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Abstract
This paper presents the participation of the DUTH team in the CLEF 2025 SimpleText Track, focusing on the
automatic simplification of scientific texts and the detection of hallucinations. For the simplification tasks,
we employed large instruction-tuned language models (LLMs), such as FLAN-T5-Large and BART-SAMSum.
Experiments at both the sentence level (Task 1.1) and the document level (Task 1.2) showed that scaling up the
model and curating the content significantly improve simplification quality. The models demonstrated the ability
to preserve semantic accuracy, even in complex contexts.

In the field of hallucination detection (Task 2), we applied both binary and multi-class classification methods,
based on lexical and semantic representations. Tree-based ensemble learning models, such as Extra Trees and
Random Forest, achieved top performance in identifying erroneous content, under both posthoc and sourced condi-
tions. However, the fine-grained classification of error types (Task 2.2) revealed substantial challenges—particularly
in detecting semantic deviations, such as hallucinations of reality.

Future work will focus on incorporating contextual embeddings, applying few-shot learning, and enhancing
the robustness of the models.
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1. Introduction

Scientific texts are often characterized by dense terminology and complex syntactic structures, making
them difficult to understand for lay audiences. As a result, non-experts frequently avoid engaging with
primary scientific literature, instead relying on simplified or secondary sources—such as blogs or social
media—which may contain distorted or unreliable interpretations [1]. Automatic text simplification,
particularly within scientific domains, aims to bridge this accessibility gap by transforming complex
content into more comprehensible forms while preserving factual accuracy and intended meaning.

The CLEF 2025 SimpleText Track [1] was introduced to support the systematic evaluation of scientific
text simplification systems and to address the growing concern of hallucinations—spurious content not
grounded in the source—often produced by generative language models. In this context, we participated
in two core tasks of the track:

• Task 1: Simplify Scientific Text, which includes:

– Task 1.1: Sentence-level simplification
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– Task 1.2: Document-level simplification [2]

• Task 2: Identify and Avoid Hallucination, which focuses on detecting erroneous or fabricated
information in simplified outputs [3]

Prior work in scientific text simplification includes both supervised approaches using aligned cor-
pora [4, 5] and prompt-based techniques leveraging large language models (LLMs) such as GPT-3 or
T5 [6, 7]. Although LLMs generate fluent outputs, they are prone to hallucinations—posing a significant
risk in scientific applications where factual consistency is paramount. Consequently, recent research
has increasingly focused on evaluating and mitigating hallucinated content in generated text [8, 9].

This paper presents our submission to Tasks 1 and 2 of the CLEF 2025 SimpleText track. For full
details on task definitions, datasets, and evaluation protocols, we refer the reader to the official track
and task overview papers [10, 11, 12].

The remainder of this paper is organized as follows: Section 2 describes our methodology, including
data preprocessing, system architecture, and prompt engineering strategies. Section 3 presents the
experimental results and analysis. Section 4 concludes with key findings and discusses directions for
future work.

2. Experimental Setup

2.1. Task 1:Text Simplification: Simplify scientific text

2.1.1. Task 1.1: Sentence-level Scientific Text Simplification

2.1.1.1. Dataset Table 1 provides a detailed overview of the dataset configuration used in Task 1.1,
which focuses on the simplification of scientific texts at the sentence level. Each split is characterized by
the number of unique complex sentences, the total number of entries, and the presence or absence of
reference simplifications.

The training set contains 11,452 unique complex sentences and 11,510 total entries, each paired with
a corresponding simplification. The validation and internal test sets consist of 1,695 and 1,510 unique
sentences, respectively, and are used for model tuning and intermediate evaluation.

In contrast, the final test set comprises 9,086 unique sentences and 9,160 entries, but does not
include reference simplifications. This test set is used for the official system evaluation and leaderboard
submission via the Codabench platform. The absence of gold outputs ensures an unbiased, blind
evaluation of system performance.

