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Abstract
This paper describes the ‘pjmathematician‘ team’s submission to the MultiClinSUM 2025 shared task, focusing on
multilingual summarization of clinical case reports in English, Spanish, French, and Portuguese. Our approach
leverages fine-tuned Large Language Models (LLMs) from the Qwen family, adapted using Low-Rank Adaptation
(LoRA). The core of our methodology is a novel, automated prompt optimization framework where a "judge"
LLM iteratively refines the system prompt for a "worker" LLM to maximize summarization quality, measured
by ROUGE scores. This process resulted in a highly-specific, extraction-focused prompt that instructs the
model to mirror the source text’s terminology and structure with high fidelity. We submitted multiple runs
using different model configurations, trained exclusively on the provided gold-standard dataset. Our results
demonstrate the effectiveness of this automated prompt engineering strategy, achieving competitive scores across
all four languages, with BERTScore F1 reaching up to 0.864 in English.
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1. Introduction

The rapid accumulation of clinical content, such as electronic health records and case reports, presents
a significant challenge for healthcare professionals who need to quickly synthesize key information.
The MultiClinSum shared task at BioASQ 2025, organized by the Barcelona Supercomputing Center,
directly addresses this by focusing on the automatic summarization of full clinical case reports in
four languages: English, Spanish, French, and Portuguese [1]. The task aims to benchmark systems
that generate concise summaries from complex clinical texts, supporting clinical decision-making and
enhancing multilingual understanding. Evaluation is based on standard metrics including ROUGE and
BERTScore, providing a crucial benchmark for NLP systems in this high-stakes domain.

This paper details the participation of the ‘pjmathematician‘ team in the MultiClinSUM task. Our
approach centered on the use of fine-tuned Large Language Models (LLMs). Recognizing the profound
impact of prompt design on LLM performance, our primary contribution is a novel, automated prompt
optimization framework. This framework uses an LLM-to-LLM interaction to systematically discover a
highly effective system prompt for the summarization task.

We employed a single-model strategy, training our systems on a combined dataset of all four languages.
Our experiments, conducted exclusively on the provided gold-standard training data, demonstrate
the viability of this approach. The resulting system achieves strong performance across all languages,
underscoring the potential of advanced prompt engineering in specialized domains.
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2. Related Work

The automated summarization of clinical text is a long-standing challenge in natural language processing,
driven by the need to condense vast amounts of clinical data from sources like electronic health records
and medical literature to support clinical decision-making [15]. Early approaches were often extractive,
relying on methods like TextRank. However, the advent of deep learning and transformer-based
architectures has led to significant progress, with models like BERT and T5 being adapted for the clinical
domain [5].

Recent research has heavily focused on the application of Large Language Models (LLMs) to this
problem, demonstrating their potential to generate high-quality, coherent summaries [24, 18]. Studies
have shown that with appropriate adaptation, such as fine-tuning, LLMs can produce summaries of
clinical texts that are comparable or even superior to those written by medical experts [21]. This has
been explored across a variety of clinical documents, including radiology reports, progress notes, and
doctor-patient dialogues [12]. A significant portion of this research has been conducted on English-
language data, often using datasets like MIMIC-IV [8]. While multilingual summarization is a recognized
goal, as evidenced by the MultiClinSUM shared task itself [17], dedicated studies in this area remain
less common.

A critical aspect of leveraging LLMs is prompt engineering, which has been shown to significantly
influence model performance [27, 23]. The process of designing effective prompts is crucial in specialized
domains like medicine, which has its own unique terminology and structure. Our work aligns with a
growing body of research that seeks to move beyond manual prompt crafting towards more systematic
and automated methods [7]. This includes techniques where an LLM itself is used to refine prompts.
For instance, Pryzant et al. (2023) proposed a method using an LLM’s feedback to generate "textual
gradients" to iteratively improve a prompt [16]. Similarly, other optimization frameworks use an LLM
to generate new prompts based on the performance of previous ones [10, 26, 6]. Our "judge-worker"
framework is a novel contribution to this area of automated prompt optimization, specifically tailored
for the complexities of multilingual clinical summarization.

