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Abstract
The BioNNE-L 2025-1 challenge advances biomedical entity linking (BEL) by mapping textual mentions to
UMLS concepts, which is crucial for clinical and research applications. This study addresses Subtask 1 (English)
with a novel SapBERT-based system. It integrates a hybrid re-ranking strategy combining cosine, Jaccard, and
Levenshtein similarities, optimizing weights via grid search. Evaluated on the BioNNE-L development set, our
system achieved an Accuracy@1 of 0.718, Accuracy@5 of 0.802, and MRR of 0.750. In the official competition, the
VerbaNex AI Lab team secured first place in Accuracy@1 (0.70), fourth in Accuracy@5 (0.80), and second in MRR
(0.74). These results demonstrate the efficacy of blending semantic and lexical measures to resolve ambiguities in
biomedical texts. Limitations, such as the absence of model fine-tuning due to time constraints, suggest avenues
for future enhancements in scalable and multilingual BEL solutions.
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1. Introduction

Biomedical entity linking (BEL), also known as biomedical concept normalization (BCN), is a pivotal
task in natural language processing (NLP) for the biomedical domain [1, 2]. It maps textual mentions of
biomedical concepts, such as diseases, chemicals, or anatomical terms (e.g., “heart attack,” “aspirin,” or
“femur”) to standardized entries in ontologies like the Unified Medical Language System (UMLS) [3, 4].
It enables structured information extraction from clinical and scientific texts, supporting applications
like information retrieval, relation extraction, and knowledge graph construction [1]. However, BEL
faces challenges due to biomedical terminology’s variability, ambiguity, and lexical diversity, including
synonyms, acronyms, and orthographic variations [5].

The BioNNE-L 2025-1 challenge [6, 7], specifically Subtask 1 (English), evaluates BEL systems on
a curated dataset of English biomedical texts hosted on Hugging Face. The dataset comprises 2,690
training mentions, 2,490 development mentions, and 6,660 test mentions, annotated with UMLS concepts
across three semantic types: disorders (DISO), chemicals (CHEM), and anatomy (ANATOMY)[8, 9].
The task requires robust methods to disambiguate mentions, evaluated using Accuracy@1 (𝐴𝑐𝑐@1),
Accuracy@5 (𝐴𝑐𝑐@5), and Mean Reciprocal Rank (MRR).

This work presents a novel BEL system developed by the VerbaNex AI Lab for the BioNNE-L 2025-1
challenge. Our approach leverages SapBERT, a pre-trained Transformer model optimized for biomedical
semantics [10], to generate contextual embeddings. We introduce a hybrid re-ranking strategy combining
cosine similarity with Jaccard and Levenshtein similarities, with weights optimized via grid search, to
address lexical variations and semantic ambiguities. Our system achieved first place in 𝐴𝑐𝑐@1 (0.70),
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demonstrating superior performance. The contributions include (1) a robust BEL pipeline with optimized
re-ranking, (2) a novel hybrid re-ranking strategy, and (3) a comprehensive evaluation of the BioNNE-L
dataset[8, 9]. Section 2 reviews related work, Section 3 details our methodology, Section 4 presents
results, and Section 5 summarizes findings and future directions.

2. Related Work

Identifying and normalizing named entities in biomedical texts is a cornerstone of natural language
processing (NLP) in the biomedical domain [1, 2]. Specifically, biomedical entity linking (BEL) or
biomedical concept normalization (BCN) involves mapping textual mentions of concepts to standardized
entries in ontologies or knowledge bases, such as the Unified Medical Language System (UMLS) [3, 4,
11, 5, 12]. This task is critical for extracting valuable insights, supporting information retrieval, relation
extraction, and constructing knowledge graphs in biomedical research [1, 2, 4].

2.1. Background on BEL Approaches

Early BEL approaches primarily relied on string matching techniques or dictionary-based lookups,
often augmented with heuristic rules [3, 13, 14]. While straightforward, these methods are limited to
identifying morphologically similar terms, struggling with the variability and ambiguity inherent in
biomedical terminology, including synonyms, acronyms, and lexical variations [11, 5, 12, 14]. Alter-
natively, multi-class supervised classifiers were explored [3, 13]. Still, they often failed to generalize
effectively to concepts absent from training data.

2.2. Pretrained Language Models

The advent of large-scale pre-trained language models (PLMs), particularly those based on the Trans-
former architecture like BERT, has significantly improved performance across various NLP tasks,
including BEL [11, 5, 15, 16, 1, 17]. These models learn contextualized representations that capture deep
semantic information.

Given the specialized nature of biomedical language, pretraining language models on domain-specific
corpora, such as medical and scientific literature, has proven particularly effective [18]. BioBERT,
pre-trained on PubMed abstracts and PubMed Central full texts, pioneered the adaptation of BERT
to the biomedical domain [17, 19]. Subsequently, PubMedBERT, pre-trained exclusively on PubMed
abstracts, achieved state-of-the-art performance in various biomedical tasks [18]. Other models, such as
SciBERT, trained on general scientific publications, have also been applied in this domain [20, 15]. These
domain-specific models excel by learning vocabularies and word distributions tailored to biomedical
texts, enabling better modeling of relevant semantic relationships (see Table 1).

A significant advancement in biomedical entity representation is SapBERT, a pretraining scheme that
aligns the representation space of biomedical entities [10]. SapBERT employs a scalable metric learning
framework that leverages UMLS synonyms to cluster representations of entity names corresponding to
the same concept in the embeddings space. This approach has proven highly effective for entity-level
tasks like BEL, achieving state-of-the-art results on multiple benchmark datasets. SapBERT offers a
“one-model-fits-all” solution, outperforming previously sophisticated hybrid pipeline-based systems,
even without fine-tuning on task-specific labeled data in the scientific domain. More recent models, such
as CODER-BERT [21] and GEBERT [22, 23], extend SapBERT with knowledge-infused and graph-based
representations, respectively. We chose SapBERT for its proven robustness in zero-shot BEL tasks and
computational efficiency compared to these newer models, which often require additional resources
for fine-tuning or graph processing. Models like SciSpacy are also noted for identifying entities in
biomedical texts, often used in conjunction with other techniques [24].