The difference between the number of unique sentences and total entries stems from cases in which
multiple simplifications are provided for a single complex sentence, as defined by the dataset schema in
the CSV files.

Table 1
Summary of the Task 1.1 Sentence-level Simplification Dataset

Dataset Unique Complex Sentences Total Entries Simplifications Included

Train Set 11,452 11,510 Yes
Validation Set 1,695 1,697 Yes
Test Set 1,510 1,512 Yes
Final Test Set 9,086 9,160 No



2.1.1.2. Methodology The simplification approach adopted for Task 1.1 leverages large pretrained
language models tailored for sequence-to-sequence tasks. These models operate in a zero-shot setting
and are prompted to rewrite complex scientific sentences into simpler, more accessible forms while
preserving core meaning and factual accuracy.

To guide generation, task-specific prompts were applied where relevant, encouraging the models to
produce outputs that align with simplification goals. The decoding strategy emphasized determinism
and brevity, ensuring that the generated sentences were concise and syntactically well-formed.

This methodology exploits the generalization capabilities of large-scale foundation models to perform
scientific text simplification without additional supervision, demonstrating their feasibility for specialized
communication tasks in scientific domains.

2.1.2. Task 1.2 – Document-level Scientific Text Simplification

2.1.2.1. Dataset Table 2 presents an overview of the document-level dataset distribution used in
Task 1.2, which focuses on the simplification of full scientific abstracts. Each split is characterized
by the number of unique complex documents, total entries (rows), and the availability of reference
simplifications.

The training set comprises 3,967 documents, each paired with corresponding simplifications. The
validation and internal test sets contain 500 and 502 documents, respectively, and include gold-standard
simplifications. These subsets are intended for model development, hyperparameter tuning, and prelimi-
nary evaluation.

The final test set includes 666 complex documents without reference simplifications. It serves as the
blind evaluation input for official submissions on Codabench. The absence of target outputs ensures fair
and unbiased scoring of participants’ systems.

Notably, the number of total entries equals the number of unique documents across all subsets,
indicating that each row corresponds to a single abstract. Unlike Task 1.1, document-level simplification
requires handling discourse structure, paragraph segmentation, and sentence-level transformations in a
holistic and coherent manner.

Table 2
Overview of the Task 1.2 dataset for document-level scientific text simplification.

Dataset Unique Documents Total Entries Reference Simplifications

Train Set 3967 3967 Yes
Validation Set 500 500 Yes
Test Set 502 502 Yes
Final Test Set 666 666 No

2.1.2.2. Methodology The approach followed for Task 1.2 leverages a large pretrained language
model to simplify full scientific abstracts, addressing the broader context and discourse structure inherent
to document-level content. The model is guided through natural language prompts that explicitly define
the simplification objective.

Each document is treated as a single input unit, and the model is prompted to generate a simplified
version that preserves terminological precision, semantic fidelity, and coherence across multiple sen-
tences. This is achieved by prepending structured instructions (e.g., “Simplify the following scientific
document:”) to the complex abstract.



The methodology highlights the ability of large-scale instruction-tuned models to handle extended
scientific discourse and produce simplified outputs that remain faithful to the original content—without
the need for fine-tuning on domain-specific simplification data.

2.1.3. Implementation and Environment

All experiments were implemented in Python 3.10, using the Transformers library from Hugging
Face and PyTorch (v2.1.0). Execution was performed on a compute node equipped with an NVIDIA
RTX A6000 GPU.

2.2. Controlled Creativity: Identify and Avoid Hallucination

2.2.1. Task 2.1 – Identify Creative Generation at Document Level

2.2.1.1. Dataset Table 3 presents a quantitative summary of the posthoc subset used in Task 2 of the
CLEF 2025 SimpleText track, which evaluates hallucination detection in simplified scientific texts. This
subset consists of system-generated simplifications that were annotated after generation to determine
whether they contain hallucinated content.

