
Omission Failures in Choreographic Programming
Eva Graversen

1,2
, Fabrizio Montesi

2
and Marco Peressotti

2

1Tallinn University of Technology
2University of Southern Denmark

Abstract
Choreographic programming promises a simple approach to concurrent and distributed programming: write the

collective communication behaviour of a system of processes as a choreography, and then the programs for these

processes are automatically compiled through a provably-correct procedure known as endpoint projection. While

this promise prompted substantial research, a theory that can deal with realistic communication failures in a

distributed network remains elusive. In this work, we provide the first theory of choreographic programming that

addresses realistic communication failures taken from the literature of distributed systems: processes can send or

receive fewer messages than they should (send and receive omission), and the network can fail at transporting

messages (omission failure). Our theory supports the programming of strategies for failure recovery and is

expressive enough to capture different communication patterns that usually required ad-hoc choreographic

primitives and realistic protocols like two-phase commit.

1. Introduction

In the paradigm of choreographic programming [1], programs express coordination plans for communic-

ating processes as compositions of high-level communication primitives inspired by security protocol

notation [2]. In particular, the choreographic primitive p.𝑒 → q.𝑥 reads ‘process p communicates the

evaluation of expression 𝑒 to process q, which stores it in its variable 𝑥’.

Key to choreographic programming is the notion of endpoint projection (EPP), a procedure for

compiling choreographies into distributed implementations in terms of appropriate send and receive

actions [3, 4]. EPP provides an escape from the challenge of separately writing compatible process pro-

grams, which is notoriously hard even for expert developers [5]. This motivated a number of theoretical

investigations and implementations, including a full-fledged object-oriented choreographic program-

ming language that extends Java [6], libraries for Haskell [7] and Rust [8], several mechanisations [9–12],

and the correct implementation of distributed cryptographic applications [13, 14].

Despite all the recent interest in choreographic programming and neighbouring approaches, like mul-

tiparty session types [15], the theories presented so far rely on strong assumptions about communication

actions. Most works just assume that communications never fail. Others allow for some communications

or processes to fail, but with limitations. For example, they might assume synchronous communication

to detect link failures [16], that some processes can never crash, that failures are permanent (crash,

fail-stop), or reliable FIFO communications [17]. These limitations obscure the applicability of these

approaches to the programming of protocols that designed to deal with realistic communication failures

(like two-phase commit, or 2PC), without assuming costly middleware that masks these failures.

To meet this need, in this work we present a new theory of choreographic programming: Lossy

Choreographies (LC). LC is the first choreographic programming theory that can deal with realistic

communication failures from the literature of distributed systems: processes can send or receive fewer

messages than they should – send and receive omission [18, 19] – and the network can fail at transporting

messages – omission failure [20]. Our only assumptions are that messages do not get corrupted and

participants are not malicious, i.e., they run the code projected from the choreography.

The key technical challenge in developing LC lies in designing its syntax and semantics, because we

need to equip programmers with the ability to program recovery strategies for failures. These strategies

ICTCS 2025: Italian Conference on Theoretical Computer Science, September 10–12, 2025, Pescara, Italy
$ eva.graversen@taltech.ee (E. Graversen); fmontesi@imada.sdu.dk (F. Montesi); peressotti@imada.sdu.dk (M. Peressotti)

� 0000-0002-9430-4907 (E. Graversen); 0000-0003-4666-901X (F. Montesi); 0000-0002-0243-0480 (M. Peressotti)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:eva.graversen@taltech.ee
mailto:fmontesi@imada.sdu.dk
mailto:peressotti@imada.sdu.dk
https://orcid.org/0000-0002-9430-4907
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://creativecommons.org/licenses/by/4.0/deed.en

can be asymmetric, e.g., the sender of a message might use exponential backoff while the intended

receiver a timeout. This calls for deconstructing the syntax and semantics of the usual choreographic

communication primitive to allow for independent implementations and executions of the send and

receive sides. However, at the same time, we need to retain the high-level view of choreographies on

what communications and computations the programmer wants to take place.

LC offers a simple solution by introducing a notion of frames to choreographic programming.