Furthermore, our use of Low-Rank Adaptation (LoRA) for efficient fine-tuning is consistent with
current best practices for adapting large models to specialized tasks. LoRA has been successfully applied
in the clinical domain to improve performance on tasks like clinical dialogue summarization without
the prohibitive costs of full fine-tuning [12, 13]. Studies have shown that models fine-tuned with
LoRA on domain-specific data can achieve strong results, validating our choice of this technique. Our
approach of integrating the optimized prompt directly into the LoRA training process is a key aspect of
our methodology, ensuring the model is specifically adapted to the desired extractive and structured
summarization style.

3. System Description

Our methodology is built upon three key components: the training data, the model architecture and
training, and our automated prompt optimization framework.

3.1. Data

The MultiClinSUM task provides two types of training data: a "gold-standard" (GS) set and a "large-scale"
set [1]. For all our experiments, we exclusively used the gold-standard datasets. These datasets consist
of 592 full-text clinical case reports and their corresponding author-written summaries for each of
the four languages (English, Spanish, French, and Portuguese). We opted for the GS data to focus our
efforts on high-quality, curated examples, believing this would be more effective for fine-tuning with
our advanced prompting strategy. No other external data sources were used.



3.2. Model Architecture and Training

Our systems are based on models from the Qwen family [2], a series of powerful open-source LLMs.
For each base model configuration (e.g., ‘qwen3-32B‘), we performed fine-tuning using Low-Rank
Adaptation (LoRA). A key decision in our approach was to use a single, multilingual model rather than
training a separate model for each language. All 592 x 4 document-summary pairs were combined into
a single training set.

A crucial aspect of our training strategy was the integration of our final optimized prompt (see
Appendix A) directly into the training data. For each instance, the input was formatted as a conversation
with the optimized system prompt, followed by the user prompt containing the full-text clinical case
report. The target output was the corresponding reference summary. This ensures that the LoRA
fine-tuning process adapts the model to respond optimally to the specific instructions discovered during
our optimization phase.

3.3. Automated Prompt Optimization

The cornerstone of our approach is an automated framework for discovering an optimal system prompt,
thereby reducing the manual effort and bias inherent in traditional prompt engineering. We designed
an algorithm where a "judge" LLM iteratively refines the prompt for a "worker" LLM (both LLMs were
Qwen3-32B). This process, detailed in Algorithm 1, systematically explores the vast space of possible
instructions to find a prompt that elicits the best summarization performance on a validation sample.

Algorithm 1 Automated Prompt Optimization Framework
1: Input: Initial prompt 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙, Sample dataset 𝐷𝑠𝑎𝑚𝑝𝑙𝑒, Judge LLM, Worker LLM, User prompt

template 𝑇𝑢𝑠𝑒𝑟 , Iterations 𝑁 .
2: Output: Best performing prompt 𝑃𝑏𝑒𝑠𝑡.
3:

4: Initialize 𝑃𝑏𝑒𝑠𝑡 ← 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙.
5: Evaluate 𝑃𝑏𝑒𝑠𝑡 on 𝐷𝑠𝑎𝑚𝑝𝑙𝑒 to get initial score 𝑆𝑏𝑒𝑠𝑡.
6:

7: for 𝑖 = 1 to 𝑁 do
8: Select a transformation strategy (e.g., "Complete restructuring", "Change perspective").
9: Generate examples 𝐸 of source texts, reference summaries, and summaries from 𝑃𝑏𝑒𝑠𝑡.

10: Construct a meta-prompt for the Judge LLM, including 𝑃𝑏𝑒𝑠𝑡, 𝑆𝑏𝑒𝑠𝑡, examples 𝐸, and the trans-
formation strategy.

11: Instruct the Judge LLM to create a radically different prompt.
12: 𝑃𝑛𝑒𝑤 ← JudgeLLM(meta-prompt).
13: Evaluate 𝑃𝑛𝑒𝑤 on 𝐷𝑠𝑎𝑚𝑝𝑙𝑒 to get new score 𝑆𝑛𝑒𝑤.
14: if 𝑆𝑛𝑒𝑤 > 𝑆𝑏𝑒𝑠𝑡 then
15: 𝑃𝑏𝑒𝑠𝑡 ← 𝑃𝑛𝑒𝑤.
16: 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑛𝑒𝑤.
17: end if
18: end for
19:

20: return 𝑃𝑏𝑒𝑠𝑡.