The table reports both the number of unique simplified sentences and the total number of entries,
which may include duplicates due to multiple annotations or metadata variants. Specifically:

The posthoc training set contains 13,137 unique simplified sentences and 13,519 total entries, indicating
that some examples appear more than once due to secondary annotations, such as annotator disagreement
or metadata variation.

The posthoc test set includes 3,249 unique sentences and 3,293 entries, and is used to evaluate
hallucination detection models under controlled conditions.

This subset is particularly valuable for training models that must generalize to noisy, real-world
outputs from text simplification systems. Its posthoc nature provides a realistic evaluation setting, where
hallucinations are assessed independently of the system that produced the simplification.

The distinction between unique instances and total entries offers insight into the annotation process
and potential variance introduced by human labeling or system generation artifacts.

Table 3
Overview of the posthoc subset used in Task 2 for hallucination detection, including the number of unique
simplified sentences and total annotated entries.

Dataset Unique Sentences Total Entries

Posthoc Train Set 13,137 13,519
Posthoc Test Set 3,249 3,293

Table 4 presents a summary of the sourced subset used in Task 2 of the CLEF 2025 SimpleText Track,
which focuses on detecting hallucinations in simplified scientific texts. Unlike the posthoc subset, the
sourced data are constructed such that each simplification is directly aligned with a known and verifiable
source text. This design enables explicit grounding assessment by checking whether all information in
the output is traceable to the input.

Each split is characterized by two key metrics: the number of unique simplified sentences and the
total number of entries, which may include duplicates due to repeated annotations or system variants.



The sourced training set contains 13,120 unique simplified sentences and 13,514 total entries. Minor
redundancy may arise from sentence variants, additional annotations (e.g., multiple annotators), or
metadata replication.

The sourced test set includes 3,318 unique sentences and 3,379 entries, and serves as the benchmark
for evaluating hallucination detection models on source-aligned simplifications.

The explicit grounding offered by this dataset makes it particularly suitable for supervised learning
and fine-grained hallucination evaluation. In combination with the posthoc subset, it supports robust
model development across both real-world and controlled hallucination scenarios.

Table 4
Overview of the sourced subset used in Task 2, including the number of unique simplified sentences and total
annotated entries for hallucination detection.

Dataset Unique Sentences Total Entries

Sourced Train Set 13,120 13,514
Sourced Test Set 3,318 3,379

2.2.1.2. Methodology To address the detection of spurious or hallucinated content in simplified
scientific sentences, we adopted a supervised binary classification framework based on lexical features.
Two parallel models were developed—one for the sourced and one for the posthoc subsets—using the
same processing pipeline.

Each classifier was trained to distinguish between factually accurate and spurious simplifications
using an ensemble-based learning approach. Specifically, we employed the ExtraTreesClassifier,
a non-parametric ensemble method that aggregates multiple randomized decision trees to improve
robustness and generalization.

Input sentences were vectorized using a TF-IDF representation over a vocabulary of the 3,000 most
informative terms. To address class imbalance in the training data, the minority class was upsampled
via random oversampling, resulting in a balanced training set. Predictions were then generated for the
test instances and exported in structured format for evaluation.

This approach demonstrates the effectiveness of combining simple lexical representations with
ensemble learning methods for hallucination detection in scientific text simplification.

2.2.2. Task 2.2 – Detect and Classify Information Distortion Errors in Simplified Sentences

2.2.2.1. Dataset Table 5 summarizes the dataset used in Task 2.2 of the CLEF 2025 SimpleText Track,
which targets fine-grained error annotation in sentence-level simplifications. The dataset supports
supervised training and evaluation of systems capable of identifying specific simplification errors, such
as hallucinations, faithfulness violations, and discourse-level inconsistencies.

The training set comprises 42,392 annotated entries corresponding to 35,621 unique simplified sen-
tences. Each entry includes one or more categorical labels indicating the presence of error types (e.g.,
factuality hallucination, topic shift, overgeneralization). Due to the multi-label structure and multiple
annotations per sentence, individual sentences may appear more than once in the dataset.

