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Abstract
This paper presents a condensed overview of TalentCLEF 2025, the first community evaluation initiative focused
on job and skill intelligence in multilingual settings. The campaign attracted 15 participating teams and 280
system submissions from academia and industry across four continents. Analysis of methodological trends reveals
a strong reliance on retrieval-based approaches, with selective integration of prompting, re-ranking, and external
knowledge. This report highlights key participation insights and methodological patterns that may inform the
design of future community challenges in natural language processing for labor market intelligence. TalentCLEF
2025 corpus: https://doi.org/10.5281/zenodo.14002665
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1. Introduction

This brief lab report complements the main TalentCLEF 2025 lab overview [1] by providing a focused
analysis of participation trends and methodological choices. Rather than revisiting motivation, corpus
creation, or evaluation setup in detail, our goal is to identify overarching patterns and extract insights
that may inform future shared tasks in this space.

As language technologies have become a strategic component of Human Capital Management
(HCM), they are increasingly used to develop systems that semantically analyze resumes and job
descriptions [2, 3, 4]. Despite the growing relevance of NLP in this field, progress has been partially
limited by the absence of shared benchmarks and standardized evaluation procedures. Open and
comparable evaluation frameworks are critical to advance the state of the art, especially in light of
persistent challenges such as multilingualism, domain adaptation, and algorithmic bias [5].

TalentCLEF aims to address this gap. As the first community evaluation campaign focused on job
and skill intelligence in multilingual contexts, it introduces two tasks that capture the complexity of
real-world labor data while emphasizing fairness and cross-lingual applicability. The sections that follow
provide a brief overview of task definitions, analyze participation trends, and examine methodological
strategies between teams, highlighting key lessons that may guide future shared evaluation initiatives
in this area.

2. Tasks

Task A – Multilingual Job Title Matching Participants were asked to retrieve and rank relevant job
titles similar to a given job title, in English, Spanish, German, and Chinese. The evaluation covered
monolingual and cross-lingual scenarios, as well as gender-based evaluation. The official evaluation
metrics are Mean Average Precision (MAP) and Rank Biased Overlap (RBO).
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Task B – Job Title-Based Skill Prediction Given a job title, the systems had to detect relevant
skills using a subset of ESCO skills. In this task only English was considered and the official evaluation
metric was the Mean Average Precision.

Both corpora were built from real job offers and applications, manually annotated, and are publicly
available in Zenodo1. The official benchmark results can be accessed via the task website2, and the
evaluation platform remains available on Codabench for Task A 3 and Task B 4.

3. Participation

TalentCLEF 2025 included 15 teams that developed a total of 280 system runs for the task. In particular,
Task A had 12 participants and Task B had 8 teams.

Figure 1 shows a global map with the location of participating institutions, as well as their participation
in Task A and/or B. Teams came from Europe, America, Africa, and Asia. Most of them came from
universities and research centers, which shows that there is a strong interest from academia in working
with NLP applied to Human Resources. However, with the exception of TechWolf, industry participation
was limited, indicating that companies may still be reluctant to engage openly in this kind of shared
evaluation initiative.

Figure 1: Geographical distribution of the institutions participating in TalentCLEF 2025. The figure also shows
whether each institution submitted systems to Task A, Task B, or both. In some cases, more than one team from
the same institution participated.

4. Methodologies

An analysis of the technologies used in the submitted systems highlights the central role of retrieval-
based methods in both Task A and Task B for identifying relevant elements given a query, despite the
order not being relevant in the evaluation. As shown in Figure 2, almost all participating teams relied on
1TalentCLEF Zenodo: https://doi.org/10.5281/zenodo.14002665
2Full TalentCLEF 2025 results: https://talentclef.github.io/talentclef/docs/talentclef-2025/results
3Task A Codabench: https://www.codabench.org/competitions/5842/
4Task B Codabench: https://www.codabench.org/competitions/7059/
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retrieval mechanisms, while only a subset incorporated complementary techniques such as prompting
with large language models (LLM) or re-ranking strategies. This trend underscores the foundational
role of retrieval in these relevance tasks as used in previously published literature [6, 7]. Although the
tasks did not explicitly provide contextual information, many participants opted to enrich their systems
using external knowledge sources, such as controlled vocabularies like ESCO. Moreover, some teams
used large language models to generate synthetic data, in order to enhance the retrieval of relevant
elements and improve overall performance.

(a) Methods used in Task A (b) Methods used in Task B

Figure 2: Overview of methods used by participating systems across Task A and Task B.

5. Conclusions

The first edition of TalentCLEF can be considered a success in terms of participation, attracting interest
from both academia, driven by the development of NLP technologies in underexplored areas, and
industry, which showed a willingness to openly share how their systems perform in open benchmark
settings. This level of involvement provides a strong foundation for organizing future editions of
TalentCLEF, with opportunities to further advance complex tasks such as Task B and to introduce new
challenges aimed at evaluating higher-risk systems, including those based on generative AI techniques.
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