Specifically, we declare the intent to communicate a message of type T from p to q by writing

(𝑘, 𝑘′)T : p → q,which creates the frames 𝑘 at p and 𝑘′ at q. Intuitively, the frame 𝑘 is a promise that p
will send a value of type T for this particular communication, and dually 𝑘′ is a future where q can try

to receive that value. Frames can then be used separately at the two processes in their own strategies for

performing their respective obligations (sending or receiving). For example, p could use a procedure with

exponential backoff and q one with a timeout, written as sendExpBackoff(p; 𝑘); recvTimeout(q; 𝑘′).
Leveraging this design and the high-level view of choreographic programming, LC enables processes to

interleave the handling of multiple frames, each with its own recovery strategy. LC is thus expressive

enough to capture different communication patterns that usually required ad-hoc choreographic primit-

ives like scatter and to model realistic protocols like 2PC. Indeed, we will show that LC can serve as a

general model where such primitives can be reconstructed as syntactic sugar.

Structure and contributions We introduce Lossy Choreographies in Section 2 and give some

examples of protocols modelled in this language in Section 3. In Section 4 we equip LC with a type

system and show that well-typed choreographies enjoy progress. In Section 5 we present a language for

local processes and endpoint projection for compiling choreographies to processes. Finally, we compare

our development to related work in Section 6 and conclude in Section 7. In the accompanying technical

report [21], we provide the full technical details of LC and further proofs of its adequacy: (i) a static

analysis for verifying delivery guarantees on frames (at-most-once and exactly-once, depending on

which omissions can take place) and (ii) an implementation given as a library for programming recovery

strategies in Choral [6], a state-of-the-art choreographic programming language that compiles to Java.

2. Lossy Choreographies
Syntax The language of Lossy Choreographies (LC) is defined by the following grammar.

𝐶 ::= 𝐼;𝐶 | 0 𝑠 ::= 𝑙 | 𝑒 𝑏 ::= 𝑒 | 𝑐! | 𝑐? | 𝑐?𝑙 𝑐 ::= 𝑘 | (p,𝑚)

𝐼 ::= (𝑘, 𝑘′)T : p → q | p.𝑐!𝑠 | p.𝑐?𝑥 | p.𝑥 := 𝑠 | ifp.𝑏then𝐶1 else𝐶2 | 𝑋⟨ #»p ; #»𝑐 ⟩

A choreography 𝐶 is a sequence of instructions (𝐼) ending in 0. Term (𝑘, 𝑘′)T : p → q declares a

communication of a message of type T from p to q, binding the frame names 𝑘 for the sender and 𝑘′

for the receiver to the continuation — for simplicity we assume the Barendregt convention replacing

bound names as needed. When this declaration is executed, frame names are substituted with pairs –

(q,𝑚) – that contain the name of the other process in the communication (q) and a natural number (𝑚)

called frame number that identifies this specific communication from p to q.
1

Communications are then

implemented with send terms like p.𝑐!𝑠 (read ‘p sends 𝑠 on frame 𝑐’) and receive terms like q.𝑐′?𝑥 (read

‘q receives a message on 𝑐′ and stores it in 𝑥’). These actions may fail, as we will show in our semantics.

Following standard practice from choreographic programming and session types, we syntactically

distinguish when a process sends the result of a local expression (𝑒) or a statically-defined literal (𝑙,
also known as selection labels) [4, 15]. We leave the language of local expressions as a parameter of

our theory, as in other choreographic languages [3, 4, 9, 11]. Selection labels make the development

of endpoint projection clearer, because it streamlines detecting whether all processes involved in a

conditional communicate sufficient information about which branch has been chosen [3]. This standard

solution adapts to our setting without major changes.

1

Frame numbers are inspired by the sequence numbers found TCP.