The test set contains 2,659 entries derived from 1,537 unique complex source sentences. Unlike the
training data, test instances do not include simplified outputs, enabling blind evaluation: systems must
infer likely errors solely based on the input sentence.



This dataset plays a key role in advancing error-aware simplification systems, providing a structured
foundation for training multi-class classifiers and enabling performance breakdown by error type across
diverse semantic and pragmatic dimensions.

Table 5
Overview of the dataset used in Task 2.2 for hallucination and error-type annotation.

Dataset Unique Sentences Total Entries

Task 2.2 Train Set 35,621 42,392
Task 2.2 Test Set 1,537 2,659

2.2.2.2. Methodology For the fine-grained detection of hallucination errors in simplified scien-
tific text, we adopt a multi-label classification framework grounded in semantic similarity. Sentence
pairs—comprising the original and the simplified version—are embedded into dense semantic vectors
using a pretrained sentence encoder (all-mpnet-base-v2), enabling the model to capture meaning-
preserving or distorting transformations.

A multi-output classifier is trained on these embeddings to predict the presence of specific hallucination
categories, as defined by a structured error taxonomy. To address class imbalance and data sparsity, the
training set is augmented with synthetic examples and oversampling techniques. Label-wise thresholds
are tuned via validation-based F1 maximization to ensure calibrated predictions across error types.

Implementation Details. We used the all-mpnet-base-v2 model from the SentenceTransformers
library to generate fixed-size semantic embeddings. The encoder operated in inference-only mode,
with no task-specific fine-tuning; that is, its parameters remained frozen during training. Only the
downstream classifier—a MultiOutputClassifier using either Logistic Regression or Random Forest
as the base estimator—was trained on the extracted embeddings. This lightweight architecture enables
efficient yet effective classification of hallucination error types in scientific simplifications.

2.3. Implementation and Environment

All experiments were implemented in Python 3.10, using the PyTorch framework (v2.1.0) in con-
junction with the Hugging Face transformers and sentence-transformers libraries. For the
classification tasks, models were built using scikit-learn, including both tree-based ensemble meth-
ods (e.g., Extra Trees, Random Forest) and linear classifiers (e.g., Logistic Regression).

3. Results

3.1. Evaluation Metrics

We evaluate sentence simplification and hallucination detection using a combination of reference-based,
semantic, and classification-based metrics.

3.1.1. Sentence Simplification (Tasks 1.1 and 1.2)

The main evaluation metrics include:



• SARI [13]: Evaluates the quality of added, deleted, and retained n-grams with respect to reference
simplifications.

• BLEU [14]: Measures n-gram overlap with reference texts, though it is less sensitive to simplifica-
tion quality.

• BERTScore [15]: Computes semantic similarity between system outputs and references using
contextual embeddings.

• LENS [16]: A learned metric trained on human-annotated simplification quality ratings.
• SLE [5]: A classifier-based, reference-less metric that distinguishes simplified from non-simplified

outputs.

3.1.2. Hallucination Detection (Task 2.1).

For binary classification of hallucinated content, we report standard classification metrics:

• Accuracy [17]: Proportion of correct predictions over all predictions.
• Precision [18]: Proportion of predicted positives that are correct.
• Recall [18]: Proportion of actual positives that are correctly predicted.
• F1-score [18]: Harmonic mean of precision and recall.
• ROC AUC [17]: Area under the ROC curve, indicating overall class separability.

3.2. Task 1.1 – Sentence-level Scientific Text Simplification

3.2.1. Experimental Results

Table 6 presents detailed results for sentence-level scientific text simplification (Task 1.1), evaluated
using three metrics: SARI (original), SARI (auto), and the final Score. These metrics assess simplification
quality in terms of information added, deleted, and retained, incorporating both reference-based and
automatic evaluations.

