
KSU at CheckThat! 2025: Two-stage approach to
fact-checking numerical claims
Notebook for the CheckThat! Lab at CLEF 2025

Keito Fukuoka1,*,†, Hisashi Miyamori1,†

1Kyoto Sangyo University of Japan (KSU University), Kamigamo Motoyama, Kita-ku, Kyoto City, Kyoto, Japan

Abstract
The spread of misinformation containing numerical claims online poses a severe threat, undermining the very
foundation of democracy. This paper proposes a fact-checking method for automatically determining the veracity
of claims that include numerical and temporal elements. The proposed method consists of a two-stage process:
evidence retrieval and classification. Specifically, it combines comprehensive evidence retrieval using a Contriever
model enhanced by SimCSE-based contrastive learning with a classification method that extracts crucial evidence
using a Large Language Model (LLM). For experiments, we used the English dataset provided by CheckThat!
2025 Task 3. In the evidence retrieval task, the Contriever model with SimCSE-based contrastive learning
achieved a Recall@100 of 0.524, significantly outperforming conventional methods like BM25. Conversely, in the
classification task, the method utilizing search results from BM25 achieved the highest performance with a macro
F1 of 0.5054. A significant insight gained from this study is that improvements in evidence retrieval ranking
accuracy do not necessarily directly lead to enhanced classification performance.

Keywords
Fact-checking, Numerical claims, Evidence retrieval, Contrastive learning

1. Introduction

The spread of misinformation online, particularly prominent during election periods, not only trig-
gers social and political unrest but also poses a severe threat, undermining the very foundation of
democracy[1]. Among various forms of misinformation, verifying claims that include numerical and
temporal elements is of paramount importance in fact-checking. Indeed, numerical claims constitute a
significant component of political discourse.

This paper addresses the CheckThat! Lab’s Task 3: Fact-checking numerical claims [2]. The objective
of this task is to determine the veracity of claims containing numerical quantities and temporal expres-
sions. For each claim, participants are provided with a short list of evidence and are required to classify
the claim as "True," "False," or "Conflicting" based on this evidence.

We propose a two-stage fact-checking method consisting of an evidence retrieval step enhanced
by contrastive learning and a classification step that combines LLM-based crucial evidence extraction.
First, in the evidence retrieval step, we observed that claims and their corresponding evidence often
have different phrasings, even when their content is highly relevant. To comprehensively retrieve
highly relevant evidence, we adopted an evidence retrieval system composed of a Contriever model
further trained with SimCSE-based contrastive learning to capture the semantic relevance between
claims and evidence. Furthermore, in the classification using the retrieved evidence, we confirmed that
gold evidence in this task tends to be lengthy. To mitigate any negative impact on classification, we
therefore adopted a method that uses an LLM to extract important information from the evidence and
then performs classification based on these extracted results.

CLEF 2025 Working Notes, September 9 – 12 September 2025, Madrid, Spain
$ i2486200@cc.kyoto-su.ac.jp (K. Fukuoka); miya@cc.kyoto-su.ac.jp (H. Miyamori)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:i2486200@cc.kyoto-su.ac.jp
mailto:miya@cc.kyoto-su.ac.jp
https://creativecommons.org/licenses/by/4.0/deed.en

2. Related Work

Automated fact-checking has garnered significant attention as a crucial countermeasure against online
misinformation [3, 4, 5]. Existing fact-checking research has largely been limited to synthetic claims [6]
and non-numerical claims [7], with a notable lack of focus on claims containing numerical information.

Addressing this gap, Viswanathan et al. constructed QUANTEMP [8], an open-domain benchmark
specifically designed for real-world numerical claims. QUANTEMP is a diverse dataset encompassing
comparisons, statistics, durations, and temporal aspects, offering detailed metadata and evidence.
Using this dataset, they evaluated the limitations of existing methods and presented new challenges in
numerical claim verification.