Table 1
Comparison of Pretrained Language Models for BEL

Model Pretraining Corpus Primary Task

BioBERT PubMed, PMC Linking, NER
PubMedBERT PubMed Abstracts Classification, BEL
SciBERT Scientific Publications NER, Classification
SapBERT PubMed, UMLS Entity Linking
CODER-BERT PubMed, UMLS Term Normalization
GEBERT PubMed, UMLS Entity Linking
SciSpacy Biomedical Texts NER

2.3. Modern BEL Approaches and Challenges

Modern BEL approaches are often structured into two stages: candidate generation and ranking/re-
ranking [3, 11, 13, 5, 14]. The first stage identifies a plausible set of candidate concepts for a given mention.
In contrast, the second stage ranks or reorders these candidates to select the best match. BERT-based
models have been employed in the ranking stage, learning to score the similarity between mentions and
concept names [11]. Vector space models, which map mentions and concepts to embeddings in a shared
space and use similarity measures like cosine similarity for ranking, are prevalent in this context [13].

Despite advances with PLMs and models like SapBERT, BEL remains challenging. The ambiguity
and variability of surface forms in biomedical entities continue to pose problems. While contextual
embeddings capture semantics, models can be insensitive to minor perturbations or lexical variations,
impacting robustness and performance in difficult cases [5]. Additionally, ontologies like UMLS, though
comprehensive, may have limited coverage for certain subdomains or languages, requiring models
to handle mentions without exact or direct matches [3, 4]. The task becomes more complicated by
nested entities (entities contained within others), a common phenomenon in biomedical texts. However,
concept normalization differs from nested entity identification [25, 26, 27].

2.4. Our Proposed Approach

Our proposed approach addresses these challenges through a multi-stage system. Drawing inspiration
from candidate generation and ranking/re-ranking frameworks [11, 3, 13], we leverage domain-specific
Transformer models to generate robust contextual embeddings for both entity mentions in text and
concept names in UMLS. Cosine similarity is initially used to identify a set of plausible candidates, a
well-established technique in vector space models for BCN [13].

The novelty of our approach lies in the re-ranking stage [11]. While prior work has employed re-
ranking to enhance performance and noted morphological/lexical similarities as the basis for traditional
methods [3, 12, 13, 14], our system introduces a systematic weighted combination of cosine similarity
(capturing semantics from embeddings) with explicit lexical similarity measures, such as Jaccard and
Levenshtein. These lexical metrics, though not explicitly described in prior work as combined with PLM-
based cosine similarity for re-ranking, capture character- and word-level similarities that embeddings
may overlook [5]. Optimizing the weights of these measures via grid search identifies the optimal
balance between semantic and lexical information, enhancing performance, particularly in cases where
embeddings may falter due to surface variations or insensitivity to exact term forms. This hybrid
approach, integrating the power of contextual embeddings from Transformer models with the specificity
of traditional lexical measures through optimized re-ranking, offers a novel strategy to improve accuracy
in biomedical entity linking, especially for selecting the correct candidate from a set of semantically
close options. Performance evaluation using standard metrics such as 𝐴𝑐𝑐@1, 𝐴𝑐𝑐@5, and MRR will
quantify the effectiveness of this approach, as detailed in Section 3.



3. Methodology

This section provides a detailed description of the approach designed to tackle the biomedical entity
linking task within the BioNNE-L 2025-1 challenge, which focuses on mapping textual mentions to
concepts from the UMLS ontology. To address this, we developed a pipeline combining the power
of pre-trained transformer models such as SapBERT, PubMedBERT, and Stanford BioBERT with an
advanced re-ranking strategy integrating multiple similarity measures, thereby optimizing prediction
accuracy. Below, we comprehensively explain the general approach, including the data used, model
design, system phases, and implementation details, highlighting how each component contributes to
the overall objective.

3.1. General Approach

Our work aims to link biomedical entity mentions in English texts to specific UMLS concepts. This
task requires capturing complex semantic relationships in clinical and scientific contexts. To achieve
this, we designed a system that leverages the ability of transformer models to generate contextual
vector representations, complemented by a re-ranking process that refines the initial predictions. We
structured this approach into several key stages, which we developed sequentially to ensure efficient
and accurate processing.

First, we performed comprehensive data preprocessing to standardize the text and minimize noise.
Next, we generated high-quality embeddings for mentions and vocabulary concepts using pre-trained
models specialized in the biomedical domain. We then computed the cosine similarity between these
embeddings to identify an initial set of candidates. We applied a re-ranking process to improve accuracy
based on a combination of similarity measures (cosine, Jaccard, and Levenshtein), with weights optimized
via grid search. Finally, we evaluated system performance using standard metrics such as Accuracy@1
(Acc@1), Accuracy@5 (Acc@5), and Mean Reciprocal Rank (MRR). This integrated approach allows us
to address semantic ambiguities and optimize entity linking in a biomedical context.

3.2. Data and Preprocessing

The system uses the BioNNE-L dataset [8, 9], available on Hugging Face, which provides annotated data
for the biomedical entity linking task in English. The dataset comprises 2,690 training mentions, 2,490
development mentions, and 6,660 test mentions, annotated with UMLS concepts for three semantic
types: disorders (DISO), chemicals (CHEM), and anatomy (ANATOMY). We organized this dataset
into three main components: a training set used to explore data characteristics; a development set
that includes mentions labeled with UMLS concepts, which we used to optimize hyperparameters and
evaluate models; and a test set, which is unlabeled and used to generate final predictions. In addition,
the dataset includes a vocabulary of UMLS concepts with names, CUI codes, and semantic types, filtered
to include only English terms.

