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Abstract
This paper presents the participation of the GPLSI team in the Quantum CLEF (QClef) Lab at CLEF 2025, focusing

on Task 2 - Instance Selection and Task 3 - Clustering. The QClef Lab explores the applicability of quantum

and quantum-inspired techniques to core AI tasks, emphasizing optimization efficiency and data reduction. In

Task 2, we propose three multi-paradigm approaches for selecting representative training instances for sentiment

classification, leveraging sentiment-aware pairing, local set-based criteria, and classical heuristics. In Task 3, we

introduce a single quantum-inspired clustering framework that integrates four distinct pivot selection strategies

for document grouping in embedding space. Our methods achieved competitive performance across both tasks.

In particular, our LocalSets method achieved the highest effectiveness in Task 2 while substantially reducing the

training set, and our FPS-Medoids approach delivered the best results for Task 3 in terms of nDCG@10. Overall, our

findings support the potential of annealing-based techniques to deliver effective trade-offs between performance

and computational efficiency in realistic machine learning pipelines.
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1. Introduction

The Quantum CLEF (QClef) Lab at CLEF 2025 [1, 2] explores the integration of quantum computing

technologies into real-world information retrieval and machine learning workflows. The lab serves

as a benchmark initiative to assess how quantum-inspired and quantum-native methods can enhance

computational efficiency and effectiveness across core AI tasks. By leveraging both quantum and

simulated annealers, QClef aims to investigate the suitability of these technologies for structured and

unstructured data analysis.

QClef 2025 is organized into three primary tasks: Task 1 - Feature Selection, Task 2 - Instance Selection,

and Task 3 - Clustering. Each task presents a different machine learning challenge, offering opportunities

to apply quantum approaches in data preprocessing, optimization, and representation learning.

Our team, GPLSI, participated in Task 2 and Task 3. The main hypothesis guiding our work is that

quantum-inspired optimization methods can lead to more representative and compact data subsets,

thereby improving downstream learning and analysis tasks such as classification and clustering. In

particular, we explore the utility of Quadratic Unconstrained Binary Optimization (QUBO) formulations

and hybrid clustering strategies to address instance selection and structure discovery in sentiment

analysis datasets.
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Our specific objectives are:

• To develop and compare three instance selection approaches for Task 2.

• To design a quantum-inspired clustering method for Task 3.

• To evaluate all methods using the official datasets and protocols provided by QClef 2025.

The remainder of this report is structured as follows. Sections 2 and 3 detail our methodology for

instance selection and clustering, respectively. Section 4 presents the experimental setup and discusses

results and observations. Finally, Section 5 concludes with a summary and future directions.

2. Methodology —Task 2: Instance Selection

This section outlines the methodology employed for Task 2, which focuses on instance selection (IS)

aimed at improving the efficiency and performance of downstream sentiment analysis models. We

explore three distinct approaches, each designed to identify representative and informative subsets of

data. Section 2.1 introduces a pairing strategy based on sentiment polarity and semantic similarity to

capture nuanced contrasts. Section 2.2 details a technique that leverages local neighborhood bounded

by the local set-concept for instance selection. Finally, Section 2.3 presents a hybrid approach combining

heuristic pre-filtering with statistical optimization. Together, these methodologies offer complementary

perspectives on selecting high-quality training instances.

2.1. Approach I —Sentiment Pairs

This approach focuses on selecting a balanced and representative subset of sentiment-labeled instances

by leveraging clustering and quantum-inspired optimization. The goal is to construct a reduced dataset

that maintains semantic diversity and class balance. The method consists of three main stages: (I)

balancing through clustering, (II) pair construction and selection, and (III) subset optimization via

QUBO.

2.1.1. Balancing via K-Medoids Clustering

To ensure a balanced set of instances from both sentiment classes, we first independently apply K-
Medoids clustering [3] to the positive and negative subsets of the dataset. K-Medoids is chosen for its

robustness in identifying representative instances (medoids), which are actual data points that minimize

within-cluster dissimilarity.

Let 𝒟+
and 𝒟− be the sets of positive and negative instances, respectively. We apply K-Medoids to

each set to obtain:

ℳ+ = KMedoids(𝒟+, 𝑘), ℳ− = KMedoids(𝒟−, 𝑘)

where 𝑘 is the number of desired medoids per class. The value of 𝑘 controls the number of selected

instances from each class and ensures that |ℳ+| = |ℳ−|, enforcing class balance.

2.1.2. Pair Construction and Selection

After balancing the dataset through medoid extraction (Section 2.1.1), we construct cross-class pairs by

combining positive and negative medoids in a greedy manner. Each positive medoid is paired with its

closest unpaired negative medoid based on cosine similarity in the feature space. This process ensures

that each negative medoid is used at most once, and the resulting sequence of pairs reflects a decreasing

order of similarity —from the most semantically aligned pairs to less similar ones.

Formally, let:

• ℳ+ = {𝑚+
1 , . . . ,𝑚

+
𝑘 } be the set of positive medoids,

• ℳ− = {𝑚−1 , . . . ,𝑚
−
𝑘 } be the set of negative medoids,

• sim(𝑚+
𝑖 ,𝑚

−
𝑗 ) denote the cosine similarity between any two medoids.



We initialize an empty set 𝒫 = ∅. For each 𝑚+
𝑖 ∈ℳ+

, we select:

𝑚−𝑗 = arg max
𝑚−∈ℳ−∖𝑈

sim(𝑚+
𝑖 ,𝑚

−)

where 𝑈 is the set of already paired negative medoids. We then add the pair (𝑚+
𝑖 ,𝑚

−
𝑗 ) to 𝒫 and update

𝑈 ← 𝑈 ∪ {𝑚−𝑗 }.
This greedy construction results in 𝑘 semantically aligned positive-negative pairs, each with an

associated similarity score.

Pair Selection Strategies To reduce the number of candidate pairs while maintaining semantic and

similarity diversity, we apply an agglomerative clustering approach that integrates two complementary

views of pair dissimilarity: (1) the difference in intra-pair similarity scores and (2) the semantic distance

between mean document vectors of the pairs.

Let each pair 𝑝𝑖 = (𝑚+
𝑖 ,𝑚

−
𝑖 ) ∈ 𝒫 consist of a positive and negative medoid, along with their cosine

similarity score 𝑠𝑖. We define a combined distance measure between any two pairs 𝑝𝑖 and 𝑝𝑗 as follows:

1. Similarity Score Distance. The first component quantifies the absolute difference in intra-pair

similarity:

𝑑sim(𝑝𝑖, 𝑝𝑗) = |𝑠𝑖 − 𝑠𝑗 |

2. Semantic Mean Vector Distance Each pair is represented by the mean of its two constituent

document vectors:

𝜇𝑖 =
1

2
(𝑚+

𝑖 +𝑚−𝑖 )

The semantic distance between two pairs is then computed using cosine distance:

𝑑vec(𝑝𝑖, 𝑝𝑗) = 1− cos(𝜇𝑖, 𝜇𝑗)

3. Combined Distance Metric The final distance between pairs is given by the average of the two

components:

𝑑(𝑝𝑖, 𝑝𝑗) =
1

2
(𝑑sim(𝑝𝑖, 𝑝𝑗) + 𝑑vec(𝑝𝑖, 𝑝𝑗))

Using this combined pairwise distance matrix, we apply Agglomerative Clustering [4, 5] with average

linkage and a precomputed distance metric. This clustering groups pairs that are both semantically

similar and close in intra-pair similarity score. From each resulting cluster, a single representative pair

is selected. The representative is defined as the most central pair within its cluster, i.e., the one with the

minimum total distance to all other members in the cluster:

𝑝*𝑐 = arg min
𝑝𝑖∈cluster𝑐

∑︁
𝑝𝑗∈cluster𝑐

𝑑(𝑝𝑖, 𝑝𝑗)

This yields a final set 𝒫 ′ ⊆ 𝒫 of 𝐾 representative and diverse pairs that form the candidate pool

for the subsequent QUBO-based optimization (Section 2.1.3). By integrating both intra-pair and inter-

pair semantics, this selection process ensures that the reduced dataset maintains coverage over the

underlying structure of the sentiment space.