The Task 3: Fact-checking numerical claims that we address in this paper aligns with the challenges
posed by QUANTEMP. This task defines two sub-tasks for determining the veracity of claims: an
"evidence retrieval task" to search for relevant evidence and a "classification task" to categorize claims
based on that evidence.

3. Method

This task broadly consists of the following two components:

• Evidence retrieval task: retrieving evidence relevant to a given claim.
• Classification task: determining whether a claim is True, False, or Conflicting based on the claim

and retrieved evidence.

3.1. Task Formulation

This task is formulated as follows. Given a claim 𝑐 ∈ 𝒞 (𝒞 is the claim space) as a query, and a sequence
of top-𝑘 retrieved evidences 𝐸 = (𝑒1, 𝑒2, ..., 𝑒𝑘) ∈ ℰ (ℰ is the evidence sequence space) obtained by a
retrieval system 𝑆, a classification function 𝑓 outputs a label 𝑦 ∈ ℒ = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔}:

𝑓 : (𝒞, ℰ) → ℒ (1)

Here, the process of obtaining the evidence sequence 𝐸 for a claim 𝑐 by the retrieval system 𝑆 is
expressed as follows:

𝐸 = top-k(sort𝑑∈𝐷𝑐(score(𝑐, 𝑑))) (2)
= (𝑒1, 𝑒2, . . . , 𝑒𝑘) s.t. score(𝑐, 𝑒1) ≥ score(𝑐, 𝑒2) ≥ · · · ≥ score(𝑐, 𝑒𝑘) (3)

where 𝐷𝑐 is the set of evidences relevant to claim 𝑐, 𝐷𝑐 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}, score(𝑞, 𝑑) is a function
that returns the relevance score of document 𝑑 for query 𝑞, sort𝑥∈𝑋(𝑓(𝑥)) is a function that sorts each
element 𝑥 in set 𝑋 in descending order based on the value of function 𝑓(𝑥), top-k(𝑋) is a function
that returns the top-𝑘 elements of sequence 𝑋 , and 𝑒𝑖 represents the 𝑖-th evidence.

Furthermore, each label 𝑙 ∈ ℒ represents one of the following three types of content:

• 𝑇𝑟𝑢𝑒: Based on the retrieved evidence, the claim 𝑐 is determined to be true.
• 𝐹𝑎𝑙𝑠𝑒: Based on the retrieved evidence, the claim 𝑐 is determined to be false.
• 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔: Based on the retrieved evidence, it is not possible to determine whether the claim
𝑐 is true (insufficient evidence or conflicting content).

The classification model takes the claim 𝑐 and the retrieved evidence sequence 𝐸 as input and outputs
the probability 𝑃 (𝑙|𝑐, 𝐸) for label 𝑙:

𝑃 (𝑦|𝑐, 𝐸) = softmax(ℎ(𝑐, 𝐸)) (4)

where ℎ(𝑐, 𝐸) represents the feature representation by a neural network, and 𝑦 ∈ ℒ =
{𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔} represents the predicted label.

The final predicted label 𝑦 is determined as follows:

𝑦 = argmax
𝑦

𝑃 (𝑦|𝑐, 𝐸) (5)

Thus, it is important to note that the classification task depends on the results of the evidence retrieval
task, and the ranking performance of the retrieval system affects the accuracy of the classification
results.

3.2. Evidence Retrieval

3.2.1. Dataset Construction for Evidence Retrieval Evaluation

Evidence retrieval is the process of selecting highly relevant evidence for a given claim. In this task,
explicit claim-evidence pairs are not provided in the supplied data, which makes evaluating ranking
performance challenging. To address this, we explicitly constructed claim-evidence pairs by leveraging
the gold evidences present in the validation data.

Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} be the set of claims in the validation data, and 𝐺𝑖 be the gold evidence
corresponding to each claim 𝑐𝑖. We segmented each gold evidence 𝐺𝑖 into individual sentences to
obtain a set of evidence sentences 𝑆𝑖 = {𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑚𝑖}. The relevance label 𝑟(𝑐𝑖, 𝑠𝑗) is defined as
follows:

𝑟(𝑐𝑖, 𝑠𝑗) =

{︃
1 if 𝑠𝑗 ∈ 𝑆𝑖

0 if 𝑠𝑗 ∈
⋃︀

𝑘 ̸=𝑖 𝑆𝑘

(6)

Through this process, we constructed a dataset 𝐷𝑐𝑠 = {(𝑐𝑖, 𝑠𝑗 , 𝑟(𝑐𝑖, 𝑠𝑗))|𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈
{1, . . . , |𝑆|}} consisting of 13,019 claim-evidence pairs (train: 9,935 pairs, dev: 3,084 pairs), enabling
quantitative evaluation of ranking performance in evidence retrieval. Here, 𝑆 =

⋃︀𝑛
𝑖=1 𝑆𝑖 represents the

set of all evidence sentences.

3.2.2. SimCSE-based Contrastive Learning for Contriever

When retrieving evidence sentences relevant to claims using dense retrieval, models may struggle
to generalize to novel topics not present in the training data, potentially performing worse than
conventional sparse retrieval methods like BM25. The Contriever model has been shown to outperform
BM25 [9] in terms of Recall@100 on various datasets, even when pre-trained in an unsupervised manner,
by pre-training a dense retriever with contrastive learning [10]. Therefore, to enable the Contriever
model to more comprehensively retrieve evidence sentences relevant to claims, we further trained the
model using SimCSE-based contrastive learning on the semantic relatedness between claims and gold
evidences.

Contrastive learning is performed using claim 𝑐𝑖 and a sentence 𝑠𝑖,𝑗 extracted from its gold evidence
as a positive pair, and claim 𝑐𝑖 and a sentence 𝑠𝑘,𝑙 extracted from another claim’s gold evidence as a
negative pair.

First, the Contriever encoder is used to convert claim 𝑐𝑖 and evidence sentence 𝑠𝑖,𝑗 (or 𝑠𝑘,𝑙) into
vector representations:

h𝑐 = MeanPooling(Contriever(𝑐𝑖),mask𝑐) (7)
h𝑠 = MeanPooling(Contriever(𝑠𝑖,𝑗),mask𝑠) (8)

Here, MeanPooling is an average pooling operation that considers the attention mask, and mask𝑐 and
mask𝑠 are the attention masks for the claim and evidence sentence, respectively.

The resulting representation vectors h𝑐 ∈ R𝑑 and h𝑠 ∈ R𝑑 are then transformed by an MLP layer:

h′
𝑐 = 𝑓𝑎𝑐𝑡(Wh𝑐 + b), h′

𝑠 = 𝑓𝑎𝑐𝑡(Wh𝑠 + b) (9)

where 𝑓𝑎𝑐𝑡 is the activation function, W ∈ R𝑑′×𝑑 is the weight matrix, b ∈ R𝑑′ is the bias vector, and
𝑑′ is the dimension after transformation.

With a batch size of 𝐵, the transformed representations of all claims in the batch are represented as
a matrix H𝑐 = [h′

𝑐,1,h
′
𝑐,2, . . . ,h

′
𝑐,𝐵]

𝑇 ∈ R𝐵×𝑑′ , and the transformed representations of all evidence
sentences as a matrix H𝑠 = [h′

𝑠,1,h
′
𝑠,2, . . . ,h

′
𝑠,𝐵]

𝑇 ∈ R𝐵×𝑑′ .
The similarity matrix S = H𝑐(H𝑠)

𝑇 ∈ R𝐵×𝐵 is computed within the batch, and the model is trained
using the SimCSE loss:

ℒ𝑆𝑖𝑚𝐶𝑆𝐸 = − 1

𝐵

𝐵∑︁
𝑖=1

log
exp(S𝑖𝑖/𝜏)∑︀𝐵
𝑗=1 exp(S𝑖𝑗/𝜏)

(10)

Here, S𝑖𝑖 is the similarity between the 𝑖-th claim and its corresponding positive evidence sentence,
S𝑖𝑗(𝑗 ̸= 𝑖) is the similarity between the 𝑖-th claim and the 𝑗-th evidence sentence (negative example),
and 𝜏 is the temperature parameter.