The FLAN-T5-Large model outperforms all others, achieving a SARI (original) of 35.35 and a high
SARI (auto) of 38.73. This indicates a strong ability to generate simplified outputs that preserve core
semantic content while enhancing accessibility. Its consistent performance across human and automatic
references demonstrates the robustness of large-scale, instruction-tuned models in zero-shot settings.

The BART-SAMSum model, despite being pretrained on dialogue summarization data, performs com-
petitively with a SARI (original) of 29.68, surpassing the generic BART model (23.84). This suggests
that pretraining on abstractive, paraphrastic tasks can effectively transfer to scientific simplification,
even in the presence of domain mismatch.

In contrast, smaller variants such as FLAN-T5-Base and FLAN-T5-XL yield significantly lower
scores (19.51 and 18.78, respectively), underscoring the impact of model scale on simplification quality.
These results support the hypothesis that both size and instruction tuning are key factors in enabling
generalization without task-specific supervision.

Finally, the gap between SARI (original) and SARI (auto) offers additional insights into evaluation align-
ment. The top-performing FLAN-T5-Large exhibits strong agreement across both metrics, suggesting
its outputs align well with both human references and automated paraphrases—further validating its
generalization capacity.



Table 6
Simplification performance for Task 1.1 (Sentence-level), reported per model using SARI (original), SARI (auto),
and the final evaluation score.

Model SARI (original) SARI (auto) Score
flan-t5-large 35.348 38.730 35.348
bart-samsum 29.677 32.184 29.677
bart 23.835 27.587 23.835
flan-t5-base 19.512 23.280 19.512
flan-t5-xl 18.784 22.749 18.784

3.3. Task 1.2 – Document-level Scientific Text Simplification

3.3.1. Experimental Results

The evaluation results for Task 1.2 indicate that models incorporating domain adaptation or content
cleaning strategies yield improved performance in document-level scientific text simplification. The
top-performing system, bart-samsum_clean, achieved a score of 36.998, demonstrating the benefit
of leveraging dialogue-style summarization pretraining combined with targeted refinement.

Closely following, flan-t5-xl_clean and flan-t5-xxl_clean achieved scores of 36.620
and 35.813, respectively, confirming the positive effect of scaling and data curation. The
flan-t5-large_co variant, presumably optimized with contrastive objectives, also performed com-
petitively with a score of 34.612.

In contrast, flan-t5-base—the smallest model—achieved a lower score of 33.130, suggesting a
performance ceiling for models lacking sufficient capacity or instruction tuning. This reinforces the
sensitivity of document-level simplification to both model scale and pretraining configuration.

Overall, the results highlight the importance of instruction tuning, scaling, and input refinement
in achieving high-quality simplifications that preserve coherence and semantic fidelity—crucial for
expert-to-lay communication in scientific domains.

Table 7
Simplification performance for Task 1.2 (Document-level), reported per model using SARI (original), SARI (auto),
and the official final score.

Model SARI (original) SARI (auto) Score
bart-samsum_clean 36.998 36.251 36.998
flan-t5-xl_clean 36.620 36.653 36.620
flan-t5-xxl_clean 35.813 34.733 35.813
flan-t5-large_co 34.612 32.553 34.612
flan-t5-base 33.130 – 33.130

3.4. Task 2.1 – Identify Creative Generation at Document Level

3.4.1. Experimental Results

Table 8 presents detailed classification results for Task 2.1, focusing on posthoc hallucination detection
in scientific text simplification. The evaluation covers Accuracy, Precision, Recall, F1-score, ROC AUC,
and a unified Score to comprehensively assess model performance.



The best-performing model is the Extra Trees classifier, which achieves an F1-score and Score
of 0.948, alongside a high Recall (0.974) and Accuracy (0.904). These results underscore the model’s
robustness in identifying hallucinated content, even in imbalanced or sparse feature settings, affirming
the strength of ensemble tree-based methods.

