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Abstract
This paper presents the SINAI team’s approach to Task 1 (Feature Selection) at QuantumCLEF 2025, focusing on
the use of quantum annealing with D-Wave hardware to tackle feature selection for learning-to-rank models.
We formulate the feature selection problem as a Quadratic Unconstrained Binary Optimization problem based
on mutual information to balance feature relevance and redundancy. Candidate feature subsets are generated
by the quantum annealer and then post-processed through normalization and energy projection strategies
to obtain robust feature rankings. Evaluation on the MQ2007 LETOR dataset demonstrates the potential of
quantum computing to support effective feature selection in information retrieval tasks, despite current hardware
limitations. Our results highlight promising directions for integrating quantum optimization in practical machine
learning workflows.
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1. Introduction

The emergence of Quantum Computing (QC) represents a significant shift in computational science,
offering the potential to solve complex problems more efficiently by leveraging quantum-mechanical
principles such as superposition and entanglement. Unlike classical systems based on binary bits, QC
utilizes quantum bits (qubits) to explore vastly larger solution spaces, opening new opportunities for
fields like Information Retrieval (IR) and Recommender Systems (RS). While QC is still constrained by
hardware limitations, recent advances have made quantum devices increasingly accessible, enabling
researchers to begin exploring practical applications.

To support this exploration, the QuantumCLEF lab, part of the CLEF conference series, investigates
the applicability of quantum algorithms to IR and RS challenges. The lab focuses on Quantum Annealing
(QA)—a quantum optimization method—and provides participants with access to D-Wave’s quantum
hardware [1], along with tools for developing and testing quantum solutions.

In QuantumCLEF 2025 [2, 3], participants address three core problems in the information access
domain: Feature Selection, Instance Selection, and Clustering. Our team, SINAI, took part in Task 1:
Feature Selection, which aims to identify the most relevant subset of features for training learning-to-
rank models. This task is essential for improving model efficiency and performance by reducing input
dimensionality.

Our approach focused on framing the feature selection problem as a Quadratic Unconstrained Binary
Optimization (QUBO) problem, suitable for quantum annealers. We employed a mutual information-
based formulation to balance feature relevance and redundancy, and used D-Wave’s quantum hardware
to generate candidate solutions. We also developed a suite of post-processing techniques to aggregate
these solutions into stable feature rankings, which were then evaluated using LambdaMART models on
benchmark datasets.
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The remainder of this paper is organized as follows: Section 2, Methodology, describes our QUBO
formulation and post-processing strategies. Section 3, Results, presents our experimental evaluation.
Section 4, Conclusions, summarizes our contributions and outlines directions for future work.

2. Methodology

2.1. Task Description and Dataset

The main objective of this task is to select the most relevant features from the MQ2007 dataset, which
belongs to the LETOR 4.0 collection [4], in order to train a model based on LambdaMART [5] and
achieve the best possible performance in document ranking.

The MQ2007 dataset originates from the LETOR (LEarning TO Rank) benchmark, developed by
Microsoft Research Asia, and is specifically designed for learning-to-rank tasks. MQ2007 uses documents
from the Gov2 web collection, which comprises approximately 25 million pages, and queries derived
from the Million Query track (TREC 2007) [6]. The dataset contains around 1700 queries, each associated
with documents labeled with different levels of relevance.

Each data instance corresponds to a query-document pair, characterized by 46 features that include
classical IR and NLP measures such as TF-IDF, BM25, language models (LMIR), PageRank, document
length, and URL structure. The dataset is preprocessed and normalized at the query level (QueryLevel-
Norm version), which allows for its direct use in machine learning models.

2.2. Formulation of the QUBO Matrix

Quadratic Unconstrained Binary Optimization (QUBO) is a mathematical framework used to express a
wide range of combinatorial optimization problems [7] [8] [9]. In its standard form, the goal is to find a
binary vector 𝑥 that minimizes a quadratic function defined by a matrix 𝑄:

min𝑥𝑇𝑄𝑥 (1)

where:

• 𝑥 ∈ {0, 1}𝑛 is a binary vector of size 𝑛,
• 𝑄 ∈ R𝑛×𝑛 is a symmetric matrix of coefficients that encodes the interactions between variables.