3.3. Classification Task

3.3.1. Evidence Sentence Processing for Classification Model Training

Two primary approaches can be considered for training the classification model:

• Retrieving relevant evidence using a ranking algorithm like BM25 with the claim as a query, and
then training the classification model using these results.

• Directly using the gold evidence corresponding to the claim to train the classification model.

While the former allows for automatic evidence acquisition, it carries the risk of retrieving irrel-
evant sentences, which could negatively impact classification performance. The latter approach is
advantageous for leveraging highly reliable evidence. However, gold evidence is generally lengthy and
not suitable for direct use in training a classification model. Therefore, we propose extracting crucial
information from the gold evidence and transforming it into a format suitable for classification model
training.

Given a claim 𝑐𝑖 ∈ 𝒞 (𝒞 is the claim space) and its corresponding gold evidence 𝐺𝑖 ∈ 𝒢 (𝒢 is the gold
evidence space), an LLM-based crucial segment extraction function 𝑓extract outputs a set of important
evidence sentences 𝑆ext = {𝑠ext

1 , 𝑠ext
2 , . . . , 𝑠ext

𝑚 } ∈ 𝒮ext (𝒮ext is the space of important evidence sentence
sets):

𝑓extract : (𝒞,𝒢) → 𝒮ext (11)

The extraction process is achieved by providing a prompt 𝑃𝑟𝑜𝑚𝑝𝑡(𝑐𝑖, 𝐺𝑖) as input to a function
𝑓LLM corresponding to an LLM model:

𝑆ext
𝑖 = 𝑓LLM(𝑃𝑟𝑜𝑚𝑝𝑡(𝑐𝑖, 𝐺𝑖)) (12)

Here, 𝑆𝑒𝑥𝑡
𝑖 = {𝑠𝑒𝑥𝑡1 , 𝑠𝑒𝑥𝑡2 , . . . , 𝑠𝑒𝑥𝑡𝑚 } is the set of important evidence sentences extracted by the LLM.

The prompt 𝑃 (𝑐𝑖, 𝐺𝑖) is constructed by combining the claim 𝑐𝑖 and the gold evidence 𝐺𝑖, taking the
following form:

𝑃 (𝑐𝑖, 𝐺𝑖) = Template ⊕ 𝑐𝑖 ⊕𝐺𝑖 (13)

Here, ⊕ is the string concatenation operator, and Template is the prompt template specifying the
extraction task. Using the extracted evidence sentence set 𝑆ext

𝑖 , the classification model 𝑓cl infers the
predicted label 𝑙𝑖 as follows:

𝑓cl(𝑐𝑖, 𝑆
ext
𝑖) = 𝑙𝑖 ∈ ℒ (14)

Prompt Template and LLM Details. For the extraction of crucial evidence sentences, we used the
prompt template as shown in Figure 1. For all evidence extraction using an LLM (Large Language Model),
we utilized the unsloth/Qwen3-8B-bnb-4bit model without employing Chain-of-Thought prompting.

Please output the following information in a bulleted list:

Claim:
[claim]

Document:
[gold evidence]

Judgment:
Extract and concisely output only the direct evidence from the document needed
to determine if the claim is [label]. Do not include any unnecessary
explanations or analysis.

Output Example:
- result1
- result2

Figure 1: Prompt template for LLM-based evidence extraction

3.3.2. Data Augmentation for Improved Noise Robustness

Training the classification model solely on crucial information extracted by an LLM could lead to
training with only correct positive examples. This raises concerns about its ability to effectively learn
robustness against erroneous information, which is expected in real-world deployments. Therefore, we
decided to intentionally inject irrelevant sentences during the training of the classification model.