In the local assignment term p.𝑥 := 𝑠, p assigns its local variable 𝑥 the value of local computation

𝑠. In a conditional ifp.𝑏then𝐶1 else𝐶2, p evaluates the guard 𝑏 and chooses between the possible

continuations 𝐶1 and 𝐶2 accordingly. Guards can be of four forms: 𝑐! evaluates to true if the last

send attempt for 𝑐 was successful and to false otherwise; 𝑐? behaves like 𝑐? but for receive attempts;

𝑐?𝑙 behaves like 𝑐? but additionally checks that the received values is the label 𝑙; and 𝑒 evaluates

according to the semantics of the language of local expressions. Term 𝑋⟨ #»p ; #»𝑐 ⟩ invokes procedure 𝑋
with arguments

#»p and
#»𝑐 . Procedures are defined by providing equations as usual in process calculi [22].

Example 1. We formalise the procedures sendExpBackoff and recvTimeout from the introduction as a

family of procedures indexed by the expression at the sender (𝑒) and the variable at the receiver (𝑥). We

use some auxiliary variables to store the number of send attempts (𝑛) and the timeout (𝑡𝑜).

sendExpBackoff𝑒(p; 𝑘):1
p.𝑘!𝑒; //Try sending2
if¬p.𝑘!then //Check whether send has succeeded3

p.𝑛 := waitAndReturn(𝑛); //Wait 2𝑛 milliseconds and return 𝑛+ 14
sendExpBackoff𝑒⟨p; 𝑘⟩ //Call procedure recursively5

else0 //If send is successful, finish6

recvTimeout𝑥(p; 𝑘):1
p.𝑛𝑜𝑤 := currentTime();2
p.𝑘?𝑥; //Try receiving3
p.𝑡𝑜 := 𝑡𝑜− (currentTime()− 𝑛𝑜𝑤);4
ifp.𝑡𝑜 > 0 ∧ ¬p.𝑘?then //Check whether receive has succeeded or time has elapsed5

recvTimeout𝑥⟨𝑝; 𝑘⟩ //Call procedure recursively6
else0 //If receive is successful or the time has elapsed, finish7

Using these procedures, we can define as syntactic sugar a communication primitive with a timeout

that recovers the usual simplicity of choreographic syntax. Below, p.𝑒 →𝑡
T q.𝑥 is a communication of

p.𝑒 (of type T) to q.𝑥 with timeout 𝑡.

(𝑘, 𝑘′)T : p → q; p.𝑛 := 0; sendExpBackoff𝑒⟨p; 𝑘⟩; q.𝑡𝑜 := 𝑡; recvTimeout𝑥⟨p; 𝑘⟩;0

LC is expressive enough to capture other strategies as syntactic sugar, including acknowledgements

and compensations (custom code triggered in case of failure). Examples are given in Section 3.

Semantics We give the semantics for LC in terms of a labelled transition system (LTS). The states of

this system are triples of the form ⟨𝐶,Σ,𝐾⟩ called configurations comprised by a choreography 𝐶 (a

term in LC extended with two runtime terms discussed later), a choreographic store Σ modelling the

processes memory, and a communication transit 𝐾 modelling messages in transit over the network.

A choreographic store Σ is a map from process names to their local memory stores ranged over by 𝜎,

similarly to several previous theories [3, 4, 9, 23–25]. We write Σ(p.𝑥) = 𝑣 to denote that Σ(p) = 𝜎
such that 𝜎(𝑥) = 𝑣, read ‘variable 𝑥 at process p has value 𝑣’. Differently from prior work, we reserve

two locations (fc,fb) to store data that processes use for implementing frames. The reserved location fc
stores counters used by the current process to generate frame identifiers, one for each other process:

Σ(p.fc.q) is the counter at p used for frames from/to q. The reserved location fb tracks the state of

frames used by the current process. We write Σ(p.fb.q.𝑛) for the state of the frame that p uses for

sending or receiving a message to q with identifier 𝑛. This state can take different values: (1) it is

⊥ when the frame is first created, (2) it is ✓, when the frame is outgoing and the frame has been

successfully handed over to the network, (3) it is 𝑣 when the frame is incoming and the network has

delivered the value 𝑣 for this frame but the process has not consumed it yet, and (4) it is 𝑣✓ when the

value has been finally read by the process. Frame counters and identifiers are similar to the device

used in TCP to correlate asynchronous messages at sender and receiver. The idea is that: (1) each

process maintains a counter for each other process it interacts with; (2) frame declarations increment