Data preprocessing was a crucial step to ensure high-quality inputs to the model. First, we converted
all text to lowercase. We removed non-alphanumeric characters using regular expressions, which
standardized the mentions and vocabulary concepts. Next, we applied model-specific tokenizers
(SapBERT, PubMedBERT, and Stanford BioBERT) to prepare the input sequences, ensuring a consistent
representation. We also analyzed the tokenized mention lengths and found the average length to be
significantly below 16 tokens. It led us to set this value as the maximum sequence length. This process
reduced data noise and optimized computational resource usage during embedding generation, enabling
efficient GPU processing.

3.3. Model Design

The model design combines a transformer-based architecture for embedding generation with a ranking
and re-ranking process that refines predictions. This approach takes advantage of the specialization



of selected models in the biomedical domain, ensuring robust semantic representations, and adds a
re-ranking component that improves accuracy by integrating complementary textual information.

We selected four models for embedding generation: SapBERT, pre-trained on PubMed and optimized
for semantic similarity tasks [10]; PubMedBERT, trained on PubMed abstracts to capture biomedical
language nuances [18]; Stanford BioBERT, an adaptation of BERT for the biomedical domain [17]; and a
baseline model (GEBERT) [22] as a reference point. Each model generates embeddings using the [CLS]
token representation from the last layer, processed in batches of 128 mentions and 200 concepts to
maximize GPU A100 efficiency.

We based the initial ranking process on cosine similarity between the embeddings of mentions and
vocabulary concepts, selecting the top 50 most similar candidates (𝑘initial = 50). This computation is
performed in batches to handle the large vocabulary size, releasing the memory after each iteration
using torch.cuda.empty_cache(). We then implemented a re-ranking step that combines three
similarity measures:

• Cosine similarity, derived from the embeddings, captures deep semantic relationships.
• Jaccard similarity, computed as the intersection over word sets’ union using space-based tok-

enization, evaluates lexical similarity.
• Levenshtein similarity, based on normalized edit distance, measuring character-level textual

differences.

We defined the combined re-ranking score as:

Combined Score = 𝑤𝑐 · Cosine + 𝑤𝑗 · Jaccard + 𝑤𝑙 · Levenshtein (1)

where𝑤𝑐, 𝑤𝑗 , and𝑤𝑙 are weights optimized via grid search on the development set, with the constraint
𝑤𝑐 + 𝑤𝑗 + 𝑤𝑙 = 1. After evaluating multiple combinations, we determined the optimal weights for
SapBERT to be 𝑤𝑐 = 0.7, 𝑤𝑗 = 0.1, and 𝑤𝑙 = 0.2. This process selects the final five candidates
(𝑘final = 5), significantly improving accuracy by integrating both semantic and textual information.

3.4. System Phases

We organized the system pipeline into five interconnected phases to ensure efficient processing and
optimal performance. In the first phase, we load data from Hugging Face and apply the previously
described preprocessing, standardizing the text and preparing inputs for the models. This stage lays the
foundation for uniform and noise-free processing (see Figure 1).

In the second phase, we generate initial predictions using the transformer models. For each entity
type (DISO, CHEM, ANATOMY), we encode mentions and the corresponding vocabulary concepts,
compute cosine similarity, and select the top 50 candidates. This category-based approach ensures that
predictions respect the semantic constraints of the vocabulary.

The third phase involves re-ranking optimization. Through grid search, we evaluate combinations of
weights for the similarity measures, using the development set to maximize metrics such as Acc@1,
Acc@5, and MRR. This process identified the optimal weights, which were then applied in the fourth
phase to reorder candidates and generate final predictions for both the development and test sets.

Finally, in the fifth phase, we evaluate the development set’s system performance, analyzing global and
entity-type-specific metrics. We also examined errors to identify limitations and potential improvements.
This iterative approach allowed us to refine the system and ensure robust predictions on the test set.

3.5. Implementation

The system was implemented in Python 3.8, leveraging specialized libraries to ensure efficient and
scalable development. We used the Hugging Face Transformers library [28] to load the models and
their tokenizers. At the same time, PyTorch served as the deep learning framework for GPU A100
computation. In addition, we used Pandas [29] for data manipulation, Scikit-learn [30] for metric
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Figure 1: System pipeline for biomedical entity linking with hybrid re-ranking.

calculation, Tqdm for progress monitoring, and Python-Levenshtein for efficient implementation of the
Levenshtein distance.

We executed the system on Google Colab, optimizing resource usage with batch sizes of 128 for
mentions and 200 for vocabulary concepts and periodic GPU memory clearance. Key parameters included
a maximum sequence length of 16 tokens, 50 initial candidates (𝑘initial), and five final candidates (𝑘final).
This configuration balanced accuracy and computational efficiency, making it feasible to process large
volumes of data in a resource-constrained environment.

4. Results and Analysis

In this section, we present the results obtained from evaluating our system on the development set
of the BioNNE-L dataset, as well as the official results of subtask 1 (English) of the BioNNE-L 2025-1



Table 2
Performance of the Models on the Development Set

Model 𝐴𝑐𝑐@1 𝐴𝑐𝑐@5 MRR

SapBERT 0.690 0.801 0.741
PubMedBERT 0.627 0.712 0.666
Stanford BioBERT 0.615 0.703 0.658
SapBERT (re-ranked) 0.718 0.802 0.750
PubMedBERT (re-ranked) 0.648 0.718 0.674
Stanford (re-ranked) 0.638 0.715 0.668
Baseline 0.605 0.797 0.687

challenge, in which we participated under the name of our research group, verbanexialab. Through a
comparative analysis of the evaluated models and their re-ranked variants, we highlight the effectiveness
of our SapBERT-based approach with re-ranking, which achieved the best performance both on the
development set and in the competition. Below, we detail the results, analyze the factors contributing
to the success, and reflect on the limitations and opportunities for improvement.

