of intense usage that placed significant demand
on the infrastructure. This trend shows that teams tend to intensify their activity and finalize their
work during this final period.

5.1. Task 1A

Here we present the results achieved by the teams participating in task 1A.

5.1.1. MQ2007 dataset.

As it is possible to see in Table 5, teams considered different numbers of features in their submissions.
In general, we can observe that most of the submissions achieve similar nDCG@10 values. In fact,
Figure 2 shows that for most of the runs the Tukey HSD test performed after the Two-Way ANOVA
hypothesis test shows no significant differences.

In terms of efficiency, specifically considering the Annealing time, QA runs consistently required sig-
nificantly less time compared to SA. On average, QA completed the annealing process in approximately
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Figure 2: The Tukey HSD test considering the nDCG@10 values associated with different runs and queries for
the MQ2007 dataset.
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Figure 3: The number of times each feature of the MQ2007 dataset has been kept considering the different
teams’ approaches using QA and SA.

26.83 times less time than SA, making it a more time-efficient alternative. Regarding effectiveness, QA
demonstrated a more stable and reliable performance across the board. On average, it performed better
than SA by a factor of approximately 1.02, indicating a slight advantage. In contrast, SA exhibited
greater variability, including two notable outliers that significantly underperformed compared to the
rest of the submissions. This might suggest that while SA can occasionally yield competitive results, it
may be less robust under certain conditions.

Figure 3 shows how many times each feature has been kept by the participants’ approaches using
both QA and SA. In general, we can see that both approaches have kept the same features most of the
time, indicating that these were probably the most informative features.
To tackle this task, teams adopted a variety of strategies:

• DS@GT qClef, drawing inspiration from earlier research [38], explored a range of QUBO for-
mulations that balanced different combinations of feature importance and redundancy measures
to guide the selection process [33];

• FAST-NU implemented a Mutual Information-based feature selection approach, targeting those
features that most strongly conveyed relevance-related information [34];
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Figure 4: The Tukey HSD test considering the nDCG@10 values associated with different runs and queries for
the Istella dataset.

• SINAI-UJA similarly employed a Mutual Information-based method, but further refined their
results through post-processing techniques, including normalization and projection, to improve
the quality and interpretability of the selected feature subsets [37].

5.1.2. Istella dataset.

As shown in Table 6, the submissions for this task considered varying numbers of features. A particularly
noteworthy observation is that the baseline method, which employed Recursive Feature Elimination
(RFE) to select the top 110 features, underperformed compared to most of the participating teams’
submissions, many of which retained significantly fewer features. This can also be seen in Figure 4.
Despite the larger feature set, this baseline approach not only yielded lower effectiveness but also
required substantial computational resources: nearly two hours of processing time and approximately
24 GB of RAM, far exceeding the specifications allocated to participant workspaces.

These results underscore how the choice of feature subset can significantly influence performance.
In particular, the baseline submission RFE_HALF_FEATURES exhibited poor effectiveness, likely due to
suboptimal feature selection. In contrast, team DS@GT qClef employed QUBO-based formulations
that integrated both importance and redundancy measures to guide feature selection [33], resulting in
more competitive performance.

Furthermore, the hybrid (H) approach demonstrated a considerable advantage in terms of execution
time, requiring substantially less Annealing time than the pure SA-based methods. This efficiency is
due to a combination of QA with classical hardware computation, thus offering a more time-efficient
solution while maintaining competitive performance.

5.2. Task 1B

In this section, we present the results obtained in Task 1B, where the focus was on evaluating the impact
of feature selection on recommendation performance and computational efficiency. The results are
organized according to the two provided feature sets: ICM_100 and ICM_400.

Table 7 summarizes the performance of various submissions in Task 1B. Effectiveness was measured
using nDCG@10, while efficiency was assessed via annealing time.

For the ICM_100 dataset, the SA-based submission by team Malto, which retained 51 features,
achieved an nDCG@10 of 0.0207. Although this is slightly below the baseline score of 0.0226, it
represents only a minor performance drop. This modest degradation may be an acceptable trade-off,



considering the 49% reduction in feature dimensionality, which could translate into significant efficiency
gains at inference time.

