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Abstract

This research presents Agentic MCS, a LangGraph-based framework for multilingual biomedical text summa-
rization, evaluated across English, Spanish, French, and Portuguese clinical case report datasets from bioASQ
MultiClinSum Challenge. The investigation implements a multi-agent workflow integrating extractive preprocess-
ing, neural abstractive summarization generation, and quality enhancement through comparative experimental
runs.

The framework employs diverse architectural approaches including hybrid BM25-neural pipelines, NER-
integrated entity preservation systems, knowledge graph-guided summarization, and dense retrieval re-ranking
mechanisms. Core models encompass domain-specific transformers (BioMistral-7B), multilingual fine-tuned
models (mBART-large-50, mT5-base), general-purpose language models (Mistral 7B, Llama 3.1 8B), and proprietary
LLMs as enhancement systems (GPT-40).

The framework achieved comprehensive multilingual coverage with language-specific optimizations. Eval-
uation reveals consistently high BERTScore results (0.71-0.84) indicating strong semantic fidelity, while lower
ROUGE scores (0.17-0.25) reflect high abstraction rather than lexical extraction. This work establishes a robust
foundation for intelligent agentic systems in biomedical text processing.

Keywords
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1. Introduction

The biomedical domain faces rapid growth in data generation, characterized by massive volume,
linguistic diversity, and modal heterogeneity. This exponential growth of scientific literature has been
well-documented [1], creating significant challenges for information synthesis. Critical information is
scattered across research articles, clinical reports, databases, and grey literature. This fragmentation
creates substantial documentation burden for healthcare professionals [2, 3].

Recent advances in Generative Al and Large Language Models (LLMs) offer significant potential
[4]. Technologies such as Retrieval-Augmented Generation (RAG) and Knowledge Graphs (KGs) are
promising for improving reliability and accuracy in specialized domains like biomedicine [5, 6]. Recent
surveys demonstrate the growing importance of RAG with LLMs for biomedical applications [6].
However, optimal integration of these components within coherent Al architectures remains an active
research area.

2. Related Work

Biomedical summarization has evolved from traditional extractive methods to sophisticated neural
approaches. Comprehensive surveys of document summarization techniques [7, 8] show this evolution
from rule-based to neural approaches. Early work focused on rule-based systems and statistical methods,

CLEF 2025 Working Notes, 9 — 12 September 2025, Madrid, Spain
*Corresponding author: Johanna Angulo (johanna.angulo@gmail.com)
& johanna.angulo@gmail.com (J. Angulo); victor.yeste@universidadeuropea.es (V. Yeste)

&’ https://www.linkedin.com/in/johannaangulo/ (J. Angulo); https://victoryeste.com/ (V. Yeste)
® 0009-0005-6965-0604 (J. Angulo); 0000-0002-3660-8347 (V. Yeste)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5



mailto:johanna.angulo@gmail.com
mailto:victor.yeste@universidadeuropea.es
https://www.linkedin.com/in/johannaangulo/
https://victoryeste.com/
https://orcid.org/0009-0005-6965-0604
https://orcid.org/0000-0002-3660-8347
https://creativecommons.org/licenses/by/4.0/deed.en

while recent advances leverage transformer architectures and domain-specific models. Multilingual
biomedical summarization remains under-explored, with most systems designed for English. The
MultiClinSum challenge addresses this gap by providing standardized evaluation across four languages.
Large language models are increasingly being integrated into clinical decision support systems [9],
though questions remain about their role in enhancing versus replacing human expertise.

3. MultiClinSum

MultiClinSum represents a shared task addressing the automatic summarization of clinical case reports
across four major languages: English, Spanish, French, and Portuguese. This challenge responds to
the critical need in healthcare and biomedical research domains, where the exponential growth of
clinical documentation creates significant barriers for healthcare professionals, researchers, and patients
attempting to extract essential medical knowledge from extensive clinical texts [10].

