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Abstract
Open-weight versions of large language models (LLMs) are rapidly advancing, with state-of-the-art models like
DeepSeek-V3 now performing comparably to proprietary LLMs. This progression raises the question of whether
small open-weight LLMs are capable of effectively replacing larger closed-source models. We are particularly
interested in the context of biomedical question-answering, a domain we explored by participating in Task 13B
Phase B of the BioASQ challenge. In this work, we compare several open-weight models against top-performing
systems such as GPT-4o, GPT-4.1, Claude 3.5 Sonnet, and Claude 3.7 Sonnet. To enhance question answering
capabilities, we use various techniques including retrieving the most relevant snippets based on embedding
distance, in-context learning, and structured outputs. For certain submissions, we utilize ensemble approaches to
leverage the diverse outputs generated by different models for exact-answer questions. Our results demonstrate
that open-weight LLMs are comparable to proprietary ones. In some instances, open-weight LLMs even surpassed
their closed counterparts, particularly when ensembling strategies were applied. All code is publicly available at
https://github.com/evidenceprime/BioASQ-13b.
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1. Introduction

In question answering tasks, access to domain-specific knowledge can significantly enhance response
quality, particularly when answers need to be grounded in provided supplementary materials.

The BioASQ Challenge [1] exemplifies such a task in biomedical domain. In this challenge, par-
ticipating systems are provided with relevant biomedical papers from the PubMed database. These
materials can then be leveraged to generate high-quality responses to the posed questions. The questions
themselves span four distinct types: yes/no, factoid, list, and summary questions.

Over the years, various approaches have been employed for question answering tasks in the BioASQ
Challenge. In its earliest editions, classic methods were applied, such as BM25, which ranked retrieved
documents based on their relevance to a question. Additionally, researchers applied similarity algorithms
using vector embeddings, algorithms based on linguistic annotations of texts, and early deep learning
models. For an extended period, BERT-based solutions, notably BioBERT [2] and PubMedBERT [3],
dominated these question answering tasks. Sequence-to-sequence models like T5 [4] also proved to be
useful.

However, since the global emergence of ChatGPT [5, 6] in 2022, large language models have sig-
nificantly reshaped the competitive landscape of question answering. Proprietary models, including
OpenAI’s offerings, Gemini [7], and Claude [8], initially dominated this field, fostering the belief that
creating robust LLMs requires a massive financial investment.

A significant shift began in 2024 and 2025, with a growing number of organizations publicly releasing
models featuring open weights and permissive licenses. Today, large open-weight models like Llama
3-405B [9], DeepSeek-V3 [10], and Qwen3-235B-A22B [11] are proving capable of challenging even the
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best proprietary models, as evidenced by platforms like the LM Arena [12]. Perhaps even more impactful
are the smaller open-weight models, which can run on consumer-grade machines and demonstrate
impressive competitiveness in tasks requiring access to domain-specific knowledge, especially within a
retrieval-augmented generation (RAG) setup.

This year marks the 13th edition of the BioASQ Challenge, and we participated in Task 13B, Phase B
[13]. Our primary objective was to investigate whether relatively small LLMs, primarily those up to 14
billion parameters, could effectively compete with more powerful proprietary models in this biomedical
question-answering context. To achieve this, we explored multiple strategies for enhancing our results.
We utilized in-context learning by leveraging the provided database of questions from previous BioASQ
challenge editions. Additionally, we used similarity algorithms using vector embeddings to select a
pertinent subset of snippets from the provided PubMed articles for each question. This paper details
the results from four question batches of Task 13B Phase B and discusses our conclusions.

2. Methodology

We experimented with numerous techniques to optimize performance in biomedical question answering.
The successful approaches implemented in our solutions are outlined below.

2.1. Best Snippets Selection

For our submissions, we selected the 10 best-matching snippets from the provided PubMedQA articles.
Our team experimented with varying snippet counts, validating them against datasets from previous
BioASQ challenge versions. This process led us to select 10 snippets as the optimal number, as it
consistently produced the most robust results. We utilized the sentence-transformers library [14]
with the nomic-embed-text-v1 [15] model. Our approach involved computing embeddings for all
snippets and the question. Subsequently, we calculated the cosine similarity between each (snippet,
question) pair to identify options with the highest similarity. Finally, these selected snippets were
provided to the model, ordered from most to least similar.