2.1.3. QUBO Formulation for Subset Selection

Once a reduced set of candidate cross-class pairs 𝒫 ′ is obtained (Section 2.1.2), we aim to select a

representative subset that is both informative and non-redundant. While auxiliary procedures such

as K-Medoids clustering for balancing, greedy algorithms for pair construction, and agglomerative

clustering for pair selection operate within polynomial time complexity, the overall problem of instance

selection often involves solving a combinatorial core that is inherently hard. In our case, this core is

formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem [6, 7], which is NP-hard.



Therefore, despite relying on efficient polynomial-time heuristics to pre-process or structure the data,

the final optimization step still represents a significant computational challenge. This justifies the use of

quantum or quantum-inspired techniques, such as quantum annealing, to solve the QUBO formulation

more effectively than classical brute-force or metaheuristic approaches, especially when scalability

and solution quality are critical. The QUBO formulation allows us to encode the trade-off between the

relevance of individual pairs and the redundancy among them, and solve the resulting combinatorial

problem using classical or quantum annealing techniques.

Relevance Score The relevance (or importance) of each pair is quantified based on how far its

similarity score deviates from the average of the minimum and maximum similarity scores among all

selected pairs. This discourages the selection of semantically central pairs (i.e., neither too similar nor

too dissimilar):

Let 𝑠𝑖 denote the cosine similarity score of pair 𝑝𝑖 ∈ 𝒫 ′, and let:

𝑐 =
min𝑝𝑖∈𝒫 ′ 𝑠𝑖 +max𝑝𝑖∈𝒫 ′ 𝑠𝑖

2

Then, the relevance score for 𝑝𝑖 is defined as:

relevance𝑖 = |𝑠𝑖 − 𝑐|

This assigns higher importance to pairs that diverge from the central similarity mass, promoting

diversity in semantic strength.

Redundancy Score To penalize semantic overlap among selected pairs, we define a redundancy score

that measures similarity between every pair of pairs. For two candidate pairs 𝑝𝑖 and 𝑝𝑗 , redundancy is

computed as the sum of cosine similarities across three views:

1. Between their positive document vectors (𝑚+
𝑖 ).

2. Between their negative document vectors (𝑚−𝑖 ).

3. Between their mean vectors (𝜇𝑖).

The total redundancy between 𝑝𝑖 and 𝑝𝑗 is:

redundancy𝑖,𝑗 = cos(𝑚+
𝑖 ,𝑚

+
𝑗 ) + cos(𝑚−𝑖 ,𝑚

−
𝑗 ) + cos(𝜇𝑖, 𝜇𝑗)

This encourages diversity by penalizing the inclusion of multiple pairs that represent similar semantic

regions in the embedding space.

QUBO Objective Finally, we define a QUBO objective function that combines relevance and redun-

dancy:

min
x∈{0,1}𝐾

𝐾∑︁
𝑖=1

−relevance𝑖 · 𝑥𝑖 +
𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1

redundancy𝑖,𝑗 · 𝑥𝑖𝑥𝑗 + penalty

where 𝑥𝑖 ∈ {0, 1} indicates whether pair 𝑝𝑖 is selected, 𝐾 is the total number of candidate pairs, the

first term rewards the inclusion of relevant pairs, and the second term penalizes redundant selections.

To restrict the number of selected pairs to 𝑘′, we add a soft constraint: 𝛾 (
∑︀

𝑖 𝑥𝑖 − 𝑘′)2. This term is

incorporated into the QUBO as an additional quadratic penalty.

2.1.4. Submission Configuration Summary

All submissions—labeled as SentimentPairs—are based on variations of key parameters used in the

instance selection and QUBO optimization pipeline. The two main configurations differ in how output

pairs are compiled—either from the final QUBO solution only (just-final) or from QUBO-selected



pairs enriched with related instances (pair-related). In the latter case, related instances refer to

pairs that belong to the same cluster as the QUBO-selected pairs, based on the clustering step used to

reduce the candidate set from 𝑘 to 𝐾 (Section 2.1.2). Each submission uses a fixed number of annealing

reads (2000), enforces a balance limit 𝑘 of 90% of the minority class size, sets the number of candidate

cross-class pairs 𝐾 = 150, and restricts the QUBO-selected final subset to 𝑘′ = 0.5×𝐾 = 75 pairs.

Table 1 summarizes the explored configurations.

Table 1
Parameter settings for the experimental submission variants of the SentimentPairs approach.

Dataset Output Compilation # Reads 𝑘 (Balance Limit) 𝐾 (Pair Limit) 𝑘′ (QUBO Limit)

Vader
just-final 2000 0.9 × 1763 = 1586 150 150 / 2 = 75

pair-related 2000 0.9 × 1763 = 1586 150 150 / 2 = 75

Yelp
just-final 2000 0.9 × 2000 = 1800 150 150 / 2 = 75

pair-related 2000 0.9 × 2000 = 1800 150 150 / 2 = 75

2.2. Approach II —Local Sets

The main idea of this method is to exploit the concept of local set [8], a geometrical construct describing

the instance neighborhood, to select an optimal set of instances for training a classification model.

Our approach extends the Local Set Border Selector (LSBo) [9], a hybrid method composed by a noise

filtering step and the condensation of the noise free database. It also benefits of a modified version

of a supervised clustering algorithm based on local sets, LS-clustering [10], to prepare the dataset for

the selection using the annealing technique. Throughout our method, distances between instances are

computed as euclidean distances.

2.2.1. Instance Taxonomy

Our approach relies on a categorization of instances based on their contribution to classification accuracy,

where each category can be quantified using a measure based on local sets.

• Noise Instances Noise instances disagree in classification with their neighborhoods, thereby

obscuring the relationship between the features of an instance and its label [11]. Datasets like

Yelp Reviews [12] and Vader NYT [13], where labels originate from subjective human ratings, are

prone to such noise. Within the Local Set-Based Smoother (LSSm) framework [9], noise instances

are identified with a measure of harmfulness, tied to how many instances identify them as their

nearest enemy.

• Redundant/Useless Instances By definition, these instances do not significantly influence

classification. Redundancy arises when excessive same-class neighbors exist. LSSm characterizes

redundancy with the usefulness measure, based on the number of local sets an instance belongs

to.