The challenge is structured into four independent sub-tracks (MultiClinSum-en, -es, -fr, -pt), provid-
ing participants the flexibility to focus on specific languages or develop comprehensive multilingual
approaches [4]. Teams may submit up to five runs per language, with evaluation conducted using
ROUGE-L-Sum and BERTScore metrics against human-generated reference summaries. This task
addresses critical healthcare applications including clinical decision support, discharge summary gener-
ation, medical literature review, multilingual clinical communication, and patient-oriented summary
creation, connecting natural language processing research with practical clinical applications across
linguistic boundaries [10].

3.1. Gold and Large-Scale Dataset

The MultiClinSum challenge utilizes a multilingual corpus comprising both training and evaluation
datasets across four major languages: English, Spanish, French, and Portuguese. The corpus is structured
into two distinct training components and corresponding test sets, all made publicly available through
the Zenodo repository to ensure reproducibility and accessibility for the research community [10].

The training data encompasses both gold-standard and large-scale variants, with the gold-standard
datasets containing 592 document-summary pairs per language, providing high-quality reference
materials for supervised learning approaches.

The large-scale training datasets expand the available data with 25,902 document-summary pairs
per language, enabling the development and fine-tuning of data-intensive models while maintaining
consistent cross-lingual coverage [10].

3.2. Test Dataset

The evaluation framework (test dataset) employs language-specific test datasets containing between
3,396 and 3,469 full-text clinical cases per language, with slight variations reflecting the natural dis-
tribution of available clinical literature across linguistic domains. All datasets maintain consistent
organizational structure, with full-text documents and their corresponding summaries stored in separate
directories as UTF-8 encoded plain text files [10].

4. Methodology

MCS is a multi-agent and multimodal system designed for summarizing complex biomedical texts from
various languages [11]. It leverages LangGraph to create a stateful, resilient workflow, Llamalndex for
Retrieval-Augmented Generation (RAG) [12], and a suite of specialized agents and tools for different
tasks using Large Language Model (LLM) [13].

This framework functions as an abstraction, defining a flexible multi-agent system wherein different
architectural configurations for summarization can be implemented and compared [8]. The architectures
detailed below represent specific instances developed and deployed for the challenge. It is important
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Figure 1: LangGraph architecture orchestrates the collaboration of distinct, interconnected components—
mediated by Al agents and tools—to execute different architectures. (Source: elaborated by the authors).

to note that the runs submitted for the challenge may align with one or more of these conceptual
architectures.

The scope of the MCS system is considerably broader than what was implemented for this specific
challenge. Consequently, only the architectures directly relevant to our submitted runs are presented
herein.

Agentic Decision Making: The Route to Architecture component uses similarity analysis of input
documents against stored performance vectors to automatically select optimal architectures. The system
calculates cosine similarity between document embeddings and historical performance patterns, routing
to the architecture with highest expected performance (similarity threshold > 0.85).

RAG Configuration: Retrieval uses k=5 most similar patterns, with BM25 + dense retrieval hybrid
ranking. Deduplication removes patterns with >90% overlap before final selection.

4.1. Architecture A: Extractive with Neural Reranking

This architecture leverages a sequential pipeline of well-established Natural Language Processing
(NLP) techniques. The process commences with an extractive phase, where an initial set of candidate



summaries is generated using traditional methods such as BM25[14]. These candidates are subsequently
processed by an LLM to produce more fluent, abstractive versions [15].

A critical component of this architecture is the final reranking stage, which serves as a quality control
mechanism [16]. Reranking is conceptualized as a two-stage process [17]. This methodology allows
for the strategic application of powerful models on a pre-filtered set of promising candidates, thereby
optimizing the trade-off between computational cost and output quality.

4.2. Architecture A2: Graph-Based Ensemble

This architecture introduces an approach by constructing a structured representation of the source
document’s content. It begins by extracting key entities and their semantic relations to build a document-
specific knowledge graph (KG) using the networkx library [5, 18]. This graph is then condensed or
serialized back into a textual format, which effectively serves as a dense, structured summary of the
original document [19]. Knowledge graph-guided retrieval approaches [20] have shown effectiveness
in maintaining factual consistency.

An LLM is then prompted to generate an abstractive summary, with the serialized knowledge graph
provided as strong contextual guidance [21]. This ensures that the generated summary is not only fluent
but also factually anchored to the core information captured in the KG. The final output is a hybrid
summary that synergistically combines the KG-guided abstractive text with a traditional extractive
summary produced by BM25, thus balancing narrative coherence with factual fidelity [19, 14].