2.2. In-Context Learning

Research has demonstrated that in-context learning enhances the performance of language models in
diverse applications [5, 16]. We investigated how different models performed with in-context learning,
sourcing examples from previous BioASQ challenge editions. We used Qdrant [17], a vector database,
into which we inserted computed embeddings for all previous questions combined with their 10 best
snippets. Subsequently, for each new question, we queried the database for the most similar elements,
following the approach presented in [18]. Experimentally, we determined that 3 examples were optimal
for factoid and list questions, while a zero-shot approach was used for yes/no and summary type
questions.

2.3. Prompts

For all question types, we utilized hand-crafted prompts. As noted previously, a zero-shot prompting
approach was employed for yes/no and summary questions, given empirical observations that few-shot
prompting detrimentally affected performance for these specific categories. Conversely, for factoid
and list questions, few-shot prompting demonstrated clear benefits. Accordingly, we implemented
a 3-shot prompting strategy for these questions, based on insights gained through comprehensive
experimentation. The system prompts are detailed in Table 1, and the actual prompts guiding the
models to generate answers for all question types are presented in Table 2. We also briefly experimented
with DSPy [19] for the automated generation of prompts based on predefined input and output schemas
in batch 2. However, responses achieved using DSPy were slightly worse than those achieved with our



Table 1
System prompts for exact answers and ideal answers questions

Question type System prompt

Exact answer You are a biomedical AI expert specializing in question
answering, research, and entity extraction.

Ideal answer You are an expert in the medical texts summarization.
Answer the given question with a single paragraph
text and your answer should be based on the provided
context snippets. You should generate your response
in at most 2-3 sentences (30-50 words).

Table 2
Prompts for all types of questions in the Task 13B Phase B

Question type Prompt

Yes/No Given only the following SNIPPETS and QUESTION, answer
the QUESTION only with ’Yes’ or ’No’.

Factoid Extract key biomedical entities **strictly using the provided
SNIPPETS** to answer the QUESTION. List **1 to 5** of the
most relevant entities, ranked by confidence. **Never exceed 5
entities.** If more exist, return only the top 5. Prefer concise
entities and **remove redundant or longer variants** of the
same term. If no relevant entities exist, return ‘None.‘.

List Extract key biomedical entities **strictly using the provided
SNIPPETS** to answer the QUESTION. List **1 to 5** of the
most relevant entities. Prefer concise entities and **remove
redundant or longer variants** of the same term. If no relevant
entities exist, return ‘None‘.

Summary Answer the QUESTION by returning a single paragraph sized
text (use max 50 words) ideally summarizing only the most
relevant information in the SNIPPETS.

hand-crafted prompts. In the future, we plan to investigate whether automatic prompt optimization can
help by creating model-specific prompts.

2.4. Structured Outputs

We opted to use structured outputs to facilitate the extraction of LLM results in a predefined format.
We defined a JSON schema for response formatting, and subsequently followed a context-free grammar
(CFG) approach for it. We used CFG implementations introduced by model providers or accessed via
external libraries like Outlines [20] to guide the token sampling process. This methodology ensures
that the generated tokens adhere strictly to the schema, eliminating the need for complex regex-based
extraction from the model response.

2.5. Models

In our study, we utilized various LLMs, drawing from both open-weight and closed options. Our primary
focus was on relatively smaller open-weight models, specifically those with up to 14 billion parameters,
such as Phi-4 [21], Gemma-3-12B [22], Qwen2.5 14B [23], and Meditron Phi-4 14B [24]. For a third
batch of experiments, we expanded our testing to include quantized versions of Gemma3-27B [22] and
Mistral3-24B [25]. Although we briefly attempted to use HuatuoGPT-o1 [26], our limited exploration
of reasoning models meant we did not achieve strong results with it. We also incorporated several of



Figure 1: Ensembling strategy for factoid and list type of questions

the newest closed-source models, including recent generations of GPT (GPT-4o [27], GPT-4.1 [28]) and
Claude (Claude Sonnet 3.5 [29], Claude Sonnet 3.7 [30]).