• Border instances Instances near class borders can be identified within the LSBo framework as

instances having the lowest Local Set Cardinality (LSC) among the members of their local sets.

• Central/typical instances Typical instances, also called prototypes, are instances central enough

to represent a local region. They are determined within the scope of the Local Set-based Centroids
selector (LSCo) [9], which selects a set of centroids of clusters obtained with LS-clustering.

In the instance selection literature, methods classified as edition methods are typically directed at

removing noise, while condensation methods aim at removing redundancy. Methods combining both,

such as our method, are called hybrid [14]. Generally, the selection criterion also fluctuates between

focusing on border instances or central instances, as both contribute positively to classification accuracy.

Finding an optimal criterion is subject to the dataset characteristics [10]. Our method is a combination

of both main criteria, as we retain both a set of border instances and a set of central instances.



2.2.2. Method Objective

Our method aims to enhance the LSBo, which already achieves a good tradeoff between accuracy and

reduction, supported with empirical evidence [9], by selecting an additional set of instances through a

high complexity step executed with quantum annealing.

To maximize accuracy with this additional set, rather than prioritizing centrality, our strategy will be

to select the less-redundant set among the non-border instances. Our heuristic to detect redundancy is

based on the distribution of same-class instances in local regions delimited by borders. More concretely,

a pair of same-class instances (or clusters, as will be explained hereafter) will be awarded or penalized

for selection by comparing their inner distance to the sum of the distances to their relative nearest

border.

The complete algorithm pseudocode can be found at Algorithm 1.

Algorithm 1 Method for Instance Selection based on Local Sets for a Quantum Annealer

Require: Set of instances 𝑇
Require: Number of decision variables 𝑘

Set of selected instances 𝑆 ← ∅
Set of preselected clusters 𝐶′ ← ∅
Set of selected clusters 𝐶* ← ∅
1. Noise Removal

𝑁 ← LSSm(𝑇 )
𝑇 ← 𝑇 ∖𝑁 Removing noise instances

2. Border Detection
𝐵 ← LSBo(𝑇 )
𝑆 ← 𝐵 Selecting border instances

3. Clustering
𝑇 ← 𝑇 ∖𝐵
Set of clusters 𝐶 ← Modified LS-Clustering(𝑇 )

4. Cluster Preselection
Compute nearest same-class border for each cluster

Sort clusters in ascending order of distance to their nearest border

for i = 1 to 𝑘 do
𝐶′ ← 𝐶′ ∪ {𝐶[𝑖]} Keeping only the 𝑘 clusters closest to borders

end for

5. Quantum Selection
Build QUBO matrix 𝑄(𝐶′)
𝐶* ← QA(𝑄) Removing redundant clusters with quantum annealing (QA)

for each 𝑐* ∈ 𝐶* do
𝑆 ← 𝑆 ∪ {𝑐*} Adding selected cluster members

end for

return 𝑆

In the following sections, the algorithm steps 3, 4 and 5 will be explained in detail. A more complete

presentation of the algorithms LSSm and LSBo of steps 1 and 2 can be found in the paper [9]. Section 2.2.3

details the method used for clustering, Section 2.2.4 presents our heuristic for preselecting clusters and

Section 2.2.5 explains how we obtain the weights of the QUBO matrix determining the final selection.

2.2.3. Modified LS-Clustering

Our strategy to reduce the problem size is to associate each decision variable to a cluster containing

same-class local regions of instances. To that end, non-border, non-noisy instances are clustered using

a modified version of the local set-based clustering [10]. The original algorithm selects local sets with a

high LSC, resulting in clusters containing wide same-class regions. We modify the clustering algorithm

by processing small local sets first, obtaining numerous clusters containing smaller patches of instances

of the same region. This will allow us to select the less redundant patch of each region.

The algorithm pseudocode can be found at Algorithm 2.



Algorithm 2 Modified Local Set-based Clustering

Require: Set of instances 𝑇
Require: Set of noise instances 𝑁 and border instances 𝐵

Set of clusters 𝐶 ← ∅
𝑇 ← 𝑇 ∖ (𝐵 ∪𝑁) Filter noise and border instances
Compute the 𝐿𝑆s (Local Sets) for each instance in 𝑇
Sort instances in ascending order of 𝐿𝑆𝐶 (Local Set Cardinality) Smaller local sets are processed first

𝑇
added

← ∅ Instances already added to a cluster
for each 𝑡 ∈ 𝑇 do

if 𝑡 /∈ 𝑇
added

then
𝑇

added
← 𝑇

added
∪ {𝑡}

Create cluster 𝑐 with medoid 𝑇 and members 𝐿𝑆(𝑡) ∖ 𝑇
added

𝑇
added

← 𝑇
added
∪ 𝐿𝑆(𝑡)

Add 𝑐 to 𝐶
end if

end for
return 𝐶

2.2.4. Cluster Preselection

Due to the hardware constraints, the number of problem decision variables is restricted to 150, meaning

that the quantum annealer can handle at most 150 candidate clusters at once. To meet this constraint, we

adopt a heuristic that preselects the 150 clusters whose centroids are closest to their nearest same-class

border instance. The process is as follows:

1. For each cluster 𝑐𝑖, compute its centroid 𝜇𝑖 as the mean of its member instances.

𝜇𝑖 =
1

|𝑐𝑖|
∑︁
𝑥∈𝑐𝑖

𝑥

2. Let 𝐵 be the set of border instances obtained using the LSBo method, and 𝑦𝑖 ∈ {0, 1} the binary

class of each cluster. For each cluster 𝑐𝑖, find the distance 𝑑*𝑖 to the nearest same-class border

instance 𝑏𝑖 ∈ 𝐵.

𝑑*𝑖 = min
𝑏𝑖∈𝐵, 𝑦𝑏𝑖=𝑦𝑖

‖𝜇𝑖 − 𝑏𝑖‖2

3. Select the 150 clusters with the smallest distances 𝑑*𝑖 to form the preselection set.

2.2.5. Cluster Selection using Quantum Annealing

The time complexities of the different algorithms described so far —LSBo, modified LS-clustering

and algorithm for computing nearest borders— are 𝒪(𝑇 2), 𝒪(𝑇 ) and 𝒪(𝐶𝐵𝑑) respectively, where T
represents the set of initial instances, C represents the total number of clusters, B the number of border

instances and d the feature dimensionality. Therefore, running these algorithms before the step that

will be executed in the quantum annealer does not compromise efficiency.

The problem of selecting the less-redundant set of clusters based on their location around border

instances is formulated using a QUBO model. Specifically, a pair of same-class clusters is rewarded if

the distance between their centroids is greater than the sum of their respective distances to the nearest

border instance, as such cases are likely to correspond to clusters belonging to distinct local regions

separated by borders. The QUBO formulation is described below:

Let each preselected cluster be associated with:

• Centroid 𝜇𝑖,

• Nearest border distance 𝑑*𝑖 ,

• Class label 𝑦𝑖 ∈ {0, 1}.