The ICM_400 dataset, on the other hand, revealed more diverse outcomes. The best-performing
SA-based configuration using 200 features achieved an nDCG@10 of 0.0294, approaching the baseline
performance of 0.0328. However, a configuration using only 53 features resulted in a substantial decline
in performance (nDCG@10 of 0.0182), illustrating that excessive reduction in feature dimensionality
can adversely affect recommendation quality. Moreover, the annealing times for this dataset were
considerably higher (typically around 70 to 80 seconds) due to the larger feature space and increased
optimization complexity.

Team Malto approached Task 1B by computing feature importance using a Random Forest classifier
trained on the full feature set. They then formulated a QUBO objective function that incorporated these
importance scores alongside pairwise Pearson correlation coefficients, aiming to penalize redundant
features and encourage diversity in the selected subset [36].

Overall, the results indicate that SA-based feature selection can significantly reduce the number
of features while preserving competitive recommendation performance, especially when a moderate
number of features is retained. However, an aggressive feature reduction tends to degrade effectiveness.
Additionally, the computational costs, particularly in terms of annealing time, increase with the size of
the feature set.

5.3. Task 2: Quantum Instance Selection

Here we present the results obtained by the participating teams in Task 2, organized by dataset.

5.3.1. Yelp Dataset

Table 8 shows the performance results on the Yelp dataset. The teams explored a range of reduction
rates, from approximately 25% up to 96% of the original dataset size. This diversity in reduction
strategies highlights the varying priorities and experimental approaches of the participants.

A notable submission is Yelp_SA_qclef_bcos_075, which improved the effectiveness of the Llama3.1
7B model compared to the full-data baseline. This improvement may be attributed to the removal of
noisy or redundant documents, which could otherwise hinder the fine-tuning process and negatively
impact performance.

Equally significant is the submission Yelp_QA_gplsi_2-SentimentKmeansCard, where a QA-based
method achieved an ≈ 87% data reduction while maintaining a high level of performance (98.7 vs.
99.4 on the full dataset). Overall, QA demonstrated competitive effectiveness with respect to SA, while
consistently requiring significantly less Annealing time. Below we briefly describe the main strategies
adopted by the teams:

• GPLSI [35] explored multiple strategies, including Sentiment Pairs, which prioritized semantic
diversity by selecting pairs of documents with either high or low similarity to reduce overlap; Local
Sets, combining clustering and noise filtering based on Euclidean distance to select geometrically
meaningful instances.

• DS@GT qClef [33] built upon a previous method [6] using cosine similarity for the off-diagonal
terms of the 𝑄-matrix. For diagonal terms, they introduced two innovative strategies: one
based on the distance of instances to an Support Vector Machine (SVM) decision boundary, and
another using logistic regression with leave-one-out scoring. These strategies were evaluated both
independently and in combination, with batching applied to efficiently manage large datasets.

The results highlight the growing relevance of Instance Selection as a technique for balancing model
effectiveness and computational sustainability. In particular, fine-tuning the Llama3.1 7B model on
carefully selected subsets resulted in a training time reduction of up to 9×, with minimal performance
degradation, typically less than one absolute point in macro-F1.



These findings demonstrate that significant efficiency gains can be achieved through strategic data
reduction, reinforcing Instance Selection as a critical component in modern, resource-conscious model
development workflows.

5.3.2. Vader Dataset

Table 9 presents the results obtained on the Vader dataset for Task 2. Similar to the Yelp dataset, the
teams experimented with various reduction levels, ranging from around 25% to 96%. However, unlike
the Yelp results, most reductions in this case led to a noticeable decrease in model effectiveness after
fine-tuning.

An interesting observation is that the submission Vader_SA_MALTO_2 - vader nyt_2L produced a
much smaller subset (about 25% of the original data), yet achieved a higher average Macro-F1 score
than Vader_SA_qclef_bcos_075, which retained about 75% of the data. This discrepancy underscores
the impact of dataset-specific characteristics on the outcome of Instance Selection and shows that a
larger subset is not always more effective.