4.3. Architecture B: Dual Hybrid + QA Enhancements

Building upon the principles of Architecture A2, this configuration incorporates a highly optimized post-
processing system. The objective is to merge the strengths of fine-tuned models, such as mBART and
mT5 [22], with the advanced reasoning and generation capabilities of GPT-40 [23]. This enhancement
is informed by a detailed analysis of gold-standard summaries.

4.4. Architecture C: Supervised Fine-Tuning (SFT) of Multilingual Models

This architecture is centered on exploring the efficacy of domain adaptation via Supervised Fine-
Tuning (SFT) [24]. This process adapts the model’s general capabilities to the specific nuances of the
summarization task at hand. The models subjected to SFT in this study were mBART, mT5 [25], and
BioMistral [26].

4.5. Architecture D: Few-Shot Prompting on General-Purpose LLMs

This set of architectures leverages the powerful in-context learning capabilities of large-scale, non-fine-
tuned LLMs. The core technique employed is Few-Shot Prompting [27], which involves conditioning
the model by providing a small number of illustrative examples or example patterns (i.e., “shots”) of the
task directly within the prompt. This guides the model to generate output that conforms to the desired
format and style, all without the need for updating the model’s underlying parameters. To enhance
the effectiveness of the prompts, they were enriched with several layers of information such as NER
Extraction [28] and gold document patterns. This approach was systematically tested on two prominent
models: Llama 3.1 8B andMistral 7B. Additionally, for a subset of the Spanish-language runs, a
post-processing step was implemented using GPT-4o. This step, which also falls under the paradigm of
few-shot prompting, was designed to further refine and enhance the quality of the generated summaries.

4.6. A Comprehensive Analysis of Medical Gold Summaries

A comprehensive analysis of medical gold summaries was conducted to extract optimal patterns for
automated summarization systems. The analysis employed both traditional NLP metrics and advanced



Table 1
Fine-tuning configuration by language

Language Fine-tuned Models NER Model Epochs Batch Grad Acc LR
English BioMistral-7B Helios9/BioMed 3 1 16 2e-4
. mBART-large-50, BSC-NLP4BIA/
Spanish (1) mT5-base bsc-bio-ehr-es 3 ! 8 2e5
. s BSC-NLP4BIA/
Spanish (2)  BioMistral-7B bsc-bio-ehr-es 3 1 16 2e-4
mBART-large-50, TypicaAl/ o
French Mixtral-8x7B* HealthcareNER-Fr 32 ! 8/8 2e-5/2e-4
Portuguese mBART-large-50, HUMADEX/ . 1 8 265
mT5-base portuguese_medical_ner

*Mixtral-8x7B faced device management issues during inference and was not successfully deployed.
**Mixtral used 2 epochs for lighter fine-tuning; values show mBART/Mixtral where different.

NER (Named Entity Recognition) [28] techniques to identify key characteristics that define high-
quality medical summaries. For each language, the analysis was conducted independently, and the
corresponding outputs were encoded into dense vector representations and stored in a vector database.
These embeddings were later retrieved during inference using a Retrieval-Augmented Generation (RAG)
[29, 6] architecture to provide contextual grounding for the language model [6].

Key Findings & Pattern Extraction

The quantitative analysis presented below focuses on Spanish gold-standard biomedical summaries as a
representative example. Similar analyses were conducted for each language in our multilingual dataset,
with language-specific patterns informing the respective summarization strategies.

« Target Length: 120.1 words (from gold dataset analysis)
» Target Sentences: 5 sentences
+ Average Sentence Length: ~24 words per sentence

Words in Summaries. The distribution is centered around a mean of 120.1 words, indicating moderate
summary length with a right-skewed tail due to a few longer samples.

Medical Terms. Most summaries contain fewer than 10 medical terms, with a mean of 4.0. These
medical terms are obtained through regex rules designed to capture common medical terminology
not included in the NER model. This suggests that while summaries are concise, they embed relevant
domain-specific terminology.