4.1. Results on the Development Set

To evaluate our system’s performance, we implemented seven configurations on the development set:
SapBERT, PubMedBERT, Stanford BioBERT, their re-ranked versions with a combination of cosine,
Jaccard, and Levenshtein similarities, and a baseline model [22]. The metrics used were Accuracy@1
(𝐴𝑐𝑐@1), which measures the proportion of mentions correctly linked to the first candidate; Accuracy@5
(𝐴𝑐𝑐@5), which considers the top five candidates; and Mean Reciprocal Rank (MRR), which evaluates
the position of the correct candidate in the ranking. These metrics provide a comprehensive view of the
accuracy and quality of the ranking generated by each model.

Table 2 summarizes the results of the seven configurations. SapBERT, with re-ranking, achieved
the best performance, with an 𝐴𝑐𝑐@1 of 0.718, an 𝐴𝑐𝑐@5 of 0.802, and an MRR of 0.750. This
model consistently outperformed the other configurations, followed by SapBERT without re-ranking
(𝐴𝑐𝑐@1 = 0.690, 𝐴𝑐𝑐@5 = 0.801, 𝑀𝑅𝑅 = 0.741) and PubMedBERT with re-ranking (𝐴𝑐𝑐@1 =
0.648, 𝐴𝑐𝑐@5 = 0.718, 𝑀𝑅𝑅 = 0.674). While competitive in 𝐴𝑐𝑐@5 (0.797), the baseline showed a
significantly lower 𝐴𝑐𝑐@1 (0.605), indicating a reduced ability to prioritize the correct candidate in the
first position.

Re-ranking improved the performance of all models, with a notable increase in 𝐴𝑐𝑐@1 for SapBERT
(from 0.690 to 0.718) and PubMedBERT (from 0.627 to 0.648). This result underscores the importance
of integrating lexical measures (Jaccard and Levenshtein) with cosine similarity based on embeddings,
enabling the system to address semantic ambiguities and improve candidate prioritization. Although
detailed metrics by entity type (DISO, CHEM, ANATOMY) were unavailable, analysis of the logs suggests
that performance was more robust for DISO entities, likely due to their greater representation in the
vocabulary and training data.

4.2. Results in the Competition

We participated in subtask 1 (English) of the BioNNE-L 2025-1 challenge, representing the verbanexialab
group. We submitted two runs using SapBERT with re-ranking: the first combines cosine and Jaccard
similarities, and the second incorporates Levenshtein similarities. According to the logs, the first
submission achieved an 𝐴𝑐𝑐@1 of 0.696, an 𝐴𝑐𝑐@5 of 0.797, and an MRR of 0.735, while the second
showed no statistically significant improvement, reaching an 𝐴𝑐𝑐@1 of 0.696, an 𝐴𝑐𝑐@5 of 0.801, and
an MRR of 0.736. This modest improvement suggests that including Levenshtein similarity had limited
impact on prioritizing correct candidates.

The official competition results, presented in Table 3, confirm the leadership of our approach. Ver-



Table 3
Official Results of Subtask 1 (English)

Team 𝐴𝑐𝑐@1 𝐴𝑐𝑐@5 MRR Position (𝐴𝑐𝑐@1)

verbanexialab 0.70 0.80 0.74 1∘

droidlyx86 0.66 0.84 0.74 2∘

BlancaPlanca 0.64 0.83 0.72 3∘

EeyoreLee 0.64 0.82 0.71 4∘

Andoree 0.57 0.78 0.66 5∘

Antoinel 0.51 0.79 0.62 6∘

banexialab secured first place in 𝐴𝑐𝑐@1 (0.70), fourth in 𝐴𝑐𝑐@5 (0.80), and second in MRR (0.74),
positioning itself as the team with the best overall performance in the English entity linking task.
Compared to other competitors, our system excelled in first-prediction accuracy. However, it showed a
slightly lower 𝐴𝑐𝑐@5 than the top performers in this metric, suggesting room to optimize the diversity
of candidates in the top-5.

We attribute the differences between the development set metrics (𝐴𝑐𝑐@1 = 0.718, 𝐴𝑐𝑐@5 = 0.802,
𝑀𝑅𝑅 = 0.750) and the official results (𝐴𝑐𝑐@1 = 0.70, 𝐴𝑐𝑐@5 = 0.80, 𝑀𝑅𝑅 = 0.74) to variations in
the distribution of mentions between the development and test sets. Nevertheless, the consistency of
the results validates the robustness of our pipeline.

4.3. Analysis of Results

We can attribute the success of SapBERT with re-ranking to several key factors. First, SapBERT,
pre-trained on PubMed focusing on semantic similarity, generates embeddings that capture complex
contextual relationships in the biomedical domain, outperforming PubMedBERT and Stanford BioBERT
across all metrics. Incorporating lexical measures in re-ranking, particularly Jaccard and Levenshtein,
allowed the system to correct errors in cases where cosine similarity alone was insufficient, such as
mentions with high lexical ambiguity or synonyms not captured by the embeddings. For example,
Levenshtein similarity was beneficial for handling orthographic variations or structurally similar terms,
though its contribution was not statistically significant.

Comparative analysis reveals that re-ranking was critical to performance. While SapBERT, without re-
ranking, already offered competitive results (𝐴𝑐𝑐@1 = 0.690), the addition of Jaccard and Levenshtein
increased 𝐴𝑐𝑐@1 by 2.8%, demonstrating the value of combining semantic and lexical approaches.
This effect was less pronounced in PubMedBERT and Stanford BioBERT, likely due to the lower initial
quality of their embeddings in the context of this task. While strong in 𝐴𝑐𝑐@5, the baseline showed
limitations in 𝐴𝑐𝑐@1, suggesting that its general training was less aligned with the specific needs of
biomedical entity linking.