The methodologies used on the Vader dataset were generally consistent with those applied to the
Yelp dataset. Again, QA-based approaches required significantly less Annealing time compared to their
SA-based counterparts, while maintaining comparable performance trends in terms of effectiveness.

5.4. Task 3: Quantum Clustering Results

In this section, we present the outcomes achieved by the teams participating in Task 3. Table 10
summarizes the main results obtained in this task.

All participating teams in this task used only SA to address the clustering challenge. From the reported
results, it is evident that both the GPLSI and DS@GT qClef teams succeeded in submitting solutions
that outperformed the traditional 𝑘-medoids baseline in terms of nDCG@10 and the Davies–Bouldin
Index. These findings suggest that their proposed methods were effective in identifying representative
cluster centers that contributed to retrieving relevant documents more efficiently and accurately in
response to user queries.

We briefly summarize the key methodologies adopted by the teams:

• GPLSI [35] proposed a technique that first reduces the embedding space to 150 pivot points.
These pivots are selected using various heuristic methods such as Farthest Point Sampling (FPS),
CLARA–CLARANS, 𝑘-Means, and SubMedoids (inspired by the qIIMAS approach from the
first QuantumCLEF edition [20]). The aim of these techniques is to select pivots that ensure
comprehensive coverage of the data space. Subsequently, they used SA to optimize the selection
of cluster centroids and assign documents accordingly to maximize retrieval effectiveness.

• DS@GT qClef [33] employed a two-step approach. Initially, they applied classical clustering
algorithms, such as 𝑘-Medoids, HDBSCAN [39], GMM, and a hybrid GMM-HDBSCAN method,
with optional dimensionality reduction techniques like UMAP [40] or PaCMAP. This phase was
used to identify a reduced and manageable subset of instances. In the second step, they formulated
and solved a 𝑘-medoids clustering problem using a QUBO formulation on the reduced subset of
data.

A particularly noteworthy submission is 50_SA_gplsi_3-FPS-Medoids, which achieved a significantly
higher nDCG@10 compared to the BASELINE_10. This is especially remarkable considering that this
method used 50 clusters, five times more than the baseline’s 10 clusters. Despite the risk of over-
segmentation associated with a higher number of clusters, the method successfully maintained high
retrieval quality, demonstrating that the clusters identified by the GPLSI approach were both fine-
grained and representative. On the other hand, the DS@GT qClef submissions 10_SA_DS@GT_qClef_2
and 50_SA_DS@GT_qClef_3 (marked with an asterisk) employed UMAP for dimensionality reduction,
reducing the original high-dimensional embeddings down to just 2 dimensions. While this aggressive
reduction simplifies the optimization problem, it likely led to a considerable loss of information, which
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Figure 5: The Tukey HSD test considering the nDCG@10 values associated with different runs and queries for
the Clustering dataset.

negatively affected the performance. Moreover, since dimensionality reduction was not expected, this
resulted in poor results during the evaluation procedure.

Finally, Figure 5 reports the statistical analysis of the clustering results. The Tukey HSD test indicates
no statistically significant differences among the various team submissions in terms of nDCG@10.
This suggests that, while different in methodology, the effectiveness of the proposed approaches was
statistically comparable.

6. Conclusions and Future Work

In this paper, we presented an overview of the second edition of the QuantumCLEF lab, which was
held in 2025. QuantumCLEF is the first CLEF lab focused on the study, development, and evaluation of
QC algorithms executed on real quantum hardware. This edition consisted of three tasks addressing
the challenges of Feature Selection, Instance Selection, and Clustering, all computationally intensive
problems commonly encountered in IR and RS systems.

Participants relied on the KIMERA infrastructure [7], which facilitated the workflow. The infras-
tructure granted access to both classical computing resources and state-of-the-art quantum annealers
provided by D-Wave, allowing participants to experiment with real quantum computers.

