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Abstract
In this work, we tackle the feature selection problem for content-based recommender systems using Quadratic
Unconstrained Binary Optimization (QUBO). Our approach, submitted as Team MALTO to the QuantumCLEF
2025 challenge, aims to improve the performance of an Item-Based K-Nearest Neighbors (Item-KNN) model by
selecting a compact and informative subset of item features. We formulate a QUBO objective that combines feature
relevance – estimated via Random Forest (RF) importance scores – and feature redundancy – captured through
pairwise Pearson correlations. We compare our method against a collaborative-driven QUBO baseline and a
random selection strategy. Experiments on the official QuantumCLEF dataset demonstrate that our relevance-
aware strategy outperforms the other methods regarding recommendation quality, especially in low-dimensional
feature regimes. Our results highlight the potential of combining machine learning and quantum optimization
for effective feature selection in recommender systems.
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1. Introduction

Recommender systems help users discover relevant information in many domains. These include
e-commerce, video and music streaming, and digital libraries [1, 2, 3, 4]. A widely adopted class of
recommendation models is called neighborhood-based collaborative filtering [5, 6]. These models generate
personalized rankings by analyzing similarities between items. One popular method in this category is
the Item-Based k-Nearest Neighbors (Item-KNN) algorithm [7]. Item-KNN is valued for being easy to
understand, scalable to large datasets, and effective even when user interactions are sparse.

A key factor that affects the performance of these models is the choice of item features, which are
often stored in what is known as an Item Content Matrix (ICM). In real-world applications, ICMs may
contain hundreds of different content descriptors [8]. However, not all features in the ICM contribute
equally to meaningful item similarity. Some features may be irrelevant, redundant, or noisy.

Using such features can reduce recommendation quality. They can also make similarity computations
more expensive. Therefore, selecting the right subset of features becomes a critical task. This process is
known as feature selection [9, 10, 11]. In this work, we present a feature selection approach based on
Quadratic Unconstrained Binary Optimization (QUBO) [12]. We aim to choose a subset of features that
improves the performance of the Item-KNN model. QUBO is a powerful mathematical framework for
solving combinatorial optimization problems. It allows us to model both the importance of individual
features and the redundancy between pairs of features.

This paper is the official submission of Team MALTO (Machine Learning @ PoliTO) to the Quan-
tumCLEF 2025 challenge [13, 14], which focuses on Feature Selection for Recommendation Systems. We
study feature selection in the context of content-based item-KNN. We are given a User Rating Matrix
(URM) and two versions of ICMs, one with 100 features and another with 400. Our goal is to select a
subset of features that leads to better recommendation quality.
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To achieve this, we use a supervised learning model to estimate the relevance of each feature. We
then encode these relevance scores into a QUBO matrix. We also include feature redundancy terms in
the QUBO, based on pairwise feature correlations. The result is a QUBO problem with a cardinality
constraint that limits the number of selected features.

This QUBO-based formulation can be tackled using different optimization strategies. Simulated
Annealing [15] is a classical metaheuristic commonly employed for solving combinatorial problems. In
contrast, Quantum Annealing [16] is a quantum-inspired method that exploits quantum tunneling to
escape local minima and potentially navigate the solution space more efficiently. These solvers can be
compared in terms of the selected features’ quality and the search’s computational efficiency, offering
insights into the relative advantages of classical and quantum approaches to QUBO optimization.

The rest of this paper is organized as follows. Section 2 reviews related work and provides context
for the problem. Section 3 presents our proposed methodology in detail. Section 4 describes the
experimental setup used in our study, while Section 5 reports and discusses the results. Finally, Section 6
concludes the paper by summarizing the proposed approach and its performance.

2. Related Works

QUBO Formulation. The Quadratic Unconstrained Binary Optimization [12] is a general mathemat-
ical formulation for combinatorial optimization problems where the goal is to minimize a quadratic
polynomial over binary variables:

min
𝑥∈{0,1}𝑛

𝑥𝑇𝑄𝑥, (1)