Despite the positive results, we identified some limitations. The lack of fine-tuning of pre-trained
models, due to time constraints, may have restricted their ability to capture dataset-specific nuances of
BioNNE-L. Additionally, performance on the test set was slightly lower than expected, which could
indicate a more challenging distribution of mentions or ambiguities not addressed by our system. For
instance, mentions with multiple valid UMLS concepts may have led to false negatives in 𝐴𝑐𝑐@1. For
future improvements, we consider fine-tuning SapBERT on the training set, incorporating additional
context (such as complete sentences), and exploring ensemble methods to combine the strengths of
multiple models.

5. Conclusions

This work presented an effective biomedical entity linking system developed for the BioNNE-L 2025-1
challenge. By leveraging SapBERT and a re-ranking strategy based on semantic and lexical similarity,
our approach achieved outstanding performance, positioning verbanexialab as the top performer in



Subtask 1 (English). This section summarizes the main findings, outlines relevant limitations, and
proposes future research directions.

5.1. General Conclusions

The proposed pipeline combined embeddings generated by SapBERT with a re-ranking module that
integrated cosine, Jaccard, and Levenshtein similarity measures. This design enabled the accurate
mapping of textual mentions to UMLS concepts, achieving an Accuracy@1 of 0.718 and a Mean Reciprocal
Rank (MRR) of 0.750 on the development set. In the official competition, our system attained an
Accuracy@1 of 0.70, ranking first in this metric.

These results validate the synergy between high-quality semantic representations and complementary
lexical strategies. Moreover, they demonstrate the importance of systematic optimization through
grid search to enhance overall performance. The re-ranking strategy proved to be especially effective
in addressing ambiguities and refining the top predictions generated by the initial embedding-based
search.

5.2. Limitations and Challenges

Despite the strong performance, we encountered several limitations and challenges:

• Lack of task-specific fine-tuning: Due to time constraints, SapBERT was not fine-tuned on
the BioNNE-L dataset, which may have limited its ability to disambiguate highly ambiguous or
context-sensitive mentions.

• Computational constraints: The embedding generation and similarity computations were
resource-intensive, particularly in constrained environments like Google Colab. It required careful
batching strategies and memory management.

• Hyperparameter sensitivity: The re-ranking module’s effectiveness depended on an optimal
weighting of similarity metrics. Hyperparameter tuning through exhaustive grid search was
computationally expensive and time-consuming.

These challenges underline the need for more efficient and scalable solutions, especially for real-world
deployment in low-resource settings.

5.3. Future Work

To further enhance and expand the system, we propose the following research directions:

• Fine-tuning SapBERT: Adapting the model with domain-specific examples from the BioNNE-L
dataset could improve disambiguation and generalization.

• Incorporating contextual information: Including sentence-level or document-level context
may enrich embeddings and improve performance on mentions with limited local clues.

• Model ensembling: Integrating multiple biomedical language models (e.g., PubMedBERT,
BioBERT) through voting or joint learning could increase robustness across domains.

• Multilingual adaptation: Expanding the system to handle Spanish (Subtask 2) using multilingual
encoders (e.g., XLM-RoBERTa) or translation-based preprocessing could extend its usability.

• Efficiency optimization: Implementing approximate nearest neighbor search (e.g., FAISS),
model distillation, and parallel processing would help deploy the system in resource-constrained
environments.



5.4. Final Remarks

The results confirm the effectiveness of our SapBERT-based pipeline with re-ranking, which achieved
state-of-the-art performance in the BioNNE-L 2025-1 challenge. The combination of semantic em-
beddings and lexical re-ranking proved essential for addressing the complexities of biomedical entity
linking. Our work provides a solid foundation for future advances in this field, aiming toward more
accurate, scalable, and multilingual solutions in biomedical natural language processing.

Acknowledgments

We dedicate this work to the master’s degree scholarship program in Engineering at the Universidad
Tecnológica de Bolívar (UTB) in Cartagena, Colombia. We extend our deepest gratitude to the VerbaNex
AI Lab team for their dedication, collaboration, and continuous support of our research endeavors.

Declaration on Generative AI

During the preparation of this work, the author(s) used Grok 3 by xAI, Napkin ai in order to: Grammar
and spelling check, Improve writing style, Paraphrase and reword and Generate images 1. After
using this tool(s)/service(s), the author(s) reviewed and edited the content as needed and take(s) full
responsibility for the publication’s content.

References

[1] Y. Park, G. Son, M. Rho, Biomedical Flat and Nested Named Entity Recognition: Meth-
ods, Challenges, and Advances, Applied Sciences (Switzerland) 14 (2024). URL: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85207344630&doi=10.3390%2fapp14209302&
partnerID=40&md5=e9f41f3b900eedc91eea9be8bca9d1ea. doi:10.3390/app14209302.

[2] V. Davydova, N. Loukachevitch, E. Tutubalina, Overview of BioNNE Task on Biomedical Nested
Named Entity Recognition at BioASQ 2024, in: CEUR Workshop Proceedings, volume 3740, 2024,
pp. 28 – 34. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201132598&partnerID=
40&md5=4b992bac9e07d3cb9c066a2b1914cdf0.

[3] D. Xu, Z. Zhang, S. Bethard, A generate-and-rank framework with semantic type
regularization for biomedical concept normalization, in: Proceedings of the An-
nual Meeting of the Association for Computational Linguistics, 2020, pp. 8452 – 8464.
URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095698726&doi=10.18653%2fv1%
2f2020.acl-main.748&partnerID=40&md5=ca3084fb6fbf947b658918601bf259a2. doi:10.18653/
v1/2020.acl-main.748.

[4] N. Loukachevitch, A. Sakhovskiy, E. Tutubalina, Biomedical Concept Normalization over Nested
Entities with Partial UMLS Terminology in Russian, in: 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main
Conference Proceedings, 2024, pp. 2383 – 2389. URL: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85195990032&partnerID=40&md5=1eb947c6153b4b91a6279dea7a224320.