This formulation enables the modeling of problems involving selection, assignment, or combination. It
is especially suitable for solution via metaheuristic algorithms or specialized hardware such as quantum
computing systems. To incorporate constraints (e.g., a maximum number of selected elements), penalty
terms are added to the objective function.

In this work, we implemented a formulation based on Mutual Information, called MIQUBO, as
provided in the baseline for the feature selection problem. This formulation reflects both the relevance
and redundancy between pairs of features [10].

The diagonal terms 𝑄𝑖𝑖 encode the individual relevance of each feature 𝑋𝑖 with respect to the target
variable 𝑌 :

𝑄𝑖𝑖 = −𝐼(𝑋𝑖;𝑌 ) = −(𝐻(𝑋𝑖)−𝐻(𝑋𝑖 | 𝑌 )) (2)

Here, 𝐻(·) denotes the entropy of a variable, and 𝐻(· | ·) is the conditional entropy.
The off-diagonal terms 𝑄𝑖𝑗 represent the redundancy between pairs of features, penalizing the joint

selection of two variables that provide similar information. These are defined using conditional mutual
information:

𝑄𝑖𝑗 = −𝐼(𝑋𝑖;𝑌 | 𝑋𝑗) = −(𝐻(𝑋𝑖 | 𝑋𝑗)−𝐻(𝑋𝑖 | 𝑋𝑗 , 𝑌 )) (3)

The negative sign is a necessary adaptation for the matrix to be used in quantum hardware, aiming
to minimize energy.



To impose a constraint on the total number of selected features (e.g., selecting exactly 𝑘), a quadratic
penalty term is incorporated: (︃∑︁

𝑖

𝑥𝑖 − 𝑘

)︃2

(4)

Thus, the complete MIQUBO objective function is defined as:

min
∑︁
𝑖

𝑄𝑖𝑖𝑥𝑖 +
∑︁
𝑖<𝑗

𝑄𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜆

(︃∑︁
𝑖

𝑥𝑖 − 𝑘

)︃2

(5)

Here, 𝜆 is a regularization hyperparameter that controls the strength of the penalty for selecting
more or fewer than 𝑘 features, which typically takes high values.

2.3. Post-processing Based Approach

Once the problem was defined and the QUBO matrix was built based on mutual information and
conditional mutual information, our approach focused on the postprocessing of the solutions provided
by the quantum hardware.

The quantum hardware used, via the D-Wave library, returns a set of candidate solutions, each
accompanied by its corresponding energy value, which is determined by the objective function the
system aims to minimize. The number of solutions returned is controlled by a parameter called the
number of reads. For example, if this is set to 100, the quantum system will return 100 solutions, each
with its associated energy.

Our approach is to leverage this diversity of solutions to build a more robust and stable ranking
of features, taking into account both the frequency with which each feature appears in the selected
solutions and the energy associated with those solutions.

To analyze the behavior of the quantum system for different subset sizes of selected features, the
program was executed for a selected range of 𝑘 values, rather than uniformly across all possible values.
These values were chosen strategically to explore the solution space broadly in an initial phase, with the
objective of identifying regions that showed promising performance. Based on this preliminary analysis,
subsequent executions focused on narrower intervals to refine the search around the most favorable
configurations. Each solution set obtained corresponds to a partial feature selection for a specific value
of 𝑘, and these were later used to build a global ranking that reflects the overall importance of each
feature across the explored configurations.

To guide the selection of the optimal value of 𝑘, the minimum energy obtained in each of the runs
was recorded and analyzed. These values form a discrete energy profile across the range of 𝑘. By
interpolating or fitting a smooth curve to these minimum energy values, it becomes possible to identify
trends and locate the global minimum more precisely. The value of 𝑘 corresponding to this global
minimum is then selected as the most suitable number of features to retain.

To achieve this aggregation, two postprocessing strategies were designed and implemented, aiming to
transform energy values into normalized or projected importance scores that enable consistent feature
ranking.