Where 𝑄 ∈ R𝑛×𝑛 is a symmetric matrix, and 𝑥 is a binary vector representing the inclusion or exclusion
of elements – in our case, features. QUBO formulations are particularly well-suited for feature selection,
as they allow the expression of both feature relevance (via linear terms 𝑄𝑖𝑖) and feature redundancy (via
quadratic terms 𝑄𝑖𝑗 for 𝑖 ̸= 𝑗). Relevance can be derived from importance weights computed through a
predictive model, while redundancy is often modeled using pairwise correlations or mutual information
between features. To guide the selection of a fixed number 𝑘 of features, it is possible to incorporate a
cardinality constraint [17]. Since QUBO does not support hard constraints directly, we encode this as a
penalty term added to the objective:

min
x∈{0,1}𝑛

x𝑇𝑄x+ 𝜆

(︃
𝑛∑︁

𝑖=1

𝑥𝑖 − 𝑘

)︃2

, (2)

Where 𝜆 > 0 is a hyperparameter controlling the trade-off between optimizing the QUBO objective
and enforcing the selection of exactly 𝑘 features. This penalty is minimized when the sum of selected
features is exactly 𝑘, effectively turning the constraint into a soft requirement.

Due to QUBO’s expressive power, a growing body of work has explored solving such formulations
using classical heuristics (e.g., simulated annealing, tabu search) and quantum methods (e.g., quantum
annealing). In particular, quantum annealers such as those developed by D-Wave Systems have shown
promise in exploring complex energy landscapes efficiently, offering a potentially more effective
alternative to classical solvers for specific NP-hard problems.

Feature Selection in Recommender Systems. Feature selection has long been studied to improve
the accuracy and efficiency of machine learning models. In recommender systems, especially those
incorporating item content, selecting a compact and informative subset of features can reduce overfitting,
improve model interpretability, and decrease computational costs. Payares et al. [18] proposed a
quantum annealing-based approach to feature selection for Information Retrieval, applying it to the
QuantumCLEF 2024 challenge [19]. They explored multiple QUBO formulations, including mutual
information, conditional mutual information, and correlation coefficients, and compared quantum,
hybrid, and simulated annealing solvers. Almeida and Matos [20] proposed a hyperparameter-free



QUBO formulation for feature selection in learning-to-rank models. Their method balances relevance
and redundancy without requiring manual tuning and demonstrates competitive results on the MQ2007
[21] and ISTELLA [22] datasets. Niu et al. [23] introduced a QUBO-based feature selection framework
that integrates Counterfactual Analysis to enhance the effectiveness of item-based recommendation
models. Unlike traditional Mutual Information-based approaches, their method explicitly incorporates
the impact of each feature on the model’s performance, leading to a more goal-aligned optimization.
Nembrini et al. [24] proposed a collaborative-driven feature selection method that aligns content-based
similarity with a pre-trained collaborative model. Their approach selects item features by comparing the
similarity structure derived from user interactions with that derived from content metadata. Features
that produce misleading or unsupported similarities are penalized, and the final feature selection is
formulated as a QUBO problem and solved using quantum annealing. Our work builds on this line of
research by formulating feature selection for an item-kNN model as a QUBO problem and comparing
the results obtained via simulated annealing and quantum annealing.

3. Methodology

We approach the feature selection problem by formulating it as a QUBO task. We assume we are given
a tabular dataset that includes 𝑑 features; each feature related to the user for which items should be
recommended. Our goal is to select a subset of 𝑑′ ≤ 𝑑 features that are most useful for the task of
building a recommender system. We express this selection problem as a minimization problem, defined
in Equation 2. Each feature is associated with a binary variable 𝑥𝑖. If 𝑥𝑖 = 1, the 𝑖-th feature is selected.
If 𝑥𝑖 = 0, the feature is not selected.

The QUBO objective function is defined by a matrix 𝑄, which contains both diagonal and off-diagonal
terms. The diagonal entry 𝑄𝑖𝑖 represents the cost or penalty of selecting feature 𝑖. The off-diagonal
entry 𝑄𝑖𝑗 represents the penalty for selecting both features 𝑖 and 𝑗 together.

In this work, we adopt the same general structure as the one proposed by Mücke et al. [17]. We treat
feature selection as a trade-off between relevance and redundancy. Specifically, the diagonal values in
𝑄 are set to the negative importance scores of the features. This means that selecting more important
features will lower the overall objective function. The off-diagonal values in 𝑄 are used to encode
redundancy between pairs of features. If two features are highly redundant, selecting both will increase
the objective value. In [17], feature importance is measured using mutual information between each
feature and the target. Redundancy is measured as the mutual information between pairs of features.