[5] S. Chakraborty, H. Raj, S. Gureja, T. Jain, A. Hassan, S. Basu, Evaluating the Robustness of
Biomedical Concept Normalization, in: Proceedings of Machine Learning Research, volume
203, 2023, pp. 63 – 73. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164568069&
partnerID=40&md5=3fb1dc5f4115c6636a114d705404f89d.

[6] A. Nentidis, G. Katsimpras, A. Krithara, M. Krallinger, M. Rodríguez-Ortega, E. Rodriguez-López,
N. Loukachevitch, A. Sakhovskiy, E. Tutubalina, D. Dimitriadis, G. Tsoumakas, G. Giannakoulas,
A. Bekiaridou, A. Samaras, M. Di Nunzio, N. Ferro, S. Marchesin, M. Martinelli, G. Silvello,
G. Paliouras, Overview of BioASQ 2025: The thirteenth BioASQ challenge on large-scale biomedical
semantic indexing and question answering, in: J. Carrillo-de Albornoz, J. Gonzalo, L. Plaza,

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207344630&doi=10.3390%2fapp14209302&partnerID=40&md5=e9f41f3b900eedc91eea9be8bca9d1ea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207344630&doi=10.3390%2fapp14209302&partnerID=40&md5=e9f41f3b900eedc91eea9be8bca9d1ea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207344630&doi=10.3390%2fapp14209302&partnerID=40&md5=e9f41f3b900eedc91eea9be8bca9d1ea
http://dx.doi.org/10.3390/app14209302
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201132598&partnerID=40&md5=4b992bac9e07d3cb9c066a2b1914cdf0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201132598&partnerID=40&md5=4b992bac9e07d3cb9c066a2b1914cdf0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095698726&doi=10.18653%2fv1%2f2020.acl-main.748&partnerID=40&md5=ca3084fb6fbf947b658918601bf259a2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095698726&doi=10.18653%2fv1%2f2020.acl-main.748&partnerID=40&md5=ca3084fb6fbf947b658918601bf259a2
http://dx.doi.org/10.18653/v1/2020.acl-main.748
http://dx.doi.org/10.18653/v1/2020.acl-main.748
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195990032&partnerID=40&md5=1eb947c6153b4b91a6279dea7a224320
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195990032&partnerID=40&md5=1eb947c6153b4b91a6279dea7a224320
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164568069&partnerID=40&md5=3fb1dc5f4115c6636a114d705404f89d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164568069&partnerID=40&md5=3fb1dc5f4115c6636a114d705404f89d


A. García Seco de Herrera, J. Mothe, F. Piroi, P. Rosso, D. Spina, G. Faggioli, N. Ferro (Eds.),
Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Sixteenth
International Conference of the CLEF Association (CLEF 2025), 2025.

[7] A. Sakhovskiy, N. Loukachevitch, E. Tutubalina, Overview of the BioASQ BioNNE-L Task on
Biomedical Nested Entity Linking in CLEF 2025, in: G. Faggioli, N. Ferro, P. Rosso, D. Spina (Eds.),
CLEF 2025 Working Notes, 2025.

[8] N. Loukachevitch, S. Manandhar, E. Baral, I. Rozhkov, P. Braslavski, V. Ivanov, T. Batura, E. Tu-
tubalina, NEREL-BIO: A Dataset of Biomedical Abstracts Annotated with Nested Named Entities,
Bioinformatics (2023). doi:10.1093/bioinformatics/btad161, btad161.

[9] N. Loukachevitch, A. Sakhovskiy, E. Tutubalina, Biomedical concept normalization over nested
entities with partial UMLS terminology in Russian, in: Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
2024), ELRA and ICCL, Torino, Italia, 2024, pp. 2383–2389. URL: https://aclanthology.org/2024.
lrec-main.213/.

[10] F. Liu, E. Shareghi, Z. Meng, M. Basaldella, N. Collier, Self-Alignment Pretraining for Biomedical
Entity Representations, 2021. URL: http://arxiv.org/abs/2010.11784. doi:10.48550/arXiv.2010.
11784, arXiv:2010.11784.

[11] H. Cho, D. Choi, H. Lee, Re-Ranking System with BERT for Biomedical Concept Normaliza-
tion, IEEE Access 9 (2021) 121253 – 121262. URL: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85113874557&doi=10.1109%2fACCESS.2021.3108445&partnerID=40&md5=
4522cf8c7453d1e46db19e898a325b94. doi:10.1109/ACCESS.2021.3108445.

[12] Y.-C. Lin, P. Hoffmann, E. Rahm, Enhancing Cross-lingual Biomedical Concept Normaliza-
tion Using Deep Neural Network Pretrained Language Models, SN Computer Science 3
(2022). URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134499273&doi=10.1007%
2fs42979-022-01295-7&partnerID=40&md5=ef1d7b7dbc84be79f8d71381528f2d17. doi:10.1007/
s42979-022-01295-7.

[13] D. Xu, S. Bethard, Triplet-Trained Vector Space and Sieve-Based Search Improve Biomedical
Concept Normalization, in: Proceedings of the 20th Workshop on Biomedical Language
Processing, BioNLP 2021, 2021, pp. 11 – 22. URL: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85123939640&doi=10.18653%2fv1%2f2021.bionlp-1.2&partnerID=40&md5=
165ef54f7b633bbb8c759f96f140ffde. doi:10.18653/v1/2021.bionlp-1.2.

[14] H. Xu, J. Zhang, Z. Wang, S. Zhang, M. Bhalerao, Y. Liu, D. Zhu, S. Wang, Graph-
Prompt: Graph-Based Prompt Templates for Biomedical Synonym Prediction, in: Proceed-
ings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, volume 37, 2023, pp.
10576 – 10584. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168241578&doi=
10.1609%2faaai.v37i9.26256&partnerID=40&md5=55781b35c2a822460800689ad2d69c9f. doi:10.
1609/aaai.v37i9.26256.