Σ(p) ⊢ 𝑠 ↓ 𝑣

⟨p.𝑥 := 𝑠;𝐶,Σ,𝐾⟩ 𝜏@p−−→𝒞 ⟨𝐶,Σ[p.𝑥 ↦→ 𝑣],𝐾⟩
CAssign

Σ(p.fc.q) = 𝑛 Σ′ = Σ[p.fc.q ↦→ 𝑛+ 1][p.fb.q.𝑛 ↦→ ⊥]

⟨p.(q, 𝑘)T;𝐶,Σ,𝐾⟩ 𝜏@p−−→𝒞 ⟨𝐶[(q, 𝑛)/𝑘],Σ′,𝐾⟩
CFrame

⟨p.(q, 𝑘)T; q.(p, 𝑘′)T;𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′,Σ′,𝐾⟩ 𝜇 ∈ {𝜏@p, 𝜏@q}
⟨(𝑘, 𝑘′)T : p → q;𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′,Σ′,𝐾⟩

CCom

Σ(p) ⊢ 𝑠 ↓ 𝑣

⟨p.(q,𝑚)!𝑠;𝐶,Σ,𝐾⟩ p.(q,𝑚)→−−−−−−→𝒞 ⟨𝐶,Σ[p.fb.q.𝑚 ↦→ ✓],𝐾 ⊎ (p, q,𝑚, 𝑣)⟩
CSend

Σ(p.fb.q.𝑚) ∈ {𝑣, 𝑣✓}

⟨p.(q,𝑚)?𝑥;𝐶,Σ,𝐾⟩ →p.(q,𝑚)−−−−−−→𝒞 ⟨𝐶,Σ[p.fb.q.𝑚 ↦→ 𝑣✓][p.𝑥 ↦→ 𝑣],𝐾⟩
CRecv

Σ(p) ⊢ 𝑠 ↓ 𝑣

⟨p.(q,𝑚)!𝑠;𝐶,Σ,𝐾⟩ p.(q,𝑚)→−−−−−−→𝒞 ⟨𝐶,Σ,𝐾⟩
CSendFail

Σ(p.fb.q.𝑚) = ⊥

⟨p.(q,𝑚)?𝑥;𝐶,Σ,𝐾⟩ →p.(q,𝑚)−−−−−−→𝒞 ⟨𝐶,Σ,𝐾⟩
CRecvFail

⟨𝐶,Σ,𝐾 ⊎ (p, q,𝑚, 𝑣)⟩ 𝜏−→𝒞 ⟨𝐶,Σ[q.fb.p.𝑚 ↦→ 𝑣],𝐾⟩
CDel

⟨𝐶,Σ,𝐾 ⊎ (p, q,𝑚, 𝑣)⟩ 𝜏−→𝒞 ⟨𝐶,Σ,𝐾⟩
CLoss

Σ(p) ⊢ 𝑏 ↓ true

⟨ifp.𝑏then𝐶1 else𝐶2;𝐶,Σ,𝐾⟩ left@p−−−→𝒞 ⟨𝐶1 # 𝐶,Σ,𝐾⟩
CThen

Σ(p) ⊢ 𝑏 ↓ false

⟨ifp.𝑏then𝐶1 else𝐶2;𝐶,Σ,𝐾⟩ right@p−−−−→𝒞 ⟨𝐶2 # 𝐶,Σ,𝐾⟩
CElse

𝑋(#»p ;
#»

𝑘): 𝐶 ∈ 𝒞 r ∈ #»p

⟨𝑋⟨ #»p ; #»𝑐 ⟩;𝐶 ′,Σ,𝐾⟩ 𝜏@r−−→𝒞 ⟨ #»p ∖ r : 𝑋[#»p ; #»𝑐].𝐶 ′;𝐶[#»p / #»q][#»𝑐 /
#»