While the target is clear for a classification or regression problem, the goal is not as clearly defined
for recommender systems. As such, our approach uses a different way to quantify both importance
and redundancy. We estimate the relevance of features using the importance scoring mechanism of
a Random Forest [25] model. This allows us to capture complex, non-linear dependencies between
features and the target. For redundancy, we compute the Pearson correlation between each pair of
features. This gives a simple but effective way to penalize the selection of highly correlated features. By
combining these components into a QUBO matrix, we aim to select a compact and informative set of
features. This set should balance high predictive value with low redundancy.

The rest of the section details (i) how the features are defined for each user, (ii) how the feature
importance is computed, (iii) how the redundancy of features is estimated, and (iv) how these quantities
are framed, along with constraints, as a QUBO problem.

User feature extraction In this recommendation problem, we consider a setting with 𝑛 users and
𝑚 items, where each item is described by 𝑑 features. Two main sources of information are available.
The first one is the binary User-Rating Matrix 𝑈 ∈ {0, 1}𝑛×𝑚, where 𝑈𝑖𝑗 = 1 if user 𝑖 rated item 𝑗, 0
otherwise. The second one is the Item Content Metrics matrix 𝐶 ∈ R𝑚×𝑑, which represents each item
through a set of 𝑑 descriptive features..

We aim to represent each user with a set of features. Given the available information, we produce a
representation of each user as the sum of the representations of the items that the user rated. We can



efficiently compute this new representation of users as 𝑈𝑐 = 𝑈𝐶⊺.

Feature importance Random Forests [25] are ensemble learning methods widely employed for
supervised tasks such as classification and regression. An RF aggregates the predictions of multiple
Decision Trees, each trained on a bootstrap dataset sample and using a random subset of features at
each split. This randomness introduces model diversity and improves generalization, making RFs more
robust to overfitting than individual trees. Beyond their predictive performance, Decision Trees offer
interpretability, as each path from root to leaf corresponds to a sequence of feature-based decisions. A
key advantage of both DTs and RFs is the ability to quantify feature importance – a measure of each
feature’s contribution to the model’s predictive performance.

In RFs, feature importance is typically computed by summing the reductions in impurity that a feature
contributes across all the splits in all trees of the forest. When a feature is used to split a node, the
reduction in impurity (e.g., measured via Gini impurity or entropy) is evaluated as the difference between
the parent node’s impurity and the weighted sum of the child nodes’ impurities. These reductions are
accumulated across all trees, yielding a score for each feature. Higher scores indicate greater relevance.

In this work, we use the RF-derived feature importance scores to define the diagonal terms of the
QUBO matrix. Specifically, if the importance of feature 𝑖 is denoted by 𝑓𝑖, we set 𝑄𝑖𝑖 = −𝛼 · 𝑓𝑖, where
𝛼 is a scaling factor that balances the trade-off between relevance and redundancy. The negative sign
reflects the minimization objective of the QUBO formulation. As RF importance is normalized to sum
to 1, we note that 0 ≤ 𝑓𝑖 ≤ 1 for all 𝑖.

Unlike typical supervised learning tasks, our recommendation setting does not have a single target
to predict. Instead, we are interested in estimating the likelihood of each user interacting with different
items. We frame the task as a multi-output classification problem to compute feature importance in
this context. For each user, the model predicts whether they would interact with a selection of items.
RFs naturally handle this setting by building separate trees for each item. We restrict the predictions
to a random subset of 100 items to keep computation efficient. Empirically, we observed that this
approximation does not significantly affect the quality of the resulting feature importance scores.

Redundancy quantification To estimate redundancy between pairs of features, we compute the
Pearson correlation coefficient between their corresponding user-level representations. This metric
captures the degree of linear association between two features, whether positive or negative. In our
formulation, we consider any strong correlation (including negative ones) as a form of redundancy. For
this reason, since we are interested in the magnitude of the correlation, we use the absolute value of
the correlation as the redundancy term, setting 𝑄𝑖𝑗 = |𝑟𝑖𝑗 |. This ensures that positive and negative
correlations contribute equally to the redundancy penalty.