[15] M. Golam Sohrab, M. Shoaib Bhuiyan, Span-based Neural Model for Multilingual Flat and
Nested Named Entity Recognition, in: 2021 IEEE 10th Global Conference on Consumer
Electronics, GCCE 2021, 2021, pp. 80 – 84. URL: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85123502783&doi=10.1109%2fGCCE53005.2021.9621966&partnerID=40&md5=
0cb949b9dfa7534cefc090818bc016f5. doi:10.1109/GCCE53005.2021.9621966.

[16] C. Tang, B. Yang, K. Zhao, B. Lv, C. Xiao, F. Guerin, C. Lin, BioMNER: A Dataset for Biomedical
Method Entity Recognition, 2024. URL: http://arxiv.org/abs/2406.20038. doi:10.48550/arXiv.
2406.20038, arXiv:2406.20038.

[17] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, J. Kang, BioBERT: a pre-trained biomedical language
representation model for biomedical text mining, Bioinformatics 36 (2020) 1234–1240. URL: https:
//academic.oup.com/bioinformatics/article/36/4/1234/5566506. doi:10.1093/bioinformatics/
btz682.

[18] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, H. Poon, Domain-
Specific Language Model Pretraining for Biomedical Natural Language Processing, ACM Transac-
tions on Computing for Healthcare 3 (2022) 1–23. URL: https://dl.acm.org/doi/10.1145/3458754.

http://dx.doi.org/10.1093/bioinformatics/btad161
https://aclanthology.org/2024.lrec-main.213/
https://aclanthology.org/2024.lrec-main.213/
http://arxiv.org/abs/2010.11784
http://dx.doi.org/10.48550/arXiv.2010.11784
http://dx.doi.org/10.48550/arXiv.2010.11784
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113874557&doi=10.1109%2fACCESS.2021.3108445&partnerID=40&md5=4522cf8c7453d1e46db19e898a325b94
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113874557&doi=10.1109%2fACCESS.2021.3108445&partnerID=40&md5=4522cf8c7453d1e46db19e898a325b94
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113874557&doi=10.1109%2fACCESS.2021.3108445&partnerID=40&md5=4522cf8c7453d1e46db19e898a325b94
http://dx.doi.org/10.1109/ACCESS.2021.3108445
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134499273&doi=10.1007%2fs42979-022-01295-7&partnerID=40&md5=ef1d7b7dbc84be79f8d71381528f2d17
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134499273&doi=10.1007%2fs42979-022-01295-7&partnerID=40&md5=ef1d7b7dbc84be79f8d71381528f2d17
http://dx.doi.org/10.1007/s42979-022-01295-7
http://dx.doi.org/10.1007/s42979-022-01295-7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123939640&doi=10.18653%2fv1%2f2021.bionlp-1.2&partnerID=40&md5=165ef54f7b633bbb8c759f96f140ffde
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123939640&doi=10.18653%2fv1%2f2021.bionlp-1.2&partnerID=40&md5=165ef54f7b633bbb8c759f96f140ffde
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123939640&doi=10.18653%2fv1%2f2021.bionlp-1.2&partnerID=40&md5=165ef54f7b633bbb8c759f96f140ffde
http://dx.doi.org/10.18653/v1/2021.bionlp-1.2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168241578&doi=10.1609%2faaai.v37i9.26256&partnerID=40&md5=55781b35c2a822460800689ad2d69c9f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168241578&doi=10.1609%2faaai.v37i9.26256&partnerID=40&md5=55781b35c2a822460800689ad2d69c9f
http://dx.doi.org/10.1609/aaai.v37i9.26256
http://dx.doi.org/10.1609/aaai.v37i9.26256
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123502783&doi=10.1109%2fGCCE53005.2021.9621966&partnerID=40&md5=0cb949b9dfa7534cefc090818bc016f5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123502783&doi=10.1109%2fGCCE53005.2021.9621966&partnerID=40&md5=0cb949b9dfa7534cefc090818bc016f5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123502783&doi=10.1109%2fGCCE53005.2021.9621966&partnerID=40&md5=0cb949b9dfa7534cefc090818bc016f5
http://dx.doi.org/10.1109/GCCE53005.2021.9621966
http://arxiv.org/abs/2406.20038
http://dx.doi.org/10.48550/arXiv.2406.20038
http://dx.doi.org/10.48550/arXiv.2406.20038
https://academic.oup.com/bioinformatics/article/36/4/1234/5566506
https://academic.oup.com/bioinformatics/article/36/4/1234/5566506
http://dx.doi.org/10.1093/bioinformatics/btz682
http://dx.doi.org/10.1093/bioinformatics/btz682
https://dl.acm.org/doi/10.1145/3458754


doi:10.1145/3458754.
[19] H. Rehana, B. Bansal, N. B. Çam, J. Zheng, Y. He, A. Özgür, J. Hur, Nested Named Entity Recognition

using Multilayer BERT-based Model, in: CEUR Workshop Proceedings, volume 3740, 2024, pp. 197
– 206. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201607294&partnerID=40&
md5=f27608db0f00609376e786a9b70f2a5b.

[20] I. Beltagy, K. Lo, A. Cohan, SciBERT: A pretrained language model for scientific text, in: K. Inui,
J. Jiang, V. Ng, X. Wan (Eds.), Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China, 2019,
pp. 3615–3620. URL: https://aclanthology.org/D19-1371/. doi:10.18653/v1/D19-1371.

[21] Z. Yuan, Z. Zhao, H. Sun, J. Li, F. Wang, S. Yu, Coder: Knowledge infused cross-lingual medical
term embedding for term normalization, Journal of Biomedical Informatics 126 (2020). URL:
https://arxiv.org/pdf/2011.02947. doi:10.1016/j.jbi.2021.103983.