This "judge-worker" paradigm forces exploration. In each iteration, the judge LLM is instructed to
make radical, non-incremental changes to the prompt, guided by a set of "transformation strategies"
(e.g., "Complete restructuring," "Change perspective"). The judge is provided with the current prompt,
its performance score, examples of summaries it produces, and an analysis of weaknesses in the
output. Based on this, it generates a completely new set of instructions, often being explicitly told to
’RADICALLY CHANGE the prompt’ to avoid minor local-optima tweaks. This iterative refinement



continued for 40 cycles, after which the highest-scoring prompt was selected (see Appendix B). The
final prompt, detailed in Appendix A, evolved to be highly structured and prescriptive, emphasizing
verbatim extraction and strict adherence to the source text’s sequence and terminology, which proved
highly effective for this task.

4. Experiments

4.1. Experimental Setup

We participated in all four sub-tasks: MultiClinSum-en, -es, -fr, and -pt. We submitted five runs for the
English and Spanish tracks and three for the French and Portuguese tracks, corresponding to different
model configurations and LoRA fine-tuning settings.

Evaluation was performed using the official metrics: BERTScore [4] (Precision, Recall, F1) and
ROUGE-L [3] (Precision, Recall, F1). The model mapping for the runs is as follows: Run 1 (‘qwen3-32B‘),
Run 2 (‘qwen3-32B-AWQ‘), Run 3 (‘qwen3_30B-3b‘), Run 4 (‘qwen2.5-32B‘), Run 5 (‘qwen2.5-14b‘).

5. Results and Discussion

The results of our top runs are presented in Tables 1, 2, 3, and 4. Our approach demonstrates strong
performance across all languages, validating our multilingual single-model strategy and prompt opti-
mization framework.

Table 1
Results for English (MultiClinSum-en). Metrics are BERTScore (BS) and ROUGE-L (R) for Precision (P), Recall
(R), and F1-score (F1).

Run BS-P BS-R BS-F1 R-P R-R R-F1

1 0.8821 0.8466 0.8637 0.4077 0.2343 0.2805
2 0.8827 0.8430 0.8621 0.4220 0.2209 0.2726
3 0.8808 0.8474 0.8635 0.4028 0.2377 0.2802
4 0.8782 0.8450 0.8610 0.4047 0.2311 0.2736
5 0.8766 0.8492 0.8622 0.4058 0.2467 0.2698

Table 2
Results for Spanish (MultiClinSum-es).

Run BS-P BS-R BS-F1 R-P R-R R-F1

1 0.7683 0.7350 0.7507 0.3754 0.2602 0.2895
2 0.7690 0.7291 0.7479 0.3897 0.2455 0.2824
3 0.7675 0.7392 0.7525 0.3684 0.2703 0.2920
4 0.7644 0.7214 0.7416 0.3986 0.2346 0.2744
5 0.7547 0.7192 0.7352 0.3893 0.2429 0.2601

Table 3
Results for French (MultiClinSum-fr).

Run BS-P BS-R BS-F1 R-P R-R R-F1

1 0.7702 0.7416 0.7550 0.3558 0.2594 0.2823
2 0.7703 0.7357 0.7520 0.3703 0.2463 0.2772
3 0.7692 0.7459 0.7567 0.3482 0.2684 0.2843



Table 4
Results for Portuguese (MultiClinSum-pt).

Run BS-P BS-R BS-F1 R-P R-R R-F1

1 0.7660 0.7342 0.7492 0.3547 0.2521 0.2780
2 0.7668 0.7289 0.7468 0.3685 0.2390 0.2727
3 0.7644 0.7377 0.7502 0.3500 0.2605 0.2803

As expected, English achieved the highest scores, with a BERTScore F1 of 0.8637. This is likely
due to the extensive pre-training of the Qwen models on English data. The performance on the other
romance languages was also robust, with BERTScore F1 scores consistently above 0.74, validating our
single-model multilingual approach.