𝑘] # 𝐶 ′,Σ,𝐾⟩
CCall

r ∈ #»q #»q ∖ r ̸= ∅
⟨ #»q :𝑋[#»p ; #»𝑐].𝐶 ′;𝐶,Σ,𝐾⟩ 𝜏@r−−→𝒞 ⟨ #»q ∖ r : 𝑋[#»p ; #»𝑐].𝐶 ′;𝐶,Σ,𝐾⟩

CEnter

⟨r : 𝑋[#»p ; #»𝑐].𝐶 ′;𝐶,Σ,𝐾⟩ 𝜏@r−−→𝒞 ⟨𝐶,Σ,𝐾⟩
CFinish

⟨𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′,Σ′,𝐾 ′⟩ pn(𝐼) ∩ pn(𝜇) = ∅
⟨𝐼;𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐼;𝐶 ′,Σ′,𝐾 ′⟩

CDelayI

⟨𝐶1,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′
1,Σ

′,𝐾 ′⟩ ⟨𝐶2,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′
2,Σ

′,𝐾 ′⟩ p /∈ pn(𝜇)

⟨ifp.𝑏then𝐶1 else𝐶2;𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨ifp.𝑏then𝐶 ′
1 else𝐶

′
2;𝐶,Σ

′,𝐾 ′⟩
CDelayC

Figure 1: Lossy Choreographies, operational semantics.

counters locally, i.e., without synchronising with the other party; (3) frames are assigned the value

held by the corresponding counter when they are created. Our semantics ensures that frame counters

remain consistent through the execution of a choreography and so it suffices to agree on an initial value

— we formalise this property after we present the semantics (Definition 1).

The network and the messages transiting on it are modelled by a communication transit 𝐾 : a multiset

of messages that have been successfully handed over to the network from the sender, but have not

been delivered to the receiver. Each message has the form (p, q,𝑚, 𝑣) where p is the sender, q is the

receiver, 𝑚 is the frame number, and 𝑣 is the payload. 𝐾 may contain messages with the same sender,

receiver, and frame number but different payloads e.g., when a sender makes multiple attempts updating

a timestamp or counter in the payload each time and these are still in transit. The defining 𝐾 as a

multiset, we model a network without any ordering guarantee.

The transition relation of the LTS is given by the SOS specification in Figure 1 and it is parameterised

on a set 𝒞 of procedure definitions 𝑋(#»p ;
#»

𝑘): 𝐶 where 𝑋 is the procedure name,
#»p and

#»

𝑘 are its formal

parameters for process and frame names, the choreography 𝐶 (free from runtime terms) is its body.

In the remainder, we write pn(𝐶) and and pn(𝜇) for the set of process names that appear in the

choreography 𝐶 and the label 𝜇, respectively.

Rule CAssign models local assignments and is standard: the update notation Σ[p.𝑥 ↦→ 𝑣] denotes a

choreographic store such that (Σ[p.𝑥 ↦→ 𝑣])(p.𝑥) = 𝑣 and behaves like Σ otherwise [4]. The premise

Σ(p) ⊢ 𝑠 ↓ 𝑣 states that the evaluation of 𝑠 in the process store Σ(p) yields value 𝑣 – the definition

of this relation on local expressions (𝑒) is a parameter of the theory (evaluation may be partial or

nondeterministic) whereas on labels it is assumed as Σ(p) ⊢ 𝑙 ↓ 𝑙.
Rules CCom and CFrame model the creation of a pair of frames for a communication from p to q

without relying on any rendezvous mechanism. Instead, these rules rely on the runtime term p.(q, 𝑘)T

to represent the creation of a frame to/from q at p: in rule CFrame, p.(q, 𝑘)T is consumed, the frame 𝑘
is assigned a number 𝑛, its state is initialised to ⊥, and the frame counter for q is incremented; and in

rule CCom, the semantics of (𝑘, 𝑘′)T : p → q is essentially defined as that of p.(q, 𝑘)T; q.(p, 𝑘′)T. The

order of the runtime terms in the premise of rule CCom is immaterial since the semantics allows these

to be executed in any order via rule CDelayI (explained below).