We define the inter-cluster distance and the separation margin 𝛿𝑖𝑗 as:

inter_dist𝑖𝑗 = ‖𝜇𝑖 − 𝜇𝑗‖, 𝛿𝑖𝑗 = inter_dist𝑖𝑗 − (𝑑*𝑖 + 𝑑*𝑗 + 𝑇 )



where 𝑇 ≥ 0 is a tolerance parameter that increases the required separation between same-class clusters

to avoid being considered redundant. Larger values of 𝑇 reflect stricter redundancy criteria. For both

datasets (Vader NYT and Yelp Reviews), we use a value of 0.2 for the parameter 𝑇 .

We define the QUBO matrix 𝑄 ∈ R𝑛×𝑛
as:

𝑄[𝑖, 𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

self_bias if 𝑖 = 𝑗

𝛼 · 1

inter_dist𝑖𝑗 + 𝜀
if 𝛿𝑖𝑗 < 0 and 𝑦𝑖 = 𝑦𝑗

−𝛽 · 1

inter_dist𝑖𝑗 + 𝜀
if 𝛿𝑖𝑗 ≥ 0 and 𝑦𝑖 = 𝑦𝑗

0 if 𝑦𝑖 ̸= 𝑦𝑗

with the following parameters (we use the same parameter values for both datasets):

• 𝛼 = 1.0: penalty scaling factor for redundant same-class cluster pairs,

• 𝛽 = 1.0: reward scaling factor for well-separated same-class cluster pairs,

• self_bias = -1.0: negative diagonal term that promotes sparsity in the selection.

• 𝜀 = 10−6: small constant added to avoid division by zero.

To enforce class balance in the selected set of clusters, we add a penalty to the QUBO formulation:

𝑄← 𝑄+ 𝛾 ·ww⊤ where 𝑤𝑖 = 1− 2𝑦𝑖

where 𝛾 regulates the strength of the penalty term. We use a value of 𝛾 = 5.0 for both datasets. The

sum of the terms 1− 2𝑦𝑖 for all clusters 𝑐𝑖 will be minimized when there is the same number of clusters

of each class in the final solution. As the optimal solution is the solution that minimizes the expression

𝑄, adding this term with a high enough 𝛾 allows us to promote class balance. After obtaining the final

cluster selection, all the selected cluster member instances are added to the submission set containing

the border instances.

2.3. Approach III —Pre-Selection and Statistical Tuning

We propose PREST, Pre-Selection and Statistical Tuning, for QUBO Annealing a three-step pipeline

that begins with classical heuristics and ends with the exact same optimization task running on both

CPUs and quantum hardware. First, we build candidate panels greedily and wrap them into a single

QUBO [15]. Because the objective and hyper-parameters stay identical, the classical-versus-quantum

comparison is strictly like-for-like. The workflow comprises three stages:

1. Stage I – Representation & Pre-filtering: Sentence-BERT embeddings are enriched with scalar

features. Nine classical heuristics generate candidate subsets for a grid of target sizes 𝑘. A metric

bundle {silhouette,Davies–Bouldin, balance, diversity, coverage} [16] ranks the outputs.

2. Stage II – Combinatorial Optimization: each of the four best heuristics selected in Stage I is

cast as a QUBO whose coefficients encode diversity, class-frequency fairness, emotional contrast 𝑔𝑖,
and sentiment confidence 𝑠𝑖. A SA sweep over 𝑘 and QUBO weights keeps the two top-scoring

panels per heuristic.

3. Stage III – Quantum-Ready Aggregation: To comply with the ≤ 150-variable limit of current

quantum annealers, the retained subsets are clustered into super-nodes. We solve two QUBO

variants—unconstrained and cardinality-constrained—with both SA and QA in a D-Wave QPU,

yielding the final instance sets.

2.3.1. Stage I — Representation and Pre-filtering

Augmented sentence embeddings Each sentence is embedded with the all-mpnet-base-v2
Sentence-BERT model [17], producing a 768-dimensional vector. To capture additional information we

concatenate two task-specific scalars: emotional contrast (𝑔𝑖) defined as the gap between the two

highest emotion logits, and sentiment confidence (𝑠𝑖), given by the maximum soft-max probability

produced by the sentiment classifier.



Subset generators We generate nine deterministic subsets for each target size 𝑘 ∈
{200, 400, . . . , 2000}, leveraging a range of complementary heuristics grounded in core-set theory,

graph analysis, and uncertainty modeling. Classical core-set methods—Max–Min, K-Means Centroids,
and Farthest-First—are commonly used for feature selection in Natural Language Processing (NLP) [18].

To exploit structural cues, we include Community selection via modularity maximization [19] and

Closeness Centrality [20], two graph-based sampling heuristics. The Density-Weighted heuristic priori-

tizes low-density regions in the embedding space, enhancing representational diversity by sampling

from semantically sparse areas [21]. Emotional Conflict, a custom heuristic introduced in this work,

identifies semantically similar sentence pairs with opposing affective signals—highlighting emotionally

ambiguous cases relevant to affective representation [22]. Diversity Sampling maximizes coverage

by iteratively picking points farthest from the current subset, thereby enhancing generalization and

reducing feature redundancy [23]. Finally, Uncertainty-Based selection focuses on items near sentiment

boundaries, following Bayesian active-learning and margin-sampling principles [24].

Metric-Driven Filtering Each subset is evaluated with five criteria [16] —silhouette (𝒮),
Davies–Bouldin (𝒟), class balance (ℬ), diversity (𝒱), and coverage (𝒞). For every dataset we gather

the raw scores of all nine heuristics and all target sizes 𝑘, compute the global mean 𝜇𝑚 and standard

deviation 𝜎𝑚 of each metric 𝑚, and obtain 𝑧-scores 𝑧𝑚 = (𝑚− 𝜇𝑚)/𝜎𝑚. The normalized scores are

finally averaged into Ψ = 1
5

(︀
𝒮 − 𝒟 + ℬ + 𝒱 + 𝒞

)︀
, and the four highest-ranked heuristics progress to

Stage II.

2.3.2. Stage II — Combinatorial Optimization

After the Stage I filtering we retain Max–Min, K-Means Centroids, Emotional Conflict and

Uncertainty-Based . For each pool 𝒫 = {𝑝1, . . . , 𝑝𝑛} and target size 𝑘 ∈ {1000, 1500, 2000, 2500} (a

reduced grid chosen for runtime reasons) we flip a binary switch x ∈ {0, 1}𝑛 (𝑥𝑖 = 1 selects 𝑝𝑖). The

QUBO combines four signals:

• Diversity 𝑑𝑖𝑗 , amplified when the two sentences come from different sentiment classes and

inverted when they coincide.

• Class-frequency fairness: diagonal bias 𝑛𝑦𝑖/𝑛, where 𝑛𝑦𝑖 is the number of instances in class 𝑦𝑖
and 𝑛 is the total number of instances, that favours minority classes.

• Emotional contrast 𝜆emo 𝑔𝑖 on the diagonal;

• Sentiment confidence 𝜆sent
(︀
1− |𝑠𝑖 − 0.5|

)︀
on the diagonal (prefer items whose softmax proba-

bility is close to 0.5).