For each claim 𝑐𝑖 and its LLM-extracted evidence sentence set 𝑆𝑒𝑥𝑡
𝑖 = {𝑠𝑒𝑥𝑡1 , 𝑠𝑒𝑥𝑡2 , . . . , 𝑠𝑒𝑥𝑡𝑚 }, we

randomly inject irrelevant sentences as noise. Let 𝑆𝑎𝑙𝑙 =
⋃︀𝑛

𝑗=1 𝑆
𝑒𝑥𝑡
𝑗 be the union of all extracted

evidence sentences across all claims. The set of noise candidates 𝑁𝑖 for claim 𝑐𝑖 is defined as follows:

𝑁𝑖 = 𝑆𝑎𝑙𝑙 ∖ 𝑆𝑒𝑥𝑡
𝑖 (15)

Here, 𝑁𝑖 is the set of evidence sentences extracted from the gold evidence of claims other than 𝑐𝑖.
The noise injection function AddNoise is defined as:

AddNoise(𝑆𝑒𝑥𝑡
𝑖 , 𝑁𝑖, 𝑘𝑛𝑜𝑖𝑠𝑒) = 𝑆𝑛𝑜𝑖𝑠𝑦

𝑖 (16)
Here, 𝑆𝑛𝑜𝑖𝑠𝑦

𝑖 is generated by the following process:

𝑆𝑛𝑜𝑖𝑠𝑦
𝑖 = 𝑆𝑒𝑥𝑡

𝑖 ∪ RandomSample(𝑁𝑖, 𝑘𝑛𝑜𝑖𝑠𝑒) (17)
RandomSample(𝑁𝑖, 𝑘𝑛𝑜𝑖𝑠𝑒) is a function that randomly selects 𝑘𝑛𝑜𝑖𝑠𝑒 sentences from the noise can-

didate set 𝑁𝑖, where 𝑘𝑛𝑜𝑖𝑠𝑒 is a hyperparameter representing the number of sentences to be injected as
noise. The final training evidence sentence set 𝑆𝑡𝑟𝑎𝑖𝑛

𝑖 is expressed as:

𝑆𝑡𝑟𝑎𝑖𝑛
𝑖 = AddNoise(𝑆𝑒𝑥𝑡

𝑖 , 𝑁𝑖, 𝑘𝑛𝑜𝑖𝑠𝑒) (18)
Through this, we anticipate that the classification model will operate robustly even when noise is

present during inference. The classification model 𝑓robust is trained to minimize:

𝐿(𝑓robust(𝑐𝑖, 𝑆
train
𝑖), 𝑙

gt
𝑖) (19)

where 𝐿(·, ·) represents the loss function, and 𝑙
gt
𝑖 represents the ground truth label. Here, cross-

entropy loss was used as the loss function.

3.3.3. 4-Class Classification for Irrelevant Evidence Detection

During inference, a retrieval system might present evidence irrelevant to a given claim. To address such
situations, we introduced a new label, "Irrelevant," to the classification model. We trained the model to
categorize evidence sentences unrelated to the claim under this new label.

For the training data of the "Irrelevant" label, we used evidence sentences 𝑁𝑖 = 𝑆𝑎𝑙𝑙 ∖ 𝑆𝑒𝑥𝑡
𝑖 extracted

from the gold evidence of other claims for each claim 𝑐𝑖. This means that an evidence sentence is
defined as irrelevant to claim 𝑐𝑖 if it was extracted from the gold evidence of a different claim 𝑐𝑗 (𝑗 ̸= 𝑖).

Extending the conventional 3-class classification, a 4-class classification function 𝑓irr now outputs a
label 𝑦 ∈ ℒirr = {True, False,Conflicting, Irrelevant}:

𝑓irr : (𝒞, ℰ) → ℒirr (20)

This allows the model to identify irrelevant evidence even if appropriate evidence sentences are not
retrieved. Consequently, it enables a strategy where the system can re-perform evidence retrieval and
re-classify if irrelevant evidence is detected.