Below are the two implemented strategies:

2.3.1. Direct normalization

In this strategy, the energy values returned by the quantum system were linearly normalized to the
interval [0, 1]. To do this, the minimum and maximum energy values among all solutions obtained
across the 45 runs were identified, and the following transformation was applied:

𝐸norm =
𝐸 − 𝐸min

𝐸max − 𝐸min
(6)



where 𝐸 is the energy of an individual solution.
Then, for each feature, the normalized energy values of the solutions in which it appears were

summed and divided by the number of times the feature occurred, resulting in its average normalized
energy score. Once all feature scores were obtained, a final normalization to the [0, 1] range was applied
to these average scores. Finally, the features were ranked in ascending order of normalized average
energy, based on the assumption that lower energy implies higher relevance.

2.3.2. Signed energy projection

In this approach, a differentiated projection was applied based on the sign of the energy:

• Negative energy values were projected linearly to the interval [−1, 0].
• Positive energy values were projected to the interval [0, 1].

Let 𝐸 be the energy value of a solution, and let 𝐸min and 𝐸max be the minimum negative energy
and maximum positive energy observed, respectively. The projected energy 𝐸′ was computed as:

𝐸𝑛𝑜𝑟𝑚 =

⎧⎪⎨⎪⎩
𝐸 − 𝐸min

𝐸min
, if 𝐸 < 0

𝐸

𝐸max
, if 𝐸 ≥ 0

(7)

For each feature, the projected energy values of all the solutions in which it appears were summed
and divided by the number of occurrences of that feature, resulting in its average projected energy
score. This score was then linearly normalized to the range [−1, 1], preserving the distinction between
favorable (low-energy) and unfavorable (high-energy) contributions. Features were subsequently ranked
in ascending order of their normalized scores, under the assumption that lower values indicate higher
relevance.

2.4. Evaluation

The quality of the selected features will be evaluated by training a LambdaMART model and testing its
performance on a held-out test set. The evaluation metric will be the normalized Discounted Cumulative
Gain at rank 10 (nDCG@10), defined as:

nDCG@k =
DCG@k
IDCG@k

(8)

where DCG@k is the discounted cumulative gain at position 𝑘, and IDCG@k is the ideal discounted
cumulative gain at position 𝑘, which represents the maximum possible DCG@k value [11].

3. Results

The generation of solutions was carried out using quantum computing techniques based on the quantum
annealing paradigm. However, the process was constrained by technical limitations due to restricted
access to the quantum hardware. These restrictions prevented us from exploring all the predefined
possibilities; nonetheless, we present the analysis of our execution strategy.

Several executions were performed, each consisting of 100 reads, yielding 100 candidate solutions
per run. The parameter of interest in this experiment was the number of selected features, denoted as
𝐾 , which was varied in increments of 5 units, from 𝐾 = 5 to 𝐾 = 45. For each 𝐾 , the energies of the
100 obtained solutions were collected.



Figure 1: Quadratic fit of the minimum energy as a function of the parameter 𝑘. The energy values corresponding
to different 𝑘 values from 5 to 45 (increments of 5) were processed. For each 𝑘, the minimum observed energy
was calculated. Then, a second-degree polynomial (quadratic) fit was performed on these minimum values to
model the trend. The graph shows the minimum observed energy points (in black) and the fitted curve (in dark
green).

Figure 2: Normalized mean energy per feature, obtained from an initial energy metric normalized to the range
[0, 1]. The original energy values were individually normalized and then aggregated per feature by averaging
over all subsets where the feature appears. A final normalization was applied to the averages to rescale them
again between 0 and 1. The features are numerically ordered according to their index. The bar colors correspond
to a blue scale indicating the magnitude of the normalized energy, with darker blue representing higher values.



Figure 3: Distribution of normalized energy [−1, 1] associated with each feature, sorted from lowest to highest.
The energy was initially calculated from a global metric per feature subset and then distributed among individual
features according to their frequency. A two-step normalization using a scaler was applied: first by sign (positive
or negative) to preserve proportionality, and then scaling the final set to the range [−1, 1]. Red bars indicate
features with negative energy, while blue bars represent those with positive energy.