Random Forest follows closely with a Score of 0.945 and an F1-score of 0.945, further confirming
the efficacy of ensemble approaches. Both models effectively balance precision and recall, which is
essential for minimizing both false positives and false negatives in hallucination detection pipelines.

Support Vector Classifier and XGBoost achieve moderate performance, with Scores of 0.879 and 0.874,
respectively. Despite being more complex learners, they lag behind the ensemble methods, possibly due
to their sensitivity to data representation or hyperparameter tuning.

Linear models like Logistic Regression and Ridge Regression also perform competitively, reaching
F1-scores of 0.863 and 0.862. Their success suggests that even without complex architectures, high-
dimensional TF-IDF representations can be effectively leveraged to detect semantic inconsistencies.

At the lower end, Gradient Boosting and KNN scored lowest (0.784, 0.210), reflecting limited general-
ization in sparse, high-dimensional spaces. The weak KNN performance aligns with prior findings [19]
on its inefficacy in complex multi-label settings.

Overall, the findings confirm that tree-based ensemble models, particularly Extra Trees and Random
Forest, are highly effective in posthoc hallucination detection. Their ability to handle feature sparsity,
combined with robust discriminative performance, makes them suitable for integration into real-world
simplification quality assurance systems.

Table 8
Detailed classification metrics for Task 2.1 (Posthoc Hallucination Detection)

Model Accuracy Precision Recall F1-score ROC AUC Score
Extra Trees 0.904 0.924 0.974 0.948 0.621 0.948
Random Forest 0.898 0.925 0.965 0.945 0.625 0.945
Support Vector Classifier 0.795 0.937 0.827 0.879 0.662 0.879
XGBoost 0.789 0.945 0.814 0.874 0.690 0.874
Logistic Regression 0.773 0.947 0.792 0.863 0.696 0.863
Ridge Regression 0.769 0.938 0.797 0.862 0.659 0.862
SGD Classifier 0.762 0.951 0.776 0.855 0.706 0.855
Naive Bayes 0.754 0.949 0.768 0.849 0.695 0.849
Gradient Boosting 0.669 0.950 0.668 0.784 0.673 0.784
K-Nearest Neighbors – – – – – 0.210

The results presented in Table 9 demonstrate that ensemble-based classifiers achieve superior per-
formance in the sourced hallucination detection setting. Specifically, Extra Trees and Random Forest
attain the highest overall scores (F1-score: 0.950 and 0.945, respectively), indicating their robustness
in capturing subtle lexical or semantic cues related to spurious content. Both models exhibit excellent
recall (0.974 and 0.964) while maintaining high precision, suggesting a balanced ability to identify
hallucinated instances without overfitting.

Among the linear models, Ridge Regression and Logistic Regression perform consistently well (F1-scores:
0.861 and 0.860), showing that even without non-linear transformations, TF-IDF-based representations
provide strong discriminative power. The Support Vector Classifier also demonstrates notable performance
(F1-score: 0.881), with an accuracy of 0.799 and ROC AUC of 0.688, confirming its capacity to construct
expressive hyperplanes for this binary classification task.

SGD Classifier and Naive Bayes yield slightly lower performance (F1-scores: 0.842 and 0.838, re-



spectively), yet still maintain reasonable balance between precision and recall, affirming their utility as
lightweight and interpretable alternatives.

The lowest performing model is Gradient Boosting, with an F1-score of 0.768 and recall of just 0.642,
despite a high precision of 0.955. This suggests that while the model is highly conservative in predicting
hallucinations (yielding few false positives), it fails to recall a significant portion of true hallucinated
cases — potentially due to overfitting or an inability to generalize across sparse lexical input.

Overall, the sourced hallucination detection results corroborate the effectiveness of tree-based ensem-
bles and strong linear classifiers, which consistently achieve a desirable trade-off between precision and
recall, making them well-suited for reliable identification of hallucinated content in scientific text.