4. Experiments

4.1. Experimental Settings

For the claim classification task, the following settings were used for training and evaluation.

• Model: FacebookAI/roberta-base
• Maximum sequence length: 512
• Number of labels: Automatically determined from the data (e.g., Conflicting, False, True, etc.)

Training settings:

• Learning rate: 2× 10−5

• Batch size: 128 (training), 128 (evaluation)
• Number of epochs: 10
• Weight decay: 0.01
• Adam epsilon: 1× 10−8

• Scheduler: linear
• Warmup ratio: 0.1

All experiments were conducted using a Tesla V100-PCIE-32GB GPU.

4.2. Evidence Retrieval

We evaluated and compared three algorithms for retrieving evidence sentences relevant to claims:
BM25, Contriever, and Contriever𝐹𝑇 (additional training with SimCSE). Table 1 presents the results.

The fact that the three models showed similarly high performance in P@1 to P@3 indicates that when
clear, relevant evidence sentences exist for numerical claims, the differences between retrieval methods
are limited. Contriever𝐹𝑇 demonstrated significant performance improvements, particularly from
P@10 onwards and in Recall metrics, achieving a substantial increase to 0.524 for Recall@100 and 0.731
for Recall@1000. This is likely due to the SimCSE-based contrastive learning enabling more effective
learning of semantic relevance between claims and gold evidence. While BM25 showed excellent
performance in top-tier precision, it lagged behind other methods in Recall metrics.

For fact-checking tasks, it is considered crucial to collect a wide range of diverse evidence sentences.
Therefore, Contriever𝐹𝑇 , with its high Recall performance, proved to be the optimal choice. On the
other hand, BM25 can still be a viable option when computational resources are limited or when only
the highest-ranked evidence is required.

Table 1
Comparison of Ranking Methods for Evidence Retrieval

Model P@1 P@2 P@3 P@10 Recall@10 Recall@100 Recall@1000
BM25 0.942 0.895 0.829 0.534 0.205 0.355 0.502
Contriever 0.925 0.885 0.832 0.587 0.227 0.423 0.592
Contriever𝐹𝑇 0.926 0.895 0.858 0.656 0.255 0.524 0.731

4.3. Classification for Fact-Checking

Table 2 presents the results of the fact-checking classification using the development data. Despite
Contriever𝐹𝑇 demonstrating high accuracy in the evidence retrieval results (Table 1), it achieved
the lowest macro F1 in the classification task. This clearly indicates that improvements in retrieval
performance do not necessarily translate directly to enhanced classification performance. SimCSE-fine-
tuned Contriever improved recall by including a greater number of relevant evidence sentences in the
retrieval results. However, the precision at top ranks (e.g., top-1 or top-3) did not sufficiently improve,
and thus this did not lead to better overall classification performance. This suggests that while the
fine-tuned Contriever is effective at broadly collecting semantically related sentences, it is less effective
at ranking the most crucial evidence at the top. Therefore, a two-stage retrieval approach—first using
Contriever for initial retrieval to gather a wide range of candidates, followed by a reranking model to
place the most relevant evidence at higher ranks—would likely be more effective. BM25-based retrieval
achieved the most stable classification performance, proving to be the optimal choice from a practical
perspective.

Contrary to expectations, the noise augmentation method led to a performance decrease, particularly
a significant drop in Conflicting predictions. This phenomenon can be attributed to the model’s tendency,
after being exposed to irrelevant sentences during training, to classify ambiguous or weakly supported
cases as True or False rather than Conflicting. By learning to make predictions even in the presence of
noise, the model becomes less sensitive to ambiguity and is more likely to output a definitive label. As a
result, the recall and F1 score for the Conflicting class decreased, while misclassifications into the True
or False classes increased. However, a slight improvement was observed for True predictions, partially
confirming the effect of improved noise robustness. These findings suggest that noise injection can
enhance robustness to irrelevant information while also blurring the criteria for identifying ambiguous
cases in the model. In the future, further improvements are needed, such as optimizing data augmentation
and loss function design, to enhance robustness against irrelevant information while more accurately
identifying ambiguous cases.