The QUBO matrix 𝑄 is

𝑄unc

𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑛𝑦𝑖

𝑛
+ 𝜆emo 𝑔𝑖 + 𝜆sent

(︀
1− |𝑠𝑖 − 0.5|

)︀
, 𝑖 = 𝑗,

𝑑𝑖𝑗 , 𝑖 ̸= 𝑗, 𝑦𝑖 ̸= 𝑦𝑗 ,

−𝑑𝑖𝑗 , 𝑖 ̸= 𝑗, 𝑦𝑖 = 𝑦𝑗 .

Hyper-parameter sweep We explore 𝜆emo ∈ {0.5, 1.0, 2.0, 2.5} and 𝜆sent ∈ {0.25, 0.5, 1.0}, crossed

with the four 𝑘 values, i.e. 4× 3× 4 = 48 QUBOs per heuristic.

Optimization Each pair (𝑘,𝜆) defines a QUBO instance, solved with Neal’s SA sampler (100 reads,

default settings). Panels are re-scored with the same metric bundle and the two best configurations per

heuristic are retained for Stage III.



2.3.3. Stage III — Quantum-ready Aggregation

Only the subsets generated by the K-Means Centroids and Emotional Conflict heuristics outperformed

all others in Stage II across all datasets, so we focus on those two for the quantum run. Both methods

generate datasets that exceed the variable budget of current QPUs, so each is compressed into 𝐶 = 150
super-nodes via 𝑘-means and reformulate the problem as a second QUBO optimized with both classical

Simulated Annealing (SA) and Quantum Annealing (QA). A super-node 𝒮𝑐 = ⟨z̄𝑐, 𝑦𝑐, 𝑔𝑐, 𝑠̄𝑐⟩ stores

centroid, majority class, mean emotional-contrast and mean sentiment-confidence.

To keep the search flexible, we run the QUBO in two versions: one gently caps the solution at roughly

half of the available super-nodes (cardinality-constrained), while the other drops that limit altogether

and lets the annealer decide for itself how many super-nodes are worth keeping.

QUBO without cardinality constraint Let 𝐶 = |{𝒮𝑐}| and x ∈ {0, 1}𝐶 . For super-nodes 𝑖, 𝑗 define

the class indicator 𝛿
(𝑦)
𝑖𝑗 = 1 if 𝑦𝑖 = 𝑦𝑗 and 0 otherwise, and the Euclidean distance 𝑑𝑖𝑗 = ‖z̄𝑖 − z̄𝑗‖2.

Following our implementation build_qubo_qclef_no_cardinality(), the unconstrained QUBO

reads

𝑄unc

𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑛𝑦𝑖

𝐶
+ 𝜆emo 𝑔𝑖 + 𝜆sent

(︀
1− |𝑠̄𝑖 − 0.5|

)︀
, 𝑖 = 𝑗,

𝑑𝑖𝑗 , 𝑖 ̸= 𝑗, 𝛿
(𝑦)
𝑖𝑗 = 0,

−𝑑𝑖𝑗 , 𝑖 ̸= 𝑗, 𝛿
(𝑦)
𝑖𝑗 = 1.

Here 𝑛𝑦𝑖 is the frequency of class 𝑦𝑖 in the panel; 𝜆emo and 𝜆sent ≥ 0 weight emotional contrast and

sentiment confidence, respectively.

QUBO with cardinality constraint [25] To steer the solution towards 𝑘 = ⌈𝐶/2⌉ selected super-

nodes we build a Binary Quadratic Model (BQM) from 𝑄unc
and add a combination penalty generated

with dimod.generators.combinations. Its strength is set automatically to the maximum energy

spread of the unconstrained BQM:

𝑄card

𝑖𝑗 = 𝑄unc

𝑖𝑗 + 𝛼
(︀
𝑘 −

∑︁
ℓ

𝑥ℓ
)︀2
, 𝛼 = bqm.maximum_energy_delta().

Optimization and evaluation Both QUBOs are solved independently with SA (same schedule as

Stage II) and QA (2 000 reads, default settings). The binary solutions are projected back to their original

sentences and rescored with the five-metric bundle.

3. Methodology —Task 3: Clustering

This section outlines the methodology employed for Task 3, which focuses on centroid selection aimed

at accelerating document retrieval over the ANTIQUE sentence-embedding corpus. We investigate four

complementary clustering pipelines, each designed to generate a small set of representative centroids

that preserve cluster quality and maximize downstream retrieval effectiveness.

Our hybrid, QA-driven k-medoids pipeline unfolds in three steps:

1. Pivot selection: we start from the 6 513 sentence embeddings provided with the Antique corpus;

this full set of 𝑁 ≈ 6500 vectors is filtered down to 𝑃 = 150 well-spread candidate pivots.

2. Annealing optimization : cast a QUBO on those 𝑃 pivots to identify the final 𝑘 medoids.

3. Global assignment: assign every document to its nearest medoids, producing the final 𝑘 clusters.



3.1. QUBO for the Reduced k-Medoids (Bauckhage’s Formulation)

Following the standard QUBO framework [15] and Bauckhage’s quadratic reduction [26], we embed

the 𝑃 pivots as rows of X ∈ R𝑃×𝑑
(ℓ2-normalized). Let 𝛿𝑖𝑗 = 1 − cos(x𝑖,x𝑗) and introduce binary

𝑦𝑗 ∈ {0, 1}, with 𝑦𝑗 = 1 if pivot 𝑗 is selected. The k-medoids objective becomes the pseudo-Boolean

function

𝛾
(︁∑︁

𝑗

𝑦𝑗 − 𝑘
)︁2

+
1

𝑘

∑︁
𝑖<𝑗

𝛿𝑖𝑗 𝑦𝑖 𝑦𝑗 ,

which expands to the QUBO

∑︁
𝑖≤𝑗

𝑄𝑖𝑗 𝑦𝑖 𝑦𝑗 + 𝛾𝑘2, 𝑄𝑖𝑗 =

⎧⎨⎩𝛾 − 𝛼
2 𝛿𝑖𝑗 , 𝑖 ̸= 𝑗,

𝛾 − 𝛼
2 𝛿𝑖𝑖 + 𝛽

∑︀𝑃
𝑢=1 𝛿𝑖𝑢 − 2𝛾𝑘, 𝑖 = 𝑗,

where we fix 𝛼 = 1/𝑘, 𝛽 = 1/𝑃 , and 𝛾 = 2𝑘, balancing dispersion, linear penalties, and enforcing∑︀
𝑖 𝑦𝑖 = 𝑘. The parameter 𝛾 acts as a Lagrange multiplier, which is crucial in balancing the minimization

of the objective function against the constraint that the number of selected medoids is equal to 𝑘. This

same parameter set is kept across all four methods (A–D) for both the exact-𝑃 reduction and the final

exact-𝑘 optimization. These values are chosen according to the guidelines provided by Bauckhage et al.

[26] to ensure a balanced contribution of the different terms in the objective function. The resulting

BinaryQuadraticModel is submitted to a D-Wave annealer (2 000 reads); the returned vector y*

flags the selected medoids.