2.5.1. Quantized Models

For batches 1-3, our experiments used open-weight models quantized to 4-bit. However, in the final
batch, we proposed solutions based on the full, unquantized versions of these models. Interestingly, in
both setups, the open-weight models proved to be competitive with the closed alternatives.

2.6. Ensembling Method

Ensembling methods are widely recognized as beneficial when combining responses from multiple
weaker models to achieve a single, stronger result. Various techniques exist for this purpose, including
majority voting, confidence scoring, and aggregation.

For yes/no questions, we applied a straightforward majority voting approach, where the final answer
was determined by the option chosen by the most models. For factoid and list questions, we developed
a more sophisticated aggregation method. This involved collecting responses from all models and
calculating the frequency of each distinct response. The most frequent response was then selected,
provided its number of appearances exceeded a predefined threshold. The process is visualized on
Figure 1. For factoid questions, we limited the output list to a maximum of five best responses, as
specified in the rules for this question type.

For later batches, we incorporated different classes of LLMs into our ensembling strategy. This
approach leveraged the observed benefits of integrating the diverse characteristics of various LLM
families such as Phi, Qwen, Mistral, and Gemma. As emphasized by Jiang et al. [31], different LLMs,
trained on varied data and architectures, inherently exhibit unique strengths that can be synergistic in
an ensemble.

3. Results

We participated solely in Task 13B, Phase B, of the BioASQ challenge [1][13]. This task encompasses
four types of questions: yes/no, factoid, and list questions, which are evaluated by matching exact
answers provided by the challenge organizers. In addition, there are summary questions that require an
ideal and free-form summary as a response, scored through automatic metrics and manual reviews. Our



approach involved testing multiple techniques and models across published question batches, leading
to distinct strategies for each.

3.1. System Definitions

For each submission, the rules detailed in 2 were applied. The models used to generate responses in
each submission, grouped by system name from 1 to 5, are presented below. The results for these
systems in all batches are summarized in Table 3, Table 4, Table 5, and Table 6. A detailed specification
of each submitted system follows:

Batch 1:

• EP-1: Phi-4
• EP-2: HuatuoGPT-o1 8B
• EP-3: Qwen2.5-14B
• EP-4: GPT-4o
• EP-5: Claude 3.5 Sonnet

Batch 2:

• EP-1: Ensemble - Gemma-3-12B, Qwen2.5-14B, Phi-4, GPT-4o, Claude 3.5 Sonnet
• EP-2: Claude 3.5 Sonnet
• EP-3: Phi-4
• EP-4: Phi-4 + DSPy prompt (only for factoid questions, without prompt optimization)
• EP-5: Qwen2.5-14B + DSPy prompt (only for factoid questions, without prompt optimization)

Batch 3:

• EP-1: Ensemble - Mistral-Small-3.1-24B, Gemma-3-12b, Gemma-3-27b, Qwen2.5-14B, Phi-4
• EP-2: Ensemble - GPT-4o, GPT-4.1, Claude 3.5 Sonnet
• EP-3: GPT-4.1
• EP-4: Phi-4

Batch 4:

• EP-1: Ensemble - GPT-4.1, GPT-4o, Claude 3.5 Sonnet, Claude 3.7 Sonnet
• EP-2: Ensemble - Gemma-3-12B, Qwen2.5-14B, Meditron3-Phi4-14B, Phi-4
• EP-3: Ensemble - Qwen2.5-14B, Meditron3-Phi4-14B, Phi-4, GPT-4.1, GPT-4o, Claude 3.5 Sonnet,

Claude 3.7 Sonnet
• EP-4: Ensemble - Qwen2.5-14B, Phi-4, GPT-4.1, GPT-4o, Claude 3.7 Sonnet
• EP-5: GPT-4.1

3.2. Exact Answers

We used distinct answering strategies for each batch, as detailed in 3.1. For batch 1, our primary focus
was on assessing the performance of individual models within each system. In batches 2 and 3, we also
incorporated ensembling techniques, specifically involving combinations of open-weight and selected
closed models. It is important to note that for these batches, we only used quantized versions of open
models. Finally, for the last batch, we conducted a comparative analysis between full open-weight
models and proprietary models.