Table 2
Fact-Checking Classification Results

Method macro F1 True F1 Conflicting F1 False F1

Direct Gold Evidence + BM25 Retrieval 0.3919 0.4148 0.0562 0.7045
LLM Evidence Extraction + BM25 Retrieval 0.5054 0.3233 0.4128 0.7803
LLM Evidence Extraction + Contriever Retrieval 0.4925 0.3103 0.3886 0.7787
LLM Evidence Extraction + Contriever𝐹𝑇 Retrieval 0.4004 0.0931 0.6998 0.4082
LLM Evidence Extraction + Noise Augmentation + BM25 Retrieval 0.4271 0.3403 0.1690 0.7720

4.4. Irrelevant Evidence Detection

Table 3 shows the results for the 4-class classification model designed for irrelevant evidence detection.
The model exhibited a tendency to classify almost all claims as irrelevant, indicating that it was not
appropriately trained.

Table 3
Irrelevant Evidence Detection Results

Method macro F1 True F1 Conflicting F1 False F1 Irrelevant F1

LLM Evidence Extraction + BM25 Retrieval 0.1669 0.0000 0.0000 0.1667 0.6665

5. Conclusion

In this paper, we proposed and validated a method following a two-stage approach for evidence retrieval
and classification in fact-checking numerical claims. In the evidence retrieval task, Contriever𝐹𝑇 , further
trained with SimCSE-based contrastive learning, achieved substantial performance improvements,
particularly in Recall metrics, demonstrating its ability to effectively learn the semantic relevance
between claims and gold evidence. Meanwhile, BM25 maintained stable performance in top-tier
precision, confirming its practicality from a computational efficiency perspective.

However, a crucial insight gained from the classification task was that high accuracy in evidence
retrieval does not necessarily directly lead to improved classification performance. The classification
model using BM25-based search results achieved the most stable macro F1, indicating its optimality from
a practical standpoint. Class-wise analysis revealed that False predictions consistently had the highest
F1 score across all methods, while True predictions proved to be the most challenging. Although the
noise augmentation method unexpectedly led to an overall performance decrease, a slight improvement
was observed for True predictions, suggesting potential for improved noise robustness.

As future work, we aim to build a two-stage retrieval system that leverages the high Recall perfor-
mance of Contriever𝐹𝑇 . By applying re-ranking techniques to comprehensively retrieved candidate
documents, we expect to achieve performance improvements that balance both retrieval coverage and
ranking accuracy, by placing more relevant evidence sentences higher in the results.

Acknowledgments

A part of this work was supported by JSPS KAKENHI Grant Number 23K11342.

Declaration on Generative AI

During the preparation of this work, the author utilized Gemini for revisions related to grammar and
clarity. These tools were employed to refine sentence structure, correct typographical errors, and
enhance the overall quality of the language. They were also used for translating content into English.
No generative content was used in the analysis, figures, or experimental sections. After using these
tools/services, the author reviewed and edited the content as needed and assumes full responsibility for
the content of this publication.

References

[1] Z. Guo, M. Schlichtkrull, A. Vlachos, A survey on automated fact-checking, Transactions of the
Association for Computational Linguistics 10 (2022) 178–206.

[2] V. Venktesh, V. Setty, A. Anand, M. Hasanain, B. Bendou, H. Bouamor, F. Alam, G. Iturra-Bocaz,
P. Galuščáková, Overview of the CLEF-2025 CheckThat! lab task 3 on fact-checking numerical
claims, in: G. Faggioli, N. Ferro, P. Rosso, D. Spina (Eds.), Working Notes of CLEF 2025 - Conference
and Labs of the Evaluation Forum, CLEF 2025, Madrid, Spain, 2025.