NER Entities. The Named Entity Recognition (NER) distribution shows a broader spread, with a
mean of 5.2 entities per summary. For NER processing, we employed different biomedical NER models
per language, with the specific models detailed in the table above. This reflects consistent inclusion of
structured biomedical concepts across different linguistic contexts.

4.7. Fine-Tuning Configuration

Table 1 presents the complete fine-tuning configuration for each language:

Hardware and Memory Optimization: All fine-tuning was conducted on NVIDIA GPUs with
comprehensive memory optimization strategies. For large language models (BioMistral-7B, Mixtral-
8x7B), we employed 4-bit quantization using BitsAndBytesConfig with NF4 quantization type and
double quantization enabled. Gradient checkpointing was activated to trade computation time for
memory efficiency.



Training Methodology: The fine-tuning process varied by model architecture. For sequence-to-
sequence models (MBART, mT5), we used standard Seq2SeqTrainer with target-specific tokenization.
For causal language models (BioMistral, Mixtral), we applied Parameter-Efficient Fine-Tuning (PEFT)
using LoRA (Low-Rank Adaptation) with rank=16, alpha=32, and dropout=0.1, targeting attention
projections and feed-forward layers.

Language-Specific Configurations: mBART models were configured with appropriate language
codes (en_XX, es_XX, fr XX, pt_XX) for source and target languages. Mixtral employed instruction-
tuned prompts with chat formatting. All models used a maximum sequence length of 1024 tokens for
input and 256 for output summaries.

Training Hyperparameters:

« Loss Function: Cross-entropy loss for all models (sequence-to-sequence for mBART/mTS5,
language modeling for BioMistral/Mixtral)

« Optimizer: AdamW with weight decay 0.01

« Warmup: 25-50 steps depending on dataset size

+ Scheduler: Linear decay after warmup

+ Precision: FP16 enabled where supported, BF16 for Mixtral

« Evaluation: Loss-based with early stopping disabled

+ Saving: Best model based on evaluation loss, limited to 1-2 checkpoints

Dataset Preparation: Training datasets consisted of 592 gold standard document-summary pairs
per language, except for Spanish Run 2 which utilized an extended dataset of 12,100 pairs. For causal
models, documents were formatted with instruction templates emphasizing biomedical summarization
objectives and clinical relevance.

4.8. Language-Specific Implementation Details

We provide comprehensive implementation details for each run across all languages:
English Runs:

« Run 1(Architecture A): Phase 1: BM25 Extractive preprocessing. Phase 2: BioMistral fine-tuning.
Phase 3: Hybrid generation with semantic reranking. Strategy: 3-stage pipeline optimization.

« Run 2 (Architecture B): Phase 1: NER entity extraction. Phase 2: BioMistral generation. Phase
3: Coverage enhancement validation. Strategy: NER-integrated summarization.

Spanish Runs:

« Run 1 (Architecture A2): Phase 1: Model fine-tuning (mBART, mT5). Phase 2: Knowledge
graph ensemble. Phase 3: NER preservation validation. Strategy: Dual-model hybrid approach.

« Run 2 (Architecture A+D): Phase 1: BM25 extractive preprocessing. Phase 2: Llama 3.1 8B
generation. Phase 3: GPT-40 quality enhancement. Strategy: 3-stage quality assurance.

« Run 3 (Architecture A+D): Phase 1: BM25 extractive preprocessing. Phase 2: Mistral 7B
generation. Phase 3: Dense retrieval reranking. Strategy: Dense retrieval optimization.

« Run 4 (Architecture B+D): Phase 1: NER-guided KG summarization. Phase 2: Hybrid generation.
Phase 3: GPT-40 quality assurance. Strategy: Dual-model with proprietary enhancement.

« Run 5 (Architecture C): Phase 1: BioMistral fine-tuning on large-scale data. Phase 2: Hybrid
summarization. Phase 3: Semantic reranking. Strategy: Parameter-efficient adaptation.

Portuguese Runs:

« Run 1 (Architecture C+A): Phase 1: Fine-tuning (mnBART, mT5). Phase 2: Initial hybrid approach
(failed). Phase 3: Revised BM25-neural hybrid. Strategy: Fine-tuning with fallback mechanism.