This Bauckhage QUBO offers several practical advantages: by specifying only its upper-triangular

entries, the matrix is symmetric (𝑄𝑖𝑗 = 𝑄𝑗𝑖), simplifying minor embedding on quantum hardware; the

diagonal shift −2𝛾𝑘 cancels the linear-term bias from the squared cardinality penalty, avoiding skew

toward too many or too few pivots; the constant offset 𝐸0 maintains equivalence with the original

objective yet can be dropped after solving without affecting cluster assignments; and, since 𝛿𝑖𝑖 = 0 and

most off-diagonal 𝛿𝑖𝑗 are small, 𝑄 is naturally sparse, reducing the solver’s memory footprint.

3.2. Pivot-Selection Strategies

With the QUBO core fixed, we isolate the effect of classical preprocessing by testing four distinct

pivot-selection strategies that each deliver 𝑃 = 150 candidates.

Method A: qIIMAS strategy (SubMedoids). Following the technique introduced by team qIIMAS in

last year’s competition [27], each document is assigned a binary variable 𝑠𝑖 ∈ {0, 1} indicating whether

it remains a pivot. An “exact-𝑃 ” QUBO with cost matrix 𝑄′𝑖𝑗 = 𝛿𝑖𝑗/𝑃 forces the cardinality constraint∑︀
𝑖 𝑠𝑖 = 𝑃 while minimizing pairwise similarity within the chosen subset. Solving this model on the

same annealing backend used downstream yields a maximally diverse pivot set that captures even the

rarest semantic regions of the corpus. Any surplus indices are deterministically trimmed, whereas

deficits are filled with previously unused, randomly sampled documents to ensure |𝐼| = 𝑃 before the

quantum stage.

Method B: Farthest-Point Sampling (FPS). FPS adopts a simple yet powerful greedy rule: starting

from one random seed, it maintains each document’s distance to its nearest selected pivot (measured in

cosine distance) and repeatedly adds the document with the largest recorded distance until exactly 𝑃
pivots have been chosen [28]. Each iteration is a single pass over the corpus, yielding a cost of 𝒪(𝑁𝑃 )
time and 𝒪(𝑁) memory. The resulting pivots provide broad geometric coverage, so the subsequent

QUBO receives a well-spread candidate pool for the final k-medoids step.

Method C: MiniBatch-KMeans. Running MiniBatch-KMeans [29] with 𝑃 clusters, we pick as pivot

the document closest to each centroid 𝜇𝑝 in cosine distance. These representatives reflect data density,

furnishing the annealer with high-quality starting points at a per-epoch cost of 𝒪(𝑁𝑑).



Method D: CLARA–CLARANS hybrid. We combine two classic medoid heuristics in a single, two-

step routine. CLARA first draws several disjoint subsamples (each roughly 20 % of the corpus), applies

PAM to every subsample, and retains the 𝑃 medoids that minimise the within-subset distance. Building

on this provisional set, CLARANS performs up to twenty random medoid–non-medoid swaps, accepting

a swap only when it reduces the overall clustering cost [30]. The combination lets CLARA explore

diverse regions of the embedding space, while CLARANS fine-tunes the most promising configuration,

yielding a pivot set that achieves both broad coverage and strong internal cohesion.

Experimental workflow common to all methods (A–D)

For every pivot selector—qIIMAS strategy (A), FPS (B), MiniBatch-KMeans (C), and CLARA–CLARANS

(D)—and each target size 𝑘 ∈ {10, 25, 50}, we run the six-step pipeline below:

1. Initial set-up. Start with the full corpus of 𝑛 ℓ2-normalized sentence embeddings and fix 𝑘.

2. Coarse compression. Apply the chosen method to obtain 𝑚≪𝑛 coarse clusters; their centroids

define three candidate pivot budgets 𝑃 ∈ {100, 125, 150}. Validation retains 𝑃=150 for A and

𝑃=100 for B–D (seed = 42).

3. Fast QUBO sweep (100 SA reads). For every ⟨𝑘,method, 𝑃 ⟩ build the exact-𝑃 QUBO, solve it

once with 100 SA reads, and log validation Davies–Bouldin and nDCG@10.

4. Pivot-budget selection. Choose the 𝑃 that minimizes Davies–Bouldin (nDCG@10 breaks ties);

this reproduces the preferences in step 2.

5. Full Annealing run (2 000 reads). Rebuild the exact-𝑘 QUBO with the selected 𝑃 and solve it

with 2 000 reads on the designated annealer (SA or QA) to obtain the 𝑘 medoids.

6. Global assignment and metrics. Attach each of the 𝑛 embeddings to its nearest medoid, then

compute final Davies–Bouldin and mean nDCG@10.

4. Experiments

This section presents the experimental setup and results for evaluating our proposed approaches across

two main tasks: Task 2 (Instance Selection) and Task 3 (Clustering). We detail the evaluation scenarios,

including datasets, submission configurations, and whether Simulated Annealing (SA) or Quantum

Annealing (QA) was used. The results are reported as computed by the challenge organizers. Finally,

we provide a discussion analyzing the trade-offs between performance and efficiency achieved by our

methods compared to baselines and competing submissions.

4.1. Evaluation Scenarios

The evaluation was divided into two main scenarios corresponding to the official tasks defined in the

challenge. The selected tasks were: (i) Task 2: Instance Selection and (ii) Task 3: Clustering. Each

task involved the use of SA and QA approaches.

4.1.1. Task 2: Instance Selection

Task 2 focuses on selecting the most representative subsets of training data for fine-tuning a sentiment

classification model (Llama3.1), aiming to reduce computational cost while preserving effectiveness.

The evaluation considered both the macro 𝐹1 score and the reduction rate. We submitted several

configurations using both SA and QA methods on the Vader NYT and Yelp datasets. Table 2 summarizes

our submitted runs for Task 2, indicating which approaches were applied to each dataset using SA and

QA.



Table 2
Summary of submissions for Task 2: Instance Selection. Columns SA and QA stand for Simulated Annealing and
Quantum Annealing, respectively. *Incomplete submissions (< 5 folds) due to issues in the challenge’s execution
infrastructure.

Submission ID Vader Yelp
SA QA SA QA

LocalSets ✓ ✗ ✓ ✗
emoconflictCard ✗ ✗ ✓ ✓
SentimentKmeansCard ✗ ✗ ✓ ✓
SentimentPairs(docs=pair-related,reads=2000,limit=True) ✓ ✓* ✓ ✗
SentimentPairs(docs=just-final,reads=2000,limit=True) ✓ ✓* ✓ ✗

4.1.2. Task 3: Clustering

Task 3 involves clustering sentence embeddings to support efficient document retrieval and exploration.

Quality was evaluated both intrinsically with the Davies–Bouldin Index and extrinsically with nDCG@10

on test queries. We submitted clustering results on the large and small variants of the ANTIQUE dataset

using both SA and QA. Table 3 summarizes our submitted runs for Task 3, indicating which approaches

were applied to each dataset using SA and QA.

Table 3
Summary of submissions for Task 3: Clustering. Columns SA and QA stand for Simulated Annealing and
Quantum Annealing, respectively.