The most advantageous approach for yes/no questions was difficult to determine. Proprietary models
achieved the best results in batches 1 and 4, while open-weight models dominated in the remaining. It
is shown in Table 3. The quality of the provided context appears to be a critical factor, with both model
types demonstrating sufficient capability to extract key information pertinent to the question.



Table 3
Task 13B, Phase B, Yes/No questions, evaluated by exact answer matches

Batch Nr Position System Accuracy F1 Yes F1 No Macro F1

Batch 1

1 of 72 EP-4 1.0 1.0 1.0 1.0
23 of 72 EP-1 0.9412 0.9565 0.9091 0.9328

Best result 1.0 1.0 1.0 1.0

Batch 2

1 of 72 EP-4 1.0 1.0 1.0 1.0
22 of 72 EP-5 0.9412 0.9524 0.9231 0.9377

Best result 1.0 1.0 1.0 1.0

Batch 3

1 of 66 EP-1 0.9545 0.9697 0.9091 0.9394
30 of 66 EP-2 0.9091 0.9412 0.8000 0.8706

Best result 0.9545 0.9697 0.9091 0.9394

Batch 4

1 of 79 EP-1 1.0 1.0 1.0 1.0
1 of 79 EP-3 1.0 1.0 1.0 1.0
3 of 79 EP-4 0.9615 0.9730 0.9333 0.9532
3 of 79 EP-5 0.9615 0.9730 0.9333 0.9532

Best result 1.0 1.0 1.0 1.0

List-based questions demonstrably pose a greater challenge for LLMs. Despite this, open-weight
models performed competitively to proprietary ones. Furthermore, we found that ensembling more
diverse models leads to improved scores.

In more detail, ensembling a mixture of open and closed models proved to be beneficial for factoid
questions. In batch 2, single proprietary models were outperformed by such ensembling mixture.
This solution also represented the best approach in batch 4, surpassing individual closed models and
ensembles composed solely of open-weight or closed models. In batch 3, multiple solution types
exhibited competitive performance. Table 4 provides a summary of the results for factoid questions
across all batches.

These insights are further corroborated by the findings from list questions, presented in Table 5.
Ensembling solely open-weight models or a mixture of both model types consistently yielded the best
approaches in batches 2, 3, and 4. For batch 1, the results between both model types were notably
similar. These observations strongly suggest that ensembles of open-weight models can address more
challenging tasks at a comparable, or even superior, level to closed models.

3.3. Ideal Answers

For the summary questions, we directly generated each summary using a chosen LLM and the prompt
detailed in Table 2, without employing ensembling techniques. For systems involving multiple LLMs,
we generated candidate summaries from all participating models for each question. The best summary
was then selected using a cross-encoder reranking approach. This method involved calculating the
similarity score between each generated summary and its corresponding question. The summary with
the highest score was subsequently selected. For this purpose, we used the BiomedBERT model [3] to
compute these similarity measures.

The recall scores for ROUGE metrics [32] achieved by our method for batches 2 and 4 were comparable
to those of the top-performing solutions. However, F1 scores for ROUGE metrics in these batches were
significantly lower. The results for summary questions can be seen in Table 6.

As shown in Table 6, Phi-4 exhibited the strongest performance among the evaluated LLMs, suggesting
that open-weight models can also be competitive for summary-based questions. However, a full analysis
of the responses to these questions requires manual scores that have not yet been published.