« Run 2 (Architecture A): Phase 1: Re-ranking with multiple summarization modalities. Phase 2:
Gold pattern extraction. Phase 3: Quality control pipeline. Strategy: Pattern-based reranking.



Table 2
Complete evaluation results for all runs

Language Run BERTScore F1 ROUGE F1

Enlish 1 0.842 0.176
& 2 0.840 0.167

1 0.702 0.218

2 0.742 0.247

Spanish 3 0.727 0.227
4 0.728 0.225

5 0.710 0.191

Portusuese 0.689 0.197
& 0.710 0.187
French 1 0.712 0.197

French Run:

« Run 1 (Architecture C): Phase 1: Fine-tuning (mBART, Mixtral). Phase 2: NER-guided genera-
tion. Phase 3: Quality normalization with BM25 fallback. Strategy: Quality threshold optimization.

Architecture Legend: A: Extractive with Neural Reranking; B: Knowledge Graph-Based Ensemble;
C: Supervised Fine-Tuning; D: Few-Shot Prompting.

5. Results

Table 2 presents the complete evaluation results across all runs and languages.

English Results. Two experimental runs demonstrated consistent performance with minimal vari-
ation. BERTScore results showed good semantic similarity (F1: 0.842, 0.840) with Run 1 slightly
outperforming Run 2 (Precision: 0.848, Recall: 0.837). ROUGE metrics indicated more constrained
lexical overlap (F1: 0.176, 0.167), with Run 1 achieving superior performance (Precision: 0.213, Recall:
0.165). Lower ROUGE scores compared to Spanish suggest greater lexical diversity in English biomedical
references.

Spanish Results. Five runs showed consistent performance with moderate variance. BERTScore F1
ranged 0.701-0.742, with es_run_2 achieving highest performance (F1: 0.742, Precision: 0.752, Recall:
0.732). All runs maintained balanced precision-recall trade-offs with recall above 0.710. ROUGE F1
scores ranged 0.190-0.247, with Run 2 demonstrating superior lexical overlap (F1: 0.247, Precision:
0.283, Recall: 0.242). Lower ROUGE compared to BERTScore indicates effective semantic capture despite
challenging exact lexical matching.

Portuguese Results. Run 2 achieved higher BERTScore F1 (0.71 vs 0.689) while Run 1 demonstrated
superior ROUGE F1 (0.196 vs 0.187). Both runs showed identical BERTScore precision (0.70), with Run
2 exhibiting higher recall (0.71 vs 0.67) and Run 1 displaying greater ROUGE precision (0.23 vs 0.173).

French Results. Single run fr_run_1 achieved solid semantic performance (BERTScore F1: 0.712,
Precision: 0.716, Recall: 0.709), positioning between Spanish (0.701-0.742) and English (0.84+) results.
ROUGE metrics yielded F1: 0.196 (Precision: 0.210, Recall: 0.213), with recall exceeding precision,
indicating comprehensive summary generation with some redundancy:.
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Figure 2: Performance comparison across all runs showing BERTScore F1 vs ROUGE F1

6. Analysis and Discussion

6.1. Cross-Lingual Performance Patterns

The results reveal distinct performance hierarchies across languages as shown in Figure 2.

« Semantic Similarity (BERTScore): English (0.842) > Spanish (0.742) > French (0.712) > Por-
tuguese (0.710)
« Lexical Overlap (ROUGE): Spanish (0.247) > French/Portuguese (0.197) > English (0.176)

6.2. Architecture Effectiveness

Three-stage pipelines (Spanish Runs 2-3) achieved best performance by combining extractive prepro-
cessing, neural generation, and quality enhancement. The integration of GPT-40 for post-processing
(Spanish Run 2) yielded the best overall results across both metrics. The GPT-40 quality assurance oper-
ates as an intelligent agent within our LangGraph multi-agent architecture framework, functioning as a
specialized tool that performs automated quality validation, content refinement, and error correction
on generated summaries. While the system architecture supports both GPT-40 and GPT-4.1 models, we
utilized GPT-4o for all quality assurance operations in this implementation.