Submission ID 10 25 50
SA QA SA QA SA QA

FPS-Medoids ✓ ✗ ✓ ✗ ✓ ✗
SubMedoidsQUBO ✓ ✗ ✓ ✗ ✓ ✗
CLARA-CLARANS ✓ ✗ ✓ ✗ ✓ ✗
MBK-Medoids ✓ ✗ ✓ ✗ ✓ ✗

4.2. Results

Tables 4 and 5 present a summary of the results for Task 2, using the Vader and the Yelp datasets

respectively. They show the performance of our approaches—SentimentPairs (SP) and LocalSet for

both datasets, and Pre-Selection and Statistical Tuning submitted in the variants emoconflictCard
and SentimentKmeansCard only for the Yelp dataset—compared to the baseline and the top-performing

submission in terms of average macro 𝐹1 score. Results are averaged over five cross-validation folds,

where available. The Evaluation Time column combines fine-tuning and prediction time (in seconds),

while the Annealing Time refers to the total execution time for QA approaches, including programming,

sampling, and post-processing. Submissions marked with an asterisk (
*
) did not provide results for all

five folds due to issues in the challenge’s execution infrastructure, which were beyond the control of

both participants and organizers. The SentimentPairs (SP) variant was executed with reads=2000 and

limit=True.

Table 6 summarises the Task 3 outcomes on the ANTIQUE corpus obtained using only SA. For each

target panel size 𝑘 ∈ {10, 25, 50} we report the nDCG@10 and the Davies-Bouldin computed on the

entire dataset. The Annealing time column aggregates programming, sampling, and post-processing of

the SA search, executed with the default neal schedule (2000 reads, defaults settings).



Table 4
Summary of Task 2 - Vader dataset results (averaged over 5 folds). Types SA and QA stand for Simulated Annealing
and Quantum Annealing, respectively. *Incomplete submissions (< 5 folds) due to issues in the challenge’s
execution infrastructure. SentimentPairs (SP): reads=2000, limit=True.

Group SID Macro 𝐹1 Reduction Evaluation Time (s) Annealing Time (us) Type

BASELINE BASELINE_ALL 88.9(0.8) – 1997.3(5.7) – –
HIGHEST 𝐹1 Vader_SA_qclef_combined_075 65.9(4.7) 0.25 1529.4(3) 25299992 SA
GPLSI Vader_SA_gplsi_2-LocalSets 63.3(4.9) 0.505 1048.3(6.7) 29109748 SA
GPLSI Vader_SA_gplsi_2-SP(docs=pair-related) 62.2(4.1) 0.7 671.8(352.8) 42407652 SA
GPLSI Vader_QA_gplsi_2-SP(docs=pair-related) 62.1(1.8)* 0.658* 750.7(2653.2)* 545303* QA
GPLSI Vader_QA_gplsi_2-SP(docs=just-final) 50(64)* 0.835* 172.9(26.9)* 545303* QA
GPLSI Vader_SA_gplsi_2-SP(docs=just-final) 47.4(5.4) 0.962 172.8(5.7) 42407652 SA

Table 5
Summary of Task 2 - Yelp dataset results (averaged over 5 folds). Types SA and QA stand for Simulated Annealing
and Quantum Annealing, respectively. SentimentPairs (SP): reads=2000, limit=True.

Group SID Macro 𝐹1 Reduction Evaluation Time (s) Annealing Time (us) Type

HIGHEST 𝐹1 Yelp_SA_qclef_bcos_075 99.5(0.2) 0.25 1548.5(2.8) 25996916 SA
GPLSI Yelp_SA_gplsi_2-LocalSets 99.4(0.2) 0.512 1045.5(5.3) 28788950 SA
BASELINE BASELINE_ALL 99.4(0.1) – 2027.1(1.1) – –
GPLSI Yelp_SA_gplsi_2-SP(docs=pair-related) 99.2(0.3) 0.627 822.2(395) 35810108 SA
GPLSI Yelp_QA_gplsi_2-emoconflictCard 98.8(0.6) 0.702 678.8(80.9) 34024297 QA
GPLSI Yelp_QA_gplsi_2-SentimentKmeansCard 98.7(0.2) 0.869 351(25.1) 553306 QA
GPLSI Yelp_SA_gplsi_2-emoconflictCard 98.6(0.5) 0.728 628.2(65.9) 549364 SA
GPLSI Yelp_SA_gplsi_2-SentimentKmeansCard 98.5(1.1) 0.875 338.8(21) 17823652 SA
GPLSI Yelp_SA_gplsi_2-SP(docs=just-final) 90.8(5.7) 0.963 170.8(3.8) 35810108 SA

Table 6
Summary of Task 3 - ANTIQUE dataset results. Only Simulated Annealing (SA) results.

𝑘 Group Submission ID nDCG@10 DBI Anneal time (𝜇s) Type

10 BASELINE BASELINE_10 0.5509 7.9892 – –
10 GPLSI 10_SA_gplsi_3-FPS-Medoids 0.5783 7.5147 15374699 SA
10 GPLSI 10_SA_gplsi_3-SubMedoidsQUBO 0.5579 6.8779 15304643 SA
10 GPLSI 10_SA_gplsi_CLARA-CLARANS 0.5444 6.6710 15395337 SA
10 GPLSI 10_SA_gplsi_MBK-Medoids 0.5600 6.4258 15510116 SA
10 BEST 𝑛𝐷𝐶𝐺@10 10_SA_ds-at-gt-qclef_1 0.5800 7.4776 83073 SA
10 BEST 𝐷𝐵𝐼 10_SA_ds-at-gt-qclef_2 0.0172 4.4706 82843 SA

25 BASELINE BASELINE_25 0.5284 6.1201 – –
25 GPLSI 25_SA_gplsi_3-FPS-Medoids 0.5475 5.5577 20875484 SA
25 GPLSI 25_SA_gplsi_3-SubMedoidsQUBO 0.5298 5.6255 40686713 SA
25 GPLSI 25_SA_gplsi_CLARA-CLARANS 0.5310 5.6507 20531723 SA
25 GPLSI 25_SA_gplsi_MBK-Medoids 0.5193 5.3755 20757746 SA

50 BASELINE BASELINE_50 0.4656 5.3679 – –
50 GPLSI 50_SA_gplsi_3-FPS-Medoids 0.5592 4.4531 9869029 SA
50 GPLSI 50_SA_gplsi_3-SubMedoidsQUBO 0.5148 4.9325 23718874 SA
50 GPLSI 50_SA_gplsi_CLARA-CLARANS 0.5017 5.1703 9976090 SA
50 GPLSI 50_SA_gplsi_MBK-Medoids 0.5383 4.5025 24003792 SA
50 BEST 𝐷𝐵𝐼 10_SA_ds-at-gt-qclef_3 0.0064 3.4217 228376 SA

4.3. Discussion

This section discusses the main findings of our participation in the QuantumCLEF Lab, organized by

task. We analyze the results obtained in the instance selection task (Section 4.3.1) and the clustering

task (Section 4.3.2), highlighting the effectiveness of our proposed methods, their trade-offs, and their

relative performance compared to other participating systems and the baseline.

4.3.1. Task 2: Instance Selection

As shown in Table 4, our approaches—SentimentPairs (SP) and LocalSet—demonstrate effective

trade-offs between data reduction and performance. Compared to the baseline, which uses the full



dataset and achieves the highest macro 𝐹1, our best-performing approach enables a 50% reduction in

data, translating into nearly half the fine-tuning and prediction time, at the cost of a moderate decrease

in macro 𝐹1. When compared to the top competing system in terms of macro 𝐹1, our approach achieves

only 2.6% lower macro 𝐹1 on average while using half as much data, effectively doubling the reduction

rate (25%→ 50%).