Table 4
Task 13B, Phase B, Factoid questions, evaluated by exact answer matches

Batch Nr Position System Strict Acc. Lenient Acc. MRR

Batch 1

18 of 67 EP-1 0.4231 0.5385 0.4808
18 of 67 EP-2 0.4231 0.5385 0.4808
25 of 67 EP-3 0.4231 0.5000 0.4615

Best result 0.5385 0.6538 0.5962

Batch 2

10 of 66 EP-1 0.5185 0.7407 0.6031
29 of 66 EP-2 0.5185 0.5556 0.5370

Best result 0.7037 0.7778 0.7037

Batch 3

1 of 59 EP-3 0.4000 0.6500 0.5100
5 of 59 EP-1 0.4000 0.5500 0.4625
7 of 59 EP-2 0.3500 0.6000 0.4542
14 of 59 EP-4 0.4000 0.4500 0.4250

Best result 0.4500 0.6500 0.5100

Batch 4

7 of 73 EP-3 0.5455 0.5909 0.5682
18 of 73 EP-4 0.5000 0.5909 0.5455
18 of 73 EP-1 0.5455 0.5455 0.5455

Best result 0.6364 0.6818 0.6364

Table 5
Task 13B, Phase B, List questions, evaluated by exact answer matches

Batch Nr Position System Precision Recall F-Measure

Batch 1

24 of 66 EP-5 0.5583 0.5019 0.5174
24 of 66 EP-3 0.5583 0.5019 0.5174

Best result 0.6226 0.6483 0.5327

Batch 2

2 of 66 EP-1 0.5685 0.7083 0.6027
6 of 66 EP-2 0.5877 0.5889 0.5721
10 of 66 EP-5 0.6044 0.5415 0.5538

Best result 0.6360 0.7132 0.6152

Batch 3

2 of 59 EP-1 0.6659 0.6530 0.6331
6 of 59 EP-3 0.5969 0.6787 0.6148
10 of 59 EP-2 0.6364 0.6075 0.6075
15 of 59 EP-4 0.5956 0.6141 0.5964

Best result 0.6659 0.6787 0.6337

Batch 4

12 of 73 EP-2 0.5709 0.6268 0.5896
13 of 73 EP-4 0.5650 0.6284 0.5859
17 of 73 EP-3 0.5355 0.6589 0.5768

Best result 0.7491 0.6791 0.6492

4. Conclusion

Our primary goal was to evaluate the competitive performance of open-weight LLMs against state-
of-the-art proprietary LLMs for biomedical question answering. To this end, we rigorously tested
numerous configurations, including both smaller open-weight models and various closed models. Our
results consistently demonstrated the competitiveness of ensembles of open models for BioASQ 13B
Phase B questions.

For yes/no questions, this thesis is supported by results from batches 2 and 3 (Table 3), where open-
weight models outperformed closed-weight models. This trend also holds for list-based questions, with
batches 2 through 4 demonstrating strong performance by open models on both factoid and list-type
questions (Tables 4 and 5, respectively). For summary questions, the open-weight model Phi-4 exhibited
promising performance in terms of ROUGE metrics in Batches 1 through 3, as detailed in Table 6.

This conclusion holds significant implications. The ability to use open-weight models negates the need
for proprietary solutions in every application. This is particularly relevant for applications involving



Table 6
Task 13B, Phase B, Summary questions requiring free-form ideal answers

Batch Nr System R-2 (Rec) R-2 (F1) R-SU4 (Rec) R-SU4 (F1)

Batch 1

EP-1 0.3594 0.2021 0.3585 0.1905
EP-4 0.3488 0.2021 0.3409 0.2309
Best result 0.4726 0.4122 0.4490 0.4008

Batch 2

EP-4 0.4213 0.2494 0.4165 0.2326
EP-3 0.3816 0.2990 0.3613 0.2725
Best result 0.4838 0.4417 0.4652 0.4287

Batch 3

EP-4 0.3550 0.2077 0.3545 0.1946
EP-3 0.3340 0.2308 0.3339 0.2175
Best result 0.4309 0.3520 0.4357 0.3439

Batch 4

EP-4 0.2947 0.2151 0.2973 0.2074
EP-3 0.2931 0.2158 0.3030 0.2092
Best result 0.4139 0.3604 0.3963 0.3515

highly restricted data that require on-premise deployment, a common scenario with medical data. In
such contexts, smaller self-deployable models offer a compelling and practical alternative.
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