Table 9
Detailed classification metrics for Task 2.1 (Sourced Hallucination Detection)

Model Accuracy Precision Recall F1-score ROC AUC Score
Extra Trees 0.909 0.928 0.974 0.950 0.656 0.950
Random Forest 0.900 0.927 0.964 0.945 0.650 0.945
Support Vector Classifier 0.799 0.941 0.827 0.881 0.688 0.881
Ridge Regression 0.770 0.941 0.794 0.861 0.679 0.861
Logistic Regression 0.769 0.945 0.789 0.860 0.692 0.860
SGD Classifier 0.745 0.947 0.758 0.842 0.694 0.842
Naive Bayes 0.739 0.945 0.753 0.838 0.683 0.838
Gradient Boosting 0.651 0.955 0.642 0.768 0.688 0.768

The lowest performing model is Gradient Boosting, with an F1-score of 0.768 and recall of just 0.642,
despite a high precision of 0.955. This suggests that while the model is highly conservative in predicting
hallucinations (yielding few false positives), it fails to recall a significant portion of true hallucinated
cases — potentially due to overfitting or an inability to generalize across sparse lexical input.

Overall, the sourced hallucination detection results corroborate the effectiveness of tree-based ensem-
bles and strong linear classifiers, which consistently achieve a desirable trade-off between precision and
recall, making them well-suited for reliable identification of hallucinated content in scientific text.

3.5. Task 2.2 – Detect and Classify Information Distortion Errors in Simplified
Sentences

3.5.1. Evaluation Metrics

The evaluation of Task 2.2 (Detect and Classify Information Distortion Errors) is framed as a multi-label
classification problem, where each simplified sentence may exhibit multiple error types drawn from a
predefined taxonomy.

System performance is assessed using:

• Precision, Recall, and F1-score per error class;
• Macro-averaged F1-score across all labels, to account for class imbalance and to provide an overall

measure of system effectiveness.

This evaluation setup enables a fine-grained assessment of a model’s ability to detect both surface-level
issues (e.g., grammar errors) and deeper semantic inconsistencies (e.g., factual hallucinations), in line
with prior work on multi-label learning [20] and factual consistency evaluation in text generation [8].
The task design and metric definitions follow the CLEF 2025 SimpleText guidelines [21].



3.5.2. Experimental Results

The classification results for Task 2.2 reveal substantial variability in performance across error categories,
highlighting the inherent difficulty of multi-label hallucination detection in scientific simplification.

The system demonstrates strong performance in detecting sentences labeled as having no errors,
with an F1-score of 0.496, driven by high recall (0.937) but limited precision. This suggests that the
model tends to over-predict error-free cases, successfully retrieving many valid simplifications, albeit
with a high false-positive rate.

In contrast, performance on hallucination-related categories remains low. For instance, Factuality
Hallucination (C1) and Prompt Misalignment (B2) achieve F1-scores of only 0.025 and 0.014,
respectively—reflecting the subtle, context-dependent nature of these phenomena and the challenge of
reliably capturing them from limited input representations.

Some categories, such as Loss of Informative Content (D2.1) and Faithfulness Hallucination
(C2), yielded relatively higher F1-scores (0.290 and 0.185), suggesting that models are more capable of
detecting content reduction or minor semantic inconsistencies compared to abstract hallucination types.

Overall, these findings indicate that while surface-level or structural errors (e.g., syntactic mistakes or
overgeneralization) are more tractable, deeper semantic distortions and hallucinations remain difficult
to detect using current feature-based classifiers—emphasizing the need for richer contextual modeling
or task-specific representation learning.