A total of 44 teams registered for the lab, of which 5 successfully submitted their runs. The results
demonstrated that both QA and H approaches achieved effectiveness levels comparable to those of SA,
while offering significantly improved efficiency in terms of Annealing time. These findings support the
potential of QC as a promising computational paradigm for tackling complex problems, particularly
as the technology continues to mature. Notably, QA produced competitive results when compared to
traditional baselines, confirming its capability to deliver effective solutions.

This second edition of QuantumCLEF served not only as an initiative to develop and evaluate QC
algorithms on real quantum hardware, which remains today largely inaccessible to the broader research
community, but also as an opportunity to raise awareness about the potential of quantum technologies.
Participants were provided with educational material, including videos, slides, and practical examples,
to help them understand the principles behind QC and QA. Furthermore, we emphasized transparency
by allowing participants to directly interact with the D-Wave libraries, thus equipping them with the
skills to independently program quantum annealers beyond the scope of this lab.

In the future, we plan to organize a third edition of QuantumCLEF, introducing new tasks and more
advanced challenges. Additionally, we are exploring the possibility of extending the infrastructure to



include gate-based quantum computers [41], complementing the quantum annealers already in use.
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A. Task 1 - Team Results

Table 5
The results for Task 1A on the MQ2007 dataset. Rows marked in grey ( ) represent the results achieved with
QA/H, rows marked in yellow( ) refer to the baselines results, and the remaining refer to results SA results.

Group Submission id nDCG@10
Annealing
time (ms) Type N° features

DS@GT qClef 1A_MQ2007_SA_DS@GT qClef_pfi-k-25-cmi 0.4500 2219 SA 25
DS@GT qClef 1A_MQ2007_SA_DS@GT qClef_pfi-k-20-cpfi 0.4318 2185 SA 20
DS@GT qClef 1A_MQ2007_SA_DS@GT qClef_mi-k-25 0.4510 2214 SA 25
DS@GT qClef 1A_MQ2007_SA_DS@GT qClef_mi-k-15 0.4485 2136 SA 15
DS@GT qClef 1A_MQ2007_SA_DS@GT qClef_pfi-k-30-cmi 0.4523 2157 SA 30
DS@GT qClef 1A_MQ2007_QA_DS@GT qClef_mi-1 0.4436 183 QA 15
DS@GT qClef 1A_MQ2007_QA_DS@GT qClef_mi-2 0.4552 160 QA 13

FAST-NU MQ2007_SA_FAST-NU_SA-2918 0.4212 4073 SA 15
FAST-NU 1A_MQ2007_SA_FAST-NU_SA-2915 0.3358 4164 SA 15
FAST-NU 1A_MQ2007_QA_FAST-NU_ae194be3-5267-45dd-aa0e-36a58579d719 0.4311 339 QA 15
FAST-NU 1A_MQ2007_QA_FAST-NU_26065450-e42a-4d92-bfb9-ff367d132142 0.4409 287 QA 15
FAST-NU 1A_MQ2007_QA_FAST-NU_1bba5207-9919-4048-b4a0-80f89b03f603 0.4375 275 QA 15

SINAI-UJA response_k21_nr3000 0.4530 3448 SA 21
SINAI-UJA response_k23_nr3000 0.4478 6632 SA 23
SINAI-UJA response_k25_nr3000 0.4510 2998 SA 25
SINAI-UJA response_k27_nr3000 0.4438 6637 SA 27
SINAI-UJA response_k29_nr3000 0.4491 6614 SA 29
SINAI-UJA response_k21_nr100 0.4580 34 QA 21
SINAI-UJA response_k23_nr100 0.4437 37 QA 23
SINAI-UJA response_k25_nr100 0.4550 31 QA 25
SINAI-UJA response_k27_nr100 0.4425 34 QA 27
SINAI-UJA response_k29_nr100 0.4528 34 QA 29

BASELINE ALL_FEATURES 0.4473 - - 46
BASELINE RFE HALF_FEATURES 0.4450 - - 23



Table 6
The results for Task 1A on the Istella dataset. Rows marked in grey ( ) represent the results achieved with QA/H,
rows marked in yellow( ) refer to the baselines results, and the remaining refer to results achieved with SA.