Among our methods, the LocalSet approach yields the highest macro 𝐹1 (63.3) with an average data

reduction of 50%, striking a strong balance between efficiency and accuracy. Our SentimentPairs variants

that include pair-related documents trade only 1.1% of macro 𝐹1 for up to 70% data reduction. In contrast,

the strictest SentimentPairs configurations, which retain only the most relevant documents, reach

reduction rates of 83–95%, though at a more pronounced cost in performance (macro 𝐹1 drops from 62%

to 47%). These results highlight the flexibility of our methods in tailoring the reduction-performance

trade-off for different application needs.

The results in Table 5 also reveal a good balance between effectivity and reduction for our methods.

Our best-performing method on this dataset achieves a 50% reduction of the dataset without affecting

the macro 𝐹1 score with respect to the baseline. As compared to the top-performing submission in

terms of macro 𝐹1, our approach supposes only a 0.1% decrease of this metric, and doubles the dataset

reduction.

Our methods present varied and versatile solutions to the instance selection bi-objective problem using

the Yelp dataset. Our LocalSet approach achieves the highest macro 𝐹1 score (99.4) while halving the Yelp

dataset size. Our SentimentPairs variant including pair-related documents achieves a higher reduction

(62.7%), resulting in a decrease of the 59.4% of the fine-tuning and prediction time by compromising

only a 0.2% of the 𝐹1 score with respect to the baseline. The maximum evaluation time reduction (91.6%)

is achieved by our SentimentPairs variant including just-final documents, at the expense of decreasing

the 𝐹1 metric only an 8.6%. Finally, our two variants of the Pre-Selection and Statistical Tuning method

are at a middle ground between our methods achieving high performance (LocalSet and SP pair-related)

and high reduction (SP just-final). These variants have been executed using both SA and QA. The

emoconflictCard achieves slightly better results, with an average macro 𝐹1 score only 0.7% behind the

baseline and an average reduction of 71.5% of the dataset, resulting in an average reduction of 67.8% of

the fine-tuning and prediction time.

Overall, our results in Task 2 show that it is possible to substantially reduce the size of sentiment-

labeled datasets while maintaining competitive classification performance. Among our methods, the

LocalSet approach stands out for achieving the highest effectiveness across both datasets, consistently

delivering top macro 𝐹1 scores while halving the training data. This makes it particularly attractive for

scenarios requiring balanced trade-offs between performance and computational efficiency. The diversity

of our approaches—ranging from aggressive reduction strategies to more conservative selections—also

highlights the adaptability of quantum-inspired instance selection techniques to various application

needs and constraints.

4.3.2. Task 3: Clustering

As shown in Table 6, the SA runs submitted by our team outperform the official baseline for every

tested cluster size 𝑘 and in every evaluation metric. Compared to other submissions, ours match or

outperform them in all scenarios except when 𝑘 = 10, where the difference is negligible. For 𝑘 = 10,

our 3-FPS-Medoids configuration achieves an nDCG@10 of 0.578, a relative gain of 5% over the baseline

(0.551) and virtually the same effectiveness as the best performing submission regarding nDCG@10
(0.580). Additionally, all our variants reduce the Davies–Bouldin from 7.99 to at most 6.43; this

improvement comes at a computational cost of approximately 15 s (15 M 𝜇s) of annealing time versus

the 0.008 second runtime of other participant submissions. By increasing the cluster size to 𝑘 = 25,

our 3-FPS-Medoids approach remains in the lead with nDCG@10 = 0.547 (+4% over baseline), and our

remaining methods collectively reduce the DBI from 6.12 to 5.56, although their runtime increases to

20–40 s (20–40 M 𝜇s). The difference increases for 𝑘 = 50: our 3-FPS-Medoids method reaches 0.559

nDCG@10, corresponding to a gain of 20% over the baseline (0.466), and achieves the lowest DBI (4.45).



In contrast, the submission with the best DBI has a runtime of less than 0.3 s, but its nDCG@10 drops

dramatically to 0.006.

Overall, each one of our variant offers a superior effectiveness—cohesion profile relative to the

baseline, and the SA framework scales robustly with list length, unlike the faster but markedly less

stable that the other submissions approaches. Among our methods, 3-FPS-Medoids provides the best

trade-off between retrieval quality and cluster compactness; MBK-Medoids consistently yields the

tightest clusters; CLARA–CLARANS occupies a middle ground, delivering effectiveness and cohesion

above the baseline with the lowest runtime of our SA runs, making it attractive when computational

budget is limited; and SubMedoids-QUBO maintains solid effectiveness at the expense of the highest

computational cost.

It is important to note that, while the comparison with other submissions provides useful insights,

it may not be entirely conclusive due to a structural difference in how centroids were represented.

Three of our four submissions—SubMedoids-QUBO, CLARA–CLARANS, and MBK-Medoids—generate

centroids with lower dimensionality than the original embedding. This dimensionality reduction,

although beneficial for improving cluster compactness and interpretability, may have introduced a

disadvantage under the evaluation protocol, particularly affecting metrics like nDCG@10 that are

sensitive to representation format. As the evaluation setup did not anticipate lower-dimensional

centroids, the relative effectiveness of these methods should be interpreted with care.

5. Conclusions

This work presented our approaches and findings for the instance selection and clustering tasks defined

in the Quantum CLEF Lab. Our methods achieved competitive results in both scenarios, obtaining

top-ranked performance in multiple evaluations. In Task 2, our LocalSets-based strategy achieved

the highest effectiveness while maintaining a substantial reduction in training data. In Task 3, our

FPS-Medoids approach yielded the best clustering results in terms of nDCG@10. Overall, our results

demonstrate effective trade-offs between performance and reduction, showing that it is possible to

significantly reduce the amount of training data or clustering complexity without incurring major

performance losses.

Key contributions of this work include the following.

• We present three multi-paradigm approaches to the instance selection problem, each leveraging

complementary principles: (i) sentiment-aware document pairing, (ii) local similarity-based

criteria, and (iii) classical heuristic methods for data reduction.

• We propose a unified clustering framework specifically designed for quantum annealing, which

integrates four distinct pivot selection strategies to optimize centroid-based grouping in high-

dimensional embedding spaces.

Future Work. Future work will focus on addressing current limitations and exploring extensions

of our proposed methods. Due to infrastructure constraints during the challenge, quantum annealing

could not be fully leveraged across all configurations; future experiments will aim to complete the

evaluation of QA-based approaches. In Task 2, our SentimentPairs and LocalSets methods relied solely

on precomputed embeddings, omitting potentially informative textual features such as readability or

syntactic structure. Preliminary results from other configurations suggest that integrating custom

embeddings or textual signals may enhance performance. Additionally, solving Task 2 involved tackling

several clustering-related subproblems. Some of the techniques developed, such as LocalSets, could be

adapted for Task 3. However, this would require automatically labeling the unlabeled documents in

Task 3 to enable the application of supervised or semi-supervised strategies.
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