Table 10
Detailed classification results for Task 2.2 grouped by error category

Category Label Precision Recall F1-score

No Error
No error 0.338 0.937 0.496

Category A: Linguistic Errors
A1. Random generation 0.020 0.128 0.035
A2. Syntax error 0.066 0.508 0.117
A3. Contradiction 0.000 0.000 0.000
A4. Punctuation / Grammar 0.082 0.340 0.132
A5. Redundancy 0.032 0.012 0.017

Category B: Alignment Issues
B1. Format misalignment 0.022 0.071 0.034
B2. Prompt misalignment 0.026 0.010 0.014

Category C: Semantic Hallucinations
C1. Factuality hallucination 0.013 0.483 0.025
C2. Faithfulness hallucination 0.170 0.204 0.185
C3. Topic shift 0.054 0.185 0.084

Category D: Content Loss and Scope Shift
D1.1. Overgeneralization 0.123 0.382 0.186
D1.2. Overspecification of Concepts 0.068 0.128 0.089
D2.1. Loss of Informative Content 0.212 0.460 0.290
D2.2. Out-of-Scope Generation 0.111 0.008 0.015



4. Discussion and Conclusions

This work presented our participation in the CLEF 2025 SimpleText Track, addressing both scientific
text simplification and hallucination detection. For simplification (Tasks 1.1 and 1.2), instruction-tuned
large language models—such as FLAN-T5-Large and BART-SAMSum—demonstrated strong zero-shot
capabilities, particularly when scaled or enhanced through content cleaning. Notably, sentence-level
simplification benefited from increased model capacity, while document-level tasks required coherence-
aware prompting strategies.

Looking ahead, we plan to investigate few-shot prompting for Tasks 1.1 and 1.2, incorporating
in-context examples to further improve simplification quality—especially in domains requiring termino-
logical precision and semantic fidelity.

For hallucination detection (Task 2.1), tree-based ensemble classifiers (Extra Trees, Random Forest)
proved highly effective in both posthoc and sourced conditions. While these methods perform well
using lexical features, future work will explore transformer-based classifiers (e.g., fine-tuned BERT ) to
assess whether contextualized embeddings can better capture subtle inconsistencies beyond shallow
representations.

Task 2.2 further revealed limitations in capturing fine-grained semantic distortions, with substantial
variation in performance across error categories. To address this, we aim to incorporate contextual
embeddings from transformer encoders (e.g., BERT, RoBERTa) into classification pipelines, and apply
hierarchical modeling and curriculum learning to better capture inter-error dependencies. Enhanc-
ing data diversity via augmentation and annotation bootstrapping will also be critical for improving
generalization in underrepresented categories.

Overall, our goal is to develop models that are both simplification-aware and hallucination-resilient,
supporting faithful and accessible communication of scientific content to non-expert audiences.
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Appendix A: Submission Information

Team name: DUTH
Track: CLEF 2025 SimpleText
Submitted Tasks: Task 1.1, Task 1.2, Task 2.1, Task 2.2
Run IDs:
• 5 runs for Task 1.1
• 5 runs for Task 1.2
• 10 runs for Task 2.1 (Posthoc)
• 8 runs for Task 2.1 (Sourced)
• 1 run for Task 2.2

Appendix B: Prompt Examples for Task 1

Task 1.1 – Sentence-level Simplification (FLAN-T5-XL).

The following prompt was used in a zero-shot setting:

Prompt: Simplify: The medicine caused drowsiness and fatigue.
Output: The medicine made the person tired and sleepy.

Task 1.1 – Sentence-level Simplification (BART-SAMSUM).

For BART, no explicit instruction was used. The model received the raw sentence directly as input:

Input: The medicine caused drowsiness and fatigue.
Output: The drug made people feel tired and sleepy.

Task 1.2 – Document-level Simplification.

The prompt used for document-level simplification was:

Prompt: Simplify the following scientific document:
In this study, we investigate the structural behavior of graphene-based materials under
varying thermal and mechanical conditions. Our findings demonstrate significant
improvements in tensile strength and flexibility when integrated into polymer composites.

Output: This study looks at how graphene materials behave under heat and stress. The
results show they become stronger and more flexible in plastics.
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