[3] M. Mori, P. Papotti, L. Bellomarini, O. Giudice, Neural machine translation for fact-checking
temporal claims, in: R. Aly, C. Christodoulopoulos, O. Cocarascu, Z. Guo, A. Mittal, M. Schlichtkrull,
J. Thorne, A. Vlachos (Eds.), Proceedings of the Fifth Fact Extraction and VERification Workshop

(FEVER), Association for Computational Linguistics, Dublin, Ireland, 2022, pp. 78–82. URL: https:
//aclanthology.org/2022.fever-1.8/. doi:10.18653/v1/2022.fever-1.8.

[4] J. Chen, A. Sriram, E. Choi, G. Durrett, Generating literal and implied subquestions to fact-
check complex claims, in: Y. Goldberg, Z. Kozareva, Y. Zhang (Eds.), Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, Association for Computational
Linguistics, Abu Dhabi, United Arab Emirates, 2022, pp. 3495–3516. URL: https://aclanthology.org/
2022.emnlp-main.229/. doi:10.18653/v1/2022.emnlp-main.229.

[5] I. Augenstein, C. Lioma, D. Wang, L. Chaves Lima, C. Hansen, C. Hansen, J. G. Simonsen, MultiFC:
A real-world multi-domain dataset for evidence-based fact checking of claims, in: K. Inui, J. Jiang,
V. Ng, X. Wan (Eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China, 2019, pp. 4685–
4697. URL: https://aclanthology.org/D19-1475/. doi:10.18653/v1/D19-1475.

[6] A. Sathe, S. Ather, T. M. Le, N. Perry, J. Park, Automated fact-checking of claims from Wikipedia, in:
N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard,
J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of the Twelfth Language
Resources and Evaluation Conference, European Language Resources Association, Marseille,
France, 2020, pp. 6874–6882. URL: https://aclanthology.org/2020.lrec-1.849/.

[7] M. Schlichtkrull, Z. Guo, A. Vlachos, Averitec: A dataset for real-world claim verification with
evidence from the web, 2023. URL: https://arxiv.org/abs/2305.13117. arXiv:2305.13117.

[8] V. V, A. Anand, A. Anand, V. Setty, Quantemp: A real-world open-domain benchmark for fact-
checking numerical claims, 2024. URL: https://arxiv.org/abs/2403.17169. arXiv:2403.17169.

[9] S. Robertson, H. Zaragoza, et al., The probabilistic relevance framework: Bm25 and beyond,
Foundations and Trends® in Information Retrieval 3 (2009) 333–389.

[10] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin, E. Grave, Unsupervised dense
information retrieval with contrastive learning, arXiv preprint arXiv:2112.09118 (2021).

https://aclanthology.org/2022.fever-1.8/
https://aclanthology.org/2022.fever-1.8/
http://dx.doi.org/10.18653/v1/2022.fever-1.8
https://aclanthology.org/2022.emnlp-main.229/
https://aclanthology.org/2022.emnlp-main.229/
http://dx.doi.org/10.18653/v1/2022.emnlp-main.229
https://aclanthology.org/D19-1475/
http://dx.doi.org/10.18653/v1/D19-1475
https://aclanthology.org/2020.lrec-1.849/
https://arxiv.org/abs/2305.13117
http://arxiv.org/abs/2305.13117
https://arxiv.org/abs/2403.17169
http://arxiv.org/abs/2403.17169

	1 Introduction
	2 Related Work
	3 Method
	3.1 Task Formulation
	3.2 Evidence Retrieval
	3.2.1 Dataset Construction for Evidence Retrieval Evaluation
	3.2.2 SimCSE-based Contrastive Learning for Contriever

	3.3 Classification Task
	3.3.1 Evidence Sentence Processing for Classification Model Training
	3.3.2 Data Augmentation for Improved Noise Robustness
	3.3.3 4-Class Classification for Irrelevant Evidence Detection

	4 Experiments
	4.1 Experimental Settings
	4.2 Evidence Retrieval
	4.3 Classification for Fact-Checking
	4.4 Irrelevant Evidence Detection

	5 Conclusion