QUBOproblem framing We define the QUBO matrix 𝑄 by combining the relevance and redundancy
components described in the previous sections. Each diagonal element 𝑄𝑖𝑖 captures the relevance
of feature 𝑖 and is set to 𝑄𝑖𝑖 = −𝛼𝑓𝑖, where 𝑓𝑖 is the feature importance score computed via RF
and 𝛼 is a scaling parameter that controls the trade-off between relevance and redundancy. The off-
diagonal elements 𝑄𝑖𝑗 for 𝑖 ̸= 𝑗 encode redundancy between features and are defined as 𝑄𝑖𝑗 = |𝑟𝑖𝑗 |,
where 𝑟𝑖𝑗 is the Pearson correlation between the user-level representations of features 𝑖 and 𝑗. The
relevance/redundancy trade-off is controlled by the parameter 𝛼, which is tuned through validation.

4. Experimental Setup

This section describes the experimental setup used to evaluate our QUBO-based feature selection
strategy. We detail the dataset used, the methods compared, and the evaluation procedure.



4.1. Dataset

We conduct our experiments on the benchmark dataset provided by the QuantumCLEF 2025 challenge,
designed for evaluating feature selection strategies in recommender systems. The dataset includes:

• A User-Rating Matrix (U), representing implicit feedback where 𝑈𝑖𝑗 = 1 indicates that user 𝑖
interacted with item 𝑗, and 0 otherwise.

• Two Item Content Matrices (C): one with 100 features and one with 400 features, representing
item-level descriptors such as genres, tags, or metadata.

We generate a feature representation for each user by aggregating the features of the items they
interacted with, effectively computing 𝑈𝑐 = 𝑈 𝐶⊺.

4.2. Methods

We compare three feature selection strategies, each implemented as a QUBO optimization problem:

• Random: A naive baseline where 𝑘 features are randomly selected without any optimization.
• Baseline: As a baseline, we implement the method proposed by Nembrini et al. [24], which formu-

lates feature selection as a QUBO problem to align content-based similarities with a collaborative
model.

• RF-QUBO (ours): Our method encodes feature relevance using importance scores extracted
from the RF classifier and feature redundancy using Pearson correlation. The QUBO matrix 𝑄
combines both components with a soft penalty enforcing the selection of exactly 𝑘 features.

Each QUBO problem can be solved using two solvers:

• Simulated Annealing (SA): A probabilistic metaheuristic inspired by the physical annealing
process, applied to solve the QUBO minimization problem.

• Quantum Annealing (QA): A quantum optimization technique that solves QUBO problems
by evolving a quantum system toward its ground state. Unlike classical methods, QA leverages
quantum tunneling to escape local minima, potentially offering advantages in exploring complex
energy landscapes.

Hyperparameters 𝛼 (relevance-redundancy trade-off) and 𝜆 (cardinality penalty) are tuned via grid
search on the validation set. We set 𝛼 = 3 and 𝜆 = 0.01 in the final configuration. The number of
selected features 𝑘 ranges from 1 to 90 (in the 100-feature scenario) and up to 390 (in the 400-feature
scenario).

4.3. Evaluation

The selected features are used to build an Item-KNN recommender, where item-item similarity is
computed using cosine similarity on the reduced ICM. The number of nearest neighbors is fixed to 100,
and a shrinkage factor of 5 is applied. We use nDCG@10 (normalized Discounted Cumulative Gain
at rank 10) as the primary performance metric, which measures recommended items’ relevance and
ranking position in the top-10 list. This is the same evaluation metric adopted by the QuantumCLEF
2025 challenge, ensuring consistency with the official ranking criteria. All feature selection methods are
evaluated under identical experimental conditions to ensure fairness. Specifically, each method is applied
to the same dataset split, and the corresponding reduced ICM is used to generate recommendations. To
assess the variability of results, each experiment is repeated 3 times, and the reported values reflect
the average performance and variability (standard deviation) across runs. In addition to performance
metrics, we track the number of effective features selected after QUBO optimization. This is compared
against the feature budget constraint imposed during optimization to assess the degree of compliance
or deviation.
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Figure 1: nDCG@10 performance of the different feature selection strategies as a function of the number of
features enforced by the QUBO constraint on the 100 features scenario.
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Figure 2: nDCG@10 performance of the different feature selection strategies as a function of the number of
features enforced by the QUBO constraint on the 400 features scenario.