Knowledge Graph approaches (Spanish Runs 1, 4) demonstrated competitive performance, with
GPT-40 enhancement providing improvements (+3.2% ROUGE, +3.7% BERTScore over baseline KG
approaches). The multi-agent framework enables seamless integration where the knowledge graph
extraction agent passes structured medical entities to the GPT-40 quality assurance agent for validation
and summary enhancement.

Fine-tuning strategies showed mixed results. BioMistral fine-tuning (Spanish Run 5) underper-
formed despite extensive parameter-efficient training, likely due to the English-centric pre-training
conflicting with Spanish medical terminology requirements.

6.3. Semantic vs. Lexical Trade-offs

The analysis reveals a trade-off between semantic coherence and lexical overlap (Pearson r = -0.490, p
< 0.05). English achieves maximum semantic performance but lowest lexical overlap, while Spanish



demonstrates the most balanced profile across both metrics.

This pattern suggests that different languages require distinct optimization strategies: English benefits
from semantic preservation approaches, while Spanish allows for better balance between abstractive
generation and lexical alignment.

6.4. Error Analysis

The challenges of building multilingual language models for medicine [30] are reflected in our cross-
lingual performance variations. Key limitations identified include:

+ Language-specific model adaptation challenges, particularly for domain-specific models trained
primarily in English

« Entity preservation vs. fluency trade-offs when implementing NER-guided generation

« Computational resource constraints affecting architecture selection, especially for large multilin-
gual models

7. Conclusions

This work presents Agentic MCS, a multilingual framework for biomedical text summarization evaluated
across four languages. Key findings include:

English achieves high semantic similarity (BERTScore: 0.842) through optimized neural architectures,
demonstrating the effectiveness of domain-specific fine-tuning with BioMistral and hybrid reranking
approaches.

Spanish delivers the most balanced performance across both metrics (BERTScore: 0.742, ROUGE:
0.247), with three-stage pipelines and GPT-40 enhancement proving most effective. The diversity of
architectural approaches (5 runs) provides valuable insights into optimal strategy selection.

Portuguese and French achieve good results (BERTScore: 0.71+, ROUGE: 0.197) through adapted
architectures, though with distinct optimization patterns reflecting language-specific characteristics.
Portuguese benefits from pattern mining approaches, while French shows effectiveness of quality
normalization strategies.

Architecture effectiveness varies significantly by language, with ensemble approaches and quality
enhancement mechanisms outperforming single-model systems across all languages. The systematic
trade-off between semantic and lexical optimization provides insights for future multilingual biomedical
summarization systems.

The consistent semantic performance (BERTScore 0.71-0.84) across languages demonstrates the
framework’s robust abstractive capabilities, while varying lexical overlap reflects language-specific
adaptation requirements.

8. Future Work

The current analysis reveals several promising directions for advancing multilingual biomedical sum-
marization capabilities. Building upon our demonstrated semantic fidelity across languages, future
research will pursue three complementary directions.

Comprehensive Evaluation Framework: Comprehensive baseline comparisons and ablation
studies are planned for the extended journal version to quantify the individual contributions of each
architectural component and validate the necessity of multi-agent complexity.

Enhanced Quality Assurance Framework: We plan to develop enhanced RAG-based quality
assurance mechanisms that leverage our multi-agent architecture to maintain consistency across
languages while addressing the identified limitations in entity preservation and fluency trade-offs.

Multimodal Integration: The evolution toward a multimodal clinical summarization framework
represents our primary long-term objective. This development will focus on efficiently processing



multimodal biomedical inputs prevalent in clinical and research settings, aligning with advances in
multimodal biomedical foundation models [31] that can process both text and image data effectively.

Advanced Cross-lingual Adaptation: Future work will develop systematic approaches to model
fine-tuning with incrementally larger datasets combined with quality-supervised training methodologies.
This includes expanded cross-lingual transfer learning strategies to better address language-specific
medical terminology requirements and optimize the semantic versus lexical trade-offs identified in our
analysis.

Declaration on Generative Al

During the preparation of this work, the author(s) used GPT-4 in order to: Grammar and spelling check.
After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed and take(s)
full responsibility for the publication’s content.
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