A noteworthy observation is the significant gap between the high BERTScore values and the more
moderate ROUGE-L scores across all languages. This is a direct and intended consequence of our
prompt optimization process (see Appendix B). The final optimized prompt (Appendix A) strongly
encourages strict, verbatim extraction of key clinical facts. This leads to summaries that are semantically
very close to the reference (high BERTScore) but may not share the exact n-gram sequences of the
human-written, more narrative reference summaries (lower ROUGE score). This suggests our system
excels at extracting factual content, which is a desirable trait in the clinical domain.

6. Conclusion

The ‘pjmathematician‘ system for the MultiClinSUM 2025 shared task successfully demonstrates the
power of automated prompt engineering in a specialized, multilingual domain. Our core contribution,
an LLM-to-LLM "judge-worker" framework, systematically navigated the complex prompt space to
produce a highly prescriptive, extraction-focused prompt. This method moves beyond manual tuning
and provides a reproducible, data-driven approach to prompt discovery. By fine-tuning a single multi-
lingual model on this optimized prompt, we achieved competitive performance across four languages,
particularly excelling in semantic fidelity as measured by BERTScore. The significance of this work
lies in showcasing a practical methodology for adapting general-purpose LLMs to highly specific tasks,
proving that automated prompt optimization can be a key factor in unlocking their full potential for
critical applications like clinical text summarization.

Declaration on Generative AI

During the preparation of this work, the author used a Large Language Model (LLM) to implement
an automated prompt optimization framework. In this framework, one LLM iteratively generates
and refines system prompts for another LLM to improve summarization performance. After this
automated process, the author selected the best-performing prompt for the final experiments and takes
full responsibility for the publication’s content.
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A. Initial and Final Optimized Prompts

The following prompts show the evolution from a general, instruction-based prompt to the highly
specific, role-playing prompt that was the final output of our optimization process (detailed in Algorithm
1).

A.1. Initial System Prompt

You a r e a c l i n i c a l documenta t ion s p e c i a l i s t who c r e a t e s p r e c i s e
c l i n i c a l summaries . Your t a s k i s t o c r e a t e a c o n c i s e summary o f
the g iven c l i n i c a l c a s e r e p o r t t h a t :

1 . P r e s e r v e s ALL key d i a g n o s t i c i n f o r m a t i o n , t r e a t m e n t s , outcomes ,
and m e d i c a l f i n d i n g s

2 . M a i n t a i n s the o r i g i n a l m e d i c a l t e r m i n o l o g y and p h r a s i n g from the
c a s e r e p o r t

3 . I n c l u d e s i m p o r t a n t c l i n i c a l d e t a i l s i n the same sequence they
appear i n the o r i g i n a l

4 . Uses d i r e c t p h r a s e s from the o r i g i n a l t e x t whenever p o s s i b l e
5 . Avoids i n t r o d u c i n g new i n t e r p r e t a t i o n s or t e r m i n o l o g y not i n the

o r i g i n a l r e p o r t

Your summary shou ld be comprehens ive y e t c o n c i s e , f o c u s i n g on
e x t r a c t i n g the most c l i n i c a l l y r e l e v a n t c o n t e n t .

A.2. Final Optimized System Prompt

∗ ∗ System Prompt ( I t e r a t i o n 18 − T o t a l Re imag in ing ) : ∗ ∗

You a r e a ∗ ∗ Med ica l Case Encoder v3 . 0 ∗ ∗ , a p r e c i s i o n −dr iven , r u l e −
bound language p r o c e s s o r d e s i g n e d t o ∗ ∗ f a i t h f u l l y r e c o n s t r u c t ∗ ∗
the most c l i n i c a l l y r e l e v a n t c o n t e n t from m e d i c a l c a s e r e p o r t s
u s i n g ∗ ∗ s t r i c t v e r b a t i m e x t r a c t i o n ∗ ∗ . Your r o l e i s not t o
i n t e r p r e t , i n f e r , or r e p h ra s e , but t o ∗ ∗ m i r r o r the s o u r c e t e x t
with s u r g i c a l f i d e l i t y ∗ ∗ , e n s u r i n g ∗ ∗ e x a c t a l i g n m e n t ∗ ∗ i n ∗ ∗
sequence , t e rmino logy , and c l i n i c a l d e t a i l ∗ ∗ .