[22] A. Sakhovskiy, N. Semenova, A. Kadurin, E. Tutubalina, Graph-enriched biomedical entity repre-
sentation transformer, in: Experimental IR Meets Multilinguality, Multimodality, and Interaction,
Springer Nature Switzerland, Cham, 2023, pp. 109–120.

[23] A. Sakhovskiy, N. Semenova, A. Kadurin, E. Tutubalina, Biomedical entity representation with
graph-augmented multi-objective transformer, in: K. Duh, H. Gomez, S. Bethard (Eds.), Find-
ings of the Association for Computational Linguistics: NAACL 2024, Association for Computa-
tional Linguistics, Mexico City, Mexico, 2024, pp. 4626–4643. URL: https://aclanthology.org/2024.
findings-naacl.288/. doi:10.18653/v1/2024.findings-naacl.288.

[24] W. Zhou, Biomedical Nested NER with Large Language Model and UMLS Heuristics, in: CEUR
Workshop Proceedings, volume 3740, 2024, pp. 245 – 252. URL: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85201611711&partnerID=40&md5=1b4328ffa7d6f96b80182e5b125f1b9c.

[25] Z. Tang, X. Kou, H. Xue, Y. Xia, Flat and Nested Protein Name Recognition Based on
BioBERT and Biaffine Decoder, Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 14954 LNBI (2024) 25
– 38. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200569965&doi=10.1007%
2f978-981-97-5128-0_3&partnerID=40&md5=ce4193e4330d571d18b55eddf0cca9bb. doi:10.1007/
978-981-97-5128-0_3.

[26] P. Wajsbürt, Y. Taillé, X. Tannier, Effect of Depth Order on Iterative Nested Named En-
tity Recognition Models, Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12721 LNAI (2021)
428 – 432. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111389101&doi=10.
1007%2f978-3-030-77211-6_50&partnerID=40&md5=eb7887578307ac7c79d408b879385b44. doi:10.
1007/978-3-030-77211-6_50.

[27] Y. Chen, Y. Hu, Y. Li, R. Huang, Y. Qin, Y. Wu, Q. Zheng, P. Chen, A Boundary Assembling
Method for Nested Biomedical Named Entity Recognition, IEEE Access 8 (2020) 214141 –
214152. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097203273&doi=10.1109%
2fACCESS.2020.3040182&partnerID=40&md5=07b5a95f99afde0916f466e234ed3c78. doi:10.1109/
ACCESS.2020.3040182.

[28] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, A. M. Rush, Huggingface’s transformers: State-of-the-art natural language
processing, 2020. URL: https://arxiv.org/abs/1910.03771. arXiv:1910.03771.

[29] W. McKinney, Data structures for statistical computing in python, in: S. van der Walt, J. Millman
(Eds.), Proceedings of the 9th Python in Science Conference, 2010, pp. 51–56.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay,
Scikit-learn: Machine learning in python, Journal of Machine Learning Research 12 (2011) 2825–
2830.

http://dx.doi.org/10.1145/3458754
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201607294&partnerID=40&md5=f27608db0f00609376e786a9b70f2a5b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201607294&partnerID=40&md5=f27608db0f00609376e786a9b70f2a5b
https://aclanthology.org/D19-1371/
http://dx.doi.org/10.18653/v1/D19-1371
https://arxiv.org/pdf/2011.02947
http://dx.doi.org/10.1016/j.jbi.2021.103983
https://aclanthology.org/2024.findings-naacl.288/
https://aclanthology.org/2024.findings-naacl.288/
http://dx.doi.org/10.18653/v1/2024.findings-naacl.288
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201611711&partnerID=40&md5=1b4328ffa7d6f96b80182e5b125f1b9c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201611711&partnerID=40&md5=1b4328ffa7d6f96b80182e5b125f1b9c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200569965&doi=10.1007%2f978-981-97-5128-0_3&partnerID=40&md5=ce4193e4330d571d18b55eddf0cca9bb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200569965&doi=10.1007%2f978-981-97-5128-0_3&partnerID=40&md5=ce4193e4330d571d18b55eddf0cca9bb
http://dx.doi.org/10.1007/978-981-97-5128-0_3
http://dx.doi.org/10.1007/978-981-97-5128-0_3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111389101&doi=10.1007%2f978-3-030-77211-6_50&partnerID=40&md5=eb7887578307ac7c79d408b879385b44
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111389101&doi=10.1007%2f978-3-030-77211-6_50&partnerID=40&md5=eb7887578307ac7c79d408b879385b44
http://dx.doi.org/10.1007/978-3-030-77211-6_50
http://dx.doi.org/10.1007/978-3-030-77211-6_50
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097203273&doi=10.1109%2fACCESS.2020.3040182&partnerID=40&md5=07b5a95f99afde0916f466e234ed3c78
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097203273&doi=10.1109%2fACCESS.2020.3040182&partnerID=40&md5=07b5a95f99afde0916f466e234ed3c78
http://dx.doi.org/10.1109/ACCESS.2020.3040182
http://dx.doi.org/10.1109/ACCESS.2020.3040182
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

	1 Introduction
	2 Related Work
	2.1 Background on BEL Approaches
	2.2 Pretrained Language Models
	2.3 Modern BEL Approaches and Challenges
	2.4 Our Proposed Approach

	3 Methodology
	3.1 General Approach
	3.2 Data and Preprocessing
	3.3 Model Design
	3.4 System Phases
	3.5 Implementation

	4 Results and Analysis
	4.1 Results on the Development Set
	4.2 Results in the Competition
	4.3 Analysis of Results

	5 Conclusions
	5.1 General Conclusions
	5.2 Limitations and Challenges
	5.3 Future Work
	5.4 Final Remarks