5. Results

In this section, we compare the performance of the proposed RF-QUBO method against the Random
and Baseline [24] strategies, using the Simulated Annealing solver. Although Quantum Annealing was
part of our intended evaluation, it could not be executed due to technical issues encountered during
the QuantumCLEF 2025 challenge. Nonetheless, prior studies suggest that QA typically yields results
comparable to SA, often with significantly reduced execution time [23, 20, 18]. We report results for
both the 100-feature and 400-feature scenarios from the QuantumCLEF 2025 dataset.

Figure 1 shows the nDCG@10 achieved by the three methods in the 100-feature setting as the number
of selected features increases, as expected. However, the RF-QUBO method consistently outperforms
both the random and the Baseline, particularly in the low-dimensional regime (up to 1-40 features).
These results show that including feature relevance information in the QUBO formulation helps the
model make better recommendations, especially when only a small number of features can be selected.
In other words, choosing truly informative features – rather than just any set of features – makes a
clear difference in performance. As expected, the advantage becomes smaller as the number of selected
features increases. This is because when most features are included, even random or less-informed
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Figure 3: Comparison between the number of features specified as a constraint and the number of features
selected after QUBO optimization on the 100 (left) and 400 (right) features scenario. The dotted “Ideal” line
indicates perfect compliance with the constraint.

selections start to resemble the complete feature set, and all methods tend to achieve similar results.
Figure 2 presents the results for the 400-feature version of the dataset. While the overall trends

are consistent with those observed in the 100-feature setting, the performance gains achieved by the
RF-QUBO method are less pronounced in the lower-dimensional case. In particular, the margin of
improvement over the Baseline and random strategies is narrower when the number of available
features is limited. Nonetheless, the RF-QUBO method remains the best-performing approach across
most constraint levels, confirming its robustness and effectiveness in identifying relevant features even
under different dimensional settings.

Figure 3 shows the effective number of features selected by each method compared to the number
specified in the constraint. As expected, slight deviations are observed because the QUBO objective
includes a soft penalty term rather than a hard constraint. In both cases, we observe that RF-QUBO
tends to select a larger number of features when the number of features in the constraint is low. This
occurs because the penalty for the soft constraint is low enough that it allows for small deviations from
the requested value. If the requested number of features is a strict constraint, the penalty term 𝜆 can
be increased: indeed, we observe perfect agreement when this value is large enough (at the cost of a
lower quality of the resulting nDCG). Potentially, an additional post-processing step could be adopted
to strictly enforce the constraint. For instance, a subset of features could be discarded when the number
of selected features exceeds the number of allowed ones.

Overall, these results demonstrate that our RF-QUBO approach offers a reliable and effective strategy
for feature selection in content-based recommender systems. We additionally report the official results
obtained during the challenge, in Table 1. First, we note, in general, a drop in performance w.r.t. the
results we obtained locally. We expect this to be the case due to a different (potentially more complex)
test set being used – though this step was opaque to the participants.

The other aspect standing out is the fact that the solution using all features outperforms our approach.
While not explicitly discussed in previous results, this was to be expected, given the (approximately)
monotone trends in performance, as a function of the number of selected features (not only for RF-
QUBO, but also for the other baselines). This implies that a richer representation appears to produce
better recommendations. However, we argue that the usefulness of feature selection still holds: many
scenarios (e.g., low-resource settings) can only process a limited number of features; in other cases, the
curse of dimensionality [26] prevents large numbers of features from being used.



N. features Method N. selected nDCG@10

100
RF-QUBO 51 0.0207
All features 100 0.0226

400
RF-QUBO 53 0.0182
RF-QUBO 200 0.0294
All features 400 0.0328

Table 1
Comparison in terms of nDCG@10 for RF-QUBO and the solution that applies no feature selection.

6. Conclusion

We presented a feature selection method for content-based recommender systems, formulated as a
Quadratic Unconstrained Binary Optimization problem. The approach incorporates feature relevance,
which is derived from RF importance scores, and feature redundancy, which is measured through
Pearson correlation, within a unique optimization framework.

The method was evaluated on the official QuantumCLEF 2025 dataset across two feature dimensional-
ities (100 and 400 features). Results show that the proposed RF-QUBO strategy consistently outperforms
both random and Baseline approaches, especially under tight feature selection constraints. Despite
not outperforming the baseline that uses all features, we argue that many scenarios can benefit from
reducing the number of features (e.g., to reduce the computational cost).
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