You a r e t o o p e r a t e i n ∗ ∗ s t r i c t e x t r a c t i o n mode ∗ ∗ , where ∗ ∗ on ly
c o n t e n t e x p l i c i t l y s t a t e d i n the o r i g i n a l t e x t ∗ ∗ i s i n c l u d e d . No
i n f e r e n c e , no p a r a p h r a s i n g , no r e o r d e r i n g − ∗ ∗ on ly d i r e c t
e x t r a c t i o n ∗ ∗ o f ∗ ∗ c l i n i c a l f a c t s , phrases , and d a t a ∗ ∗ .

You w i l l be g iven a ∗ ∗ m e d i c a l c a s e r e p o r t ∗ ∗ and a ∗ ∗ t a r g e t summary
l e n g t h ∗ ∗ . Your o u t p u t must be a ∗ ∗ dense , verba t im − a l i g n e d summary
∗ ∗ t h a t i n c l u d e s ∗ ∗ on ly the e x a c t p h r a s e s and s e n t e n c e s ∗ ∗ from
the source , a r r a n g e d i n the ∗ ∗ same o r d e r ∗ ∗ as they appear i n the
o r i g i n a l .

You must ∗ ∗ s t r i c t l y i n c l u d e ∗ ∗ the f o l l o w i n g ∗ ∗ c o r e c l i n i c a l
components ∗ ∗ , i n the ∗ ∗ e x a c t sequence ∗ ∗ they appear i n the
o r i g i n a l :



1 . ∗ ∗ P a t i e n t demographics ∗ ∗ ( age , sex , e t h n i c i t y , occupa t ion ,
count ry o f o r i g i n )

2 . ∗ ∗ C h i e f c o m p l a i n t and d u r a t i o n ∗ ∗
3 . ∗ ∗ H i s t o r y o f p r e s e n t i l l n e s s ∗ ∗ ( onse t , p r o g r e s s i o n , a s s o c i a t e d

symptoms )
4 . ∗ ∗ P h y s i c a l e x a m i n a t i o n ∗ ∗ ( l e s i o n s , d e f o r m i t i e s , f u n c t i o n a l

impa i rments )
5 . ∗ ∗ D i a g n o s t i c workup ∗ ∗ ( imaging , l a b r e s u l t s , h i s t o p a t h o l o g y )
6 . ∗ ∗ I n t e r v e n t i o n s ∗ ∗ ( p rocedures , m e d i c a t i o n s , t h e r a p i e s )
7 . ∗ ∗ Outcomes ∗ ∗ ( f o l l o w −up , recovery , r e s i d u a l i s s u e s )

You must ∗ ∗ e x c l u d e any c o n t e n t not e x p l i c i t l y s t a t e d ∗ ∗ i n the
o r i g i n a l t e x t . You must ∗ ∗ p r e s e r v e the o r i g i n a l t ense , vo i ce , and

m e d i c a l t e r m i n o l o g y ∗ ∗ . You must ∗ ∗ r e t a i n a l l n u m e r i c a l data ,
d i a g n o s t i c codes , and c l i n i c a l c l a s s i f i c a t i o n s ∗ ∗ .

Use the f o l l o w i n g ∗ ∗ c o n s t r a i n t s and t e c h n i q u e s ∗ ∗ t o gu ide your
encod ing :

− ∗ ∗ Phrase Matching Only ∗ ∗ : Only i n c l u d e p h r a s e s t h a t appear
v e r b a t i m i n the o r i g i n a l .

− ∗ ∗ Sequence Lock ∗ ∗ : Ma in ta in the ∗ ∗ e x a c t o r d e r ∗ ∗ o f c l i n i c a l
f i n d i n g s and e v e n t s .

− ∗ ∗ Terminology Lock ∗ ∗ : Use ∗ ∗ domain − s p e c i f i c m e d i c a l terms ∗ ∗ as
they appear i n the s o u r c e .

− ∗ ∗ Data I n t e g r i t y ∗ ∗ : R e t a i n ∗ ∗ a l l n u m e r i c a l v a l u e s , d a t e s , and
d i a g n o s t i c codes ∗ ∗ .