Group Submission id nDCG@10
Annealing
time (ms) Type N° features

DS@GT qClef 1A_Istella_SA_DS@GT qClef_mi_25 0.6025 126631 SA 25
DS@GT qClef 1A_Istella_SA_DS@GT qClef_mi_30 0.5104 133814 SA 30
DS@GT qClef 1A_Istella_SA_DS@GT qClef_mi_50 0.6524 159964 SA 50
DS@GT qClef 1A_Istella_SA_DS@GT qClef_mi_60 0.6682 173222 SA 60
DS@GT qClef 1A_Istella_SA_DS@GT qClef_mi_70 0.6523 184047 SA 70
DS@GT qClef 1A_Istella_QA_DS@GT qClef_mi_50 0.5586 9987 H 50

BASELINE ALL_FEATURES 0.7146 - - 220
BASELINE RFE HALF_FEATURES 0.5560 - - 110

Table 7
The results for Task 1B. Rows marked in grey ( ) represent the results achieved with QA/H, rows marked in
yellow( ) refer to the baselines results, and the remaining refer to results achieved with SA.

Dataset Group Submission id nDCG@10
Annealing
time (ms) Type N° features

ICM_100
Malto 1B_100_ICM_SA_MALTO_1B - 100_ICM submission 0.0207 6149 SA 51
BASELINE ALL_FEATURES 0.0226 - - 100

ICM_400
Malto 1B_400_ICM_SA_MALTO_1B - 400_ICM submission - 200 0.0294 80781 SA 200
Malto 1B_400_ICM_SA_MALTO_1B - 400_ICM submission 0.0182 70269 SA 53
BASELINE ALL_FEATURES 0.0328 - - 400

B. Task 2 - Team Results

Table 8
The results for Task 2 on the Yelp dataset averaged over 5 folds. Rows marked in grey ( ) represent the results
achieved with QA/H, rows marked in yellow( ) refer to the baselines results, and the remaining refer to results
achieved with SA.

Group Submission id Avg Macro F1 Avg Reduction
Avg Fine-Tuning

time (s)
Avg Annealing

time (ms) Type

DS@GT qClef Yelp_SA_qclef_bcos_075 99.5(0.2) 0.25 1548.5(2.8) 25997 SA
DS@GT qClef Yelp_SA_qclef_it_del_075 99.3(0.3) 0.25 1549.2(1.5) 25784 SA
DS@GT qClef Yelp_SA_qclef_svc_075 99.3(0.4) 0.25 1550.5(2.6) 25917 SA
DS@GT qClef Yelp_QA_qclef_bcos 99.4(0.2) 0.274 1500(54.7) 1767 QA

GPLSI Yelp_SA_gplsi_2-SentimentPairs(docs=just-final... 90.8(5.7) 0.963 170.8(3.8) 35810 SA
GPLSI Yelp_SA_gplsi_2-SentimentPairs(docs=pair-related... 99.2(0.3) 0.627 822.2(395) 35810 SA
GPLSI Yelp_SA_gplsi_2-LocalSets 99.4(0.2) 0.512 1045.5(5.3) 28789 SA
GPLSI Yelp_SA_gplsi_2-SentimentKmeansCard 98.5(1.1) 0.875 338.8(21) 17823 SA
GPLSI Yelp_SA_gplsi_2-emoconflictCard 98.6(0.5) 0.728 628.2(65.9) 34024 SA
GPLSI Yelp_QA_gplsi_2-SentimentKmeansCard 98.7(0.2) 0.869 351(25.1) 553 QA
GPLSI Yelp_QA_gplsi_2-emoconflictCard 98.8(0.6) 0.702 678.8(80.9) 549 QA

Malto Yelp_SA_MALTO_2 - vader_nyt_2L_0 99.2(0.2) 0.751 582(2) 142949 SA

BASELINE BASELINE_ALL 99.4(0.1) - 2027.1(1.1) - -



Table 9
The results for Task 2 on the Vader dataset averaged over 5 folds. Rows marked in grey ( ) represent the results
achieved with QA/H, rows marked in yellow( ) refer to the baselines results, and the remaining refer to results
achieved with SA.