After gathering all results, the relationship between the number of selected features and the minimum
observed quantum energy was analyzed. This relationship was modeled by fitting a quadratic function.
Figure 1 shows the fitted curve, illustrating how the energy evolves as a function of 𝐾 . The minimum of
this fitted curve indicates the value of 𝐾 associated with the most energetically favorable configurations.
This minimum was calculated analytically using the vertex formula for a parabola:

𝐾* = − 𝑏

2𝑎
(9)

where 𝑎 and 𝑏 are the coefficients of the fitted quadratic function. The optimal number of features
was found to be 𝐾* = 21.026.

Following this, two post-processing strategies described in Section 2.3 were applied to select the final
feature sets. The first strategy normalized the quantum solutions to a [0,1] range, generating a scoring
vector for each feature, as shown in Figure 2.

Subsequently, the second post-processing strategy was applied, which used an alternative normaliza-
tion method also described in the methodology. This technique enabled the generation of an alternative
final ranking based on more robust statistical criteria. The computed scores revealed that there are 23
features with negative energy values after normalization. These scores were then linearly scaled to the
range [−1, 1], preserving the distinction between favorable (low-energy) and unfavorable (high-energy)
contributions. The final ranking obtained from this normalization process is presented in Figure 3.

Although both generated rankings could not be directly evaluated due to technical and time limitations
related to the execution environment, they were used as a reference to select the best solutions obtained
via the quantum hardware. For this purpose, additional runs were performed in steps of 2 from 𝑘 = 21
to 𝑘 = 29 with 100 reads, as previously done. The same experiments were also run using quantum
simulation with 3000 reads to compare the efficiency of each configuration.

The results shown in Table 1 reveal that the best performance, according to the ndcg@10 metric, was
achieved with a quantum execution using 𝐾 = 21 features and 100 reads, obtaining a score of 0.4580.
This value aligns closely with the optimal feature count estimated from the quadratic fitting analysis.

In general, quantum executions with fewer reads tend to slightly outperform their simulated coun-
terparts with a larger number of reads, suggesting that the actual quantum annealing process may



Table 1
Results sorted by 𝐾 for different configurations of execution type and number of reads. The best ndcg@10 result
is highlighted in bold.

Type Features (𝐾) Reads ndcg@10

Simulated 29 3000 0.4491
Quantum 29 100 0.4528
Simulated 27 3000 0.4438
Quantum 27 100 0.4425
Simulated 25 3000 0.4510
Quantum 25 100 0.4550
Simulated 23 3000 0.4478
Quantum 23 100 0.4437
Simulated 21 3000 0.4530
Quantum 21 100 0.4580

capture more favorable solutions under certain configurations. Nonetheless, the differences across
configurations are relatively small, indicating that the selected subset sizes (𝐾 ∈ [21, 29]) all yield
competitive results.

4. Conclusions

This work presented the SINAI team’s approach to the Feature Selection task at QuantumCLEF 2025,
leveraging D-Wave’s quantum annealing hardware to optimize feature selection for learning-to-rank
models. By formulating the problem as a QUBO model based on mutual information, we effectively
captured the trade-off between feature relevance and redundancy. Our post-processing strategies—direct
normalization and signed energy projection—enabled us to derive stable and interpretable feature
rankings from the quantum solutions.

The results, evaluated on the MQ2007 dataset using LambdaMART and nDCG@10 as the performance
metric, demonstrated that quantum executions can yield competitive results, even under limited access
constraints. The optimal subset of 21 features, as identified through a quadratic energy fitting process,
achieved the highest score among tested configurations, suggesting that the energy landscape provided
by quantum annealing correlates meaningfully with model performance.

Although hardware and execution limitations prevented exhaustive experimentation, our findings
indicate that quantum annealing holds promise as a tool for feature selection in information retrieval
contexts. Future work will focus on expanding the evaluation, incorporating other datasets, and
exploring hybrid quantum-classical methods to further exploit the advantages of quantum optimization.
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