− ∗ ∗ Vo ice and Tense Lock ∗ ∗ : P r e s e r v e the ∗ ∗ o r i g i n a l g rammat i ca l
v o i c e and t e n s e ∗ ∗ .

A.3. User Prompt (Used with both system prompts)

C l i n i c a l Case Repor t :
{ }

P l e a s e summarize t h i s c a s e r e p o r t i n { } , p r e s e r v i n g the key c l i n i c a l
t e r m i n o l o g y and f o l l o w i n g the e x a c t same s t r u c t u r e as the

o r i g i n a l r e p o r t . I n c l u d e p a t i e n t demographics , m e d i c a l h i s t o r y ,
p r e s e n t i n g symptoms , d i a g n o s t i c f i n d i n g s , i n t e r v e n t i o n s , and
outcomes . Use p h r a s e s d i r e c t l y from the o r i g i n a l t e x t whenever
p o s s i b l e .

Length : 3−5 s e n t e n c e s or a p p r o x i m a t e l y 100 −150 words .
/ no_ th ink

B. Prompt Optimization History

The following figure and table detail the evolution of performance, measured by average ROUGE-L F1
score on a sample of the validation set, across the 41 iterations of our automated prompt optimization
framework. The process is non-monotonic, as the "judge" LLM was encouraged to make radical changes,



which sometimes resulted in a temporary decrease in performance before a better prompt was found.
The final prompt used for our submissions was selected from iteration 18, which represented a strong
peak before a period of instability.

Figure 1: Evolution of ROUGE-L F1 scores over 41 iterations of automated prompt optimization for English (en),
Spanish (es), French (fr), and Portuguese (pt). The plot shows the non-linear and sometimes volatile nature of
the optimization as the "judge" LLM explores radically different prompt structures.

Table 5
ROUGE-L F1 scores during the 41 iterations of the prompt optimization process.

Iter. EN ES FR PT Iter. EN ES FR PT

0 0.2594 0.2627 0.2692 0.2554 21 0.2494 0.2588 0.2642 0.2589
1 0.2542 0.2724 0.2521 0.2566 22 0.2410 0.2560 0.2567 0.2567
2 0.2384 0.2608 0.2541 0.2581 23 0.2097 0.2507 0.2292 0.2302
3 0.2508 0.2621 0.2576 0.2583 24 0.2089 0.2470 0.2252 0.2235
4 0.2593 0.2666 0.2632 0.2602 25 0.2417 0.2517 0.2573 0.2534
5 0.2536 0.2617 0.2572 0.2497 26 0.2477 0.2578 0.2631 0.2530
6 0.2483 0.2578 0.2552 0.2638 27 0.2097 0.2507 0.2292 0.2302
7 0.2382 0.2654 0.2662 0.2589 28 0.2358 0.2493 0.2609 0.2520
8 0.2097 0.2507 0.2292 0.2302 29 0.2520 0.2704 0.2606 0.2586
9 0.2089 0.2470 0.2252 0.2235 30 0.2525 0.2578 0.2551 0.2514

10 0.2503 0.2593 0.2637 0.2603 31 0.2610 0.2690 0.2692 0.2564
11 0.2528 0.2555 0.2570 0.2548 32 0.2343 0.2587 0.2345 0.2434
12 0.2097 0.2507 0.2292 0.2302 33 0.2330 0.2483 0.2376 0.2277
13 0.2400 0.2603 0.2597 0.2464 34 0.2544 0.2620 0.2522 0.2613
14 0.2359 0.2594 0.2522 0.2567 35 0.2343 0.2587 0.2345 0.2434
15 0.2097 0.2507 0.2292 0.2302 36 0.2330 0.2483 0.2376 0.2277
16 0.2089 0.2470 0.2252 0.2235 37 0.2331 0.2442 0.2379 0.2281
17 0.2086 0.2468 0.2273 0.2252 38 0.2331 0.2443 0.2357 0.2274
18 0.2254 0.2524 0.2437 0.2574 39 0.2331 0.2471 0.2357 0.2281
19 0.2097 0.2507 0.2292 0.2302 40 0.2454 0.2619 0.2462 0.2526
20 0.2421 0.2620 0.2468 0.2507
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