Group Submission id Avg Macro F1 Avg Reduction
Avg Fine-Tuning

time (s)
Avg Annealing

time (ms) Type

DS@GT qClef Vader_SA_qclef_svc_075 65.4(7.1) 0.25 1529(2.4) 25530 SA
DS@GT qClef Vader_SA_qclef_combined_075 65.9(4.7) 0.25 1529.4(3) 25300 SA
DS@GT qClef Vader_SA_qclef_it_del_075 65.6(3) 0.25 1529.5(2.3) 25348 SA
DS@GT qClef Vader_SA_qclef_bcos_075 62.5(10.4) 0.25 1528.6(2.2) 25735 SA
DS@GT qClef Vader_QA_qclef_bcos 62.6(7.5) 0.283 1493.3(83) 1874 QA

GPLSI Vader_SA_gplsi_2-LocalSets 63.3(4.9) 0.505 1048.3(6.7) 29110 SA
GPLSI Vader_SA_gplsi_2-SentimentPairs-docs=just-final... 47.4(5.4) 0.962 172.8(5.7) 42408 SA
GPLSI Vader_SA_gplsi_2-SentimentPairs-docs=pair-related... 62.2(4.1) 0.7 671.8(352.8) 42408 SA
GPLSI Vader_QA_gplsi_2-SentimentPairs-docs=just-final... 50(64)* 0.835* 172.9(26.9)* 545* QA
GPLSI Vader_QA_gplsi_2-SentimentPairs(docs=pair-related... 62.1(1.8)* 0.658* 750.7(2653.2)* 545* QA

Malto Vader_SA_MALTO_2 - vader_nyt_2L 63.1(2.5) 0.751 574.5(1.7) 126087 SA

BASELINE BASELINE_ALL 88.9(0.8) - 1997.3(5.7) - -

* The submission did not include all 5 folds

C. Task 3 - Team Results

Table 10
The results for Task 3. Rows marked in grey ( ) represent the results achieved with QA/H, rows marked in
yellow( ) refer to the baselines results, and the remaining refer to results achieved with SA.

N° centroids Team Submission id nDCG@10 DBI Annealing Time (ms) Type

10

GPLSI 10_SA_gplsi_3-FPS-Medoids 0.5783 7.5147 15375 SA
GPLSI 10_SA_gplsi_3-SubMedoidsQUBO 0.5579 6.8779 15305 SA
GPLSI 10_SA_gplsi_CLARA-CLARANS 0.5444 6.6710 15395 SA
GPLSI 10_SA_gplsi_MBK-Medoids 0.5600 6.4258 15510 SA
DS@GT qClef 10_SA_DS@GT qClef_1 0.5800 7.4776 83 SA
DS@GT qClef 10_SA_DS@GT qClef_2 * 0.0172 4.4706 83 SA
BASELINE BASELINE_10 0.5509 7.9892 - -

25

GPLSI 25_SA_gplsi_3-FPS-Medoids 0.5475 5.5577 20875 SA
GPLSI 25_SA_gplsi_3-SubMedoidsQUBO 0.5298 5.6255 40687 SA
GPLSI 25_SA_gplsi_CLARA-CLARANS 0.5310 5.6507 20532 SA
GPLSI 25_SA_gplsi_MBK-Medoids 0.5193 5.3755 20758 SA
BASELINE BASELINE_25 0.5284 6.1201 - -

50

GPLSI 50_SA_gplsi_3-FPS-Medoids 0.5592 4.4531 9869 SA
GPLSI 50_SA_gplsi_3-SubMedoidsQUBO 0.5148 4.9325 23719 SA
GPLSI 50_SA_gplsi_CLARA-CLARANS 0.5017 5.1703 9976 SA
GPLSI 50_SA_gplsi_MBK-Medoids 0.5383 4.5025 24004 SA
DS@GT qClef 50_SA_DS@GT qClef_3 * 0.0064 3.4217 228 SA
BASELINE BASELINE_50 0.4656 5.3679 - -

* Dimensionality reduction was applied
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