Rules CSend and CSendFail capture the possible executions of a send attempt for a frame (q,𝑚) at

p. The first, Rule CSend models a successful send: a payload 𝑣 is computed and the message (p, q,𝑚, 𝑣)
is successfully handed off to the communication transit (𝐾). It also updates the frame state at the sender

accordingly. Rule CSendFail, instead, models a send omission failure: the send action is consumed

but it omits (fails at) adding the message to 𝐾 . In both cases, no information about the attempt is

propagated to the receiver: our semantics is asynchronous and the only way to exchange information

across processes is through fallible communication actions and a lossy 𝐾 . Note that rule CSend does

not check the state of the frame and that the new one is added to 𝐾 with a multiset union (⊎), to reflect

the real-world situation that a sender may perform multiple send actions resulting in the transmission

of multiple messages (regardless of differences for the payload 𝑚) for the same frame.

Once a message is in transit, there are two possibilities: It can either be successfully delivered to the

receiver, which causes a corresponding update to its frame state (rule CDel), or it can incur an omission
failure and be lost (rule CLoss). The sender has no knowledge of what happens.

Rules CRecv and CRecvFail model a receive attempt. The attempt can be successful (CRecv) only if

the receiver’s state for the desired frame contains a value (previously put there by rule CDel). Otherwise,

if no message for that frame has reached the receiver yet, the receive attempt fails (rule CRecvFail).

Rules CThen and CElse model conditionals. The evaluation of guards on frames is as follows:

Σ(p.fb.q.𝑚) = 𝑣✓

Σ(p) ⊢ (q,𝑚)? ↓ true

Σ(p.fb.q.𝑚) = ✓

Σ(p) ⊢ (q,𝑚)! ↓ true

Σ(p.fb.q.𝑚) = 𝑙✓

Σ(p) ⊢ (q,𝑚)?𝑙 ↓ true

Σ(p.fb.q.𝑚) ̸= 𝑣✓

Σ(p) ⊢ (q,𝑚)? ↓ false

Σ(p.fb.q.𝑚) ̸= ✓

Σ(p) ⊢ (q,𝑚)! ↓ false

Σ(p.fb.q.𝑚) ̸= 𝑙✓

Σ(p) ⊢ (q,𝑚)?𝑙 ↓ false

We use a meta-operator for sequential composition of choreographies ‘#’ [4, 26] which replaces 0 in a

choreography with another choreography (0 # 𝐶 ≜ 𝐶 and (𝐼;𝐶) # 𝐶 ′ ≜ 𝐼; (𝐶 # 𝐶 ′)).
Remaining rules are standard for the theory of choreographic languages [4]. Rules CCall, CEnter

and CFinish model a decentralised call to a choreographic procedure (i.e., without synchronising the

processes that enter the procedure). These rules rely on the runtime term
#»q :𝑋[#»p ; #»𝑐].𝐶 ′

to track which

processes have not joined the call (
#»q) and thus cannot perform any action from its continuation via the

delay rules. Rule CCall unfolds 𝑋 with its body where formal arguments (
#»q ;

#»

𝑘) are instantiated with

the actual ones
#»p ; #»𝑐 (parameters are positional). Rules CEnter and CFinish update and remove the

runtime term as the remaining processes join the call. Rules CDelayI and CDelayC model that actions

performed by distinct processes are executed concurrently by delaying the execution of a term.

With the language fully defined, we formalise the property that frame states, counters, and runtime

terms are consistent across a choreography and store.

Definition 1. Σ is consistent with 𝐶 if, for any two p and q in 𝐶: (1) Σ(p.fb.q.𝑛) is defined for any

𝑛 < Σ(p.fc.q); and (2) |𝜑p
q(𝐶)| = max(0,Σ(p.fc.q) − Σ(q.fc.p)) where the (partial) function 𝜑p

q

computes the set of frame names to q that p has yet to initialise as follows.

𝜑p
q(0) ≜ ∅ 𝜑p

q(𝐼;𝐶) ≜ 𝜑p
q(𝐼) ∪ 𝜑p

q(𝐶) where 𝜑p
q(𝐼) ∩ 𝜑p

q(𝐶) = ∅
𝜑p
q(p.(q, 𝑘)

T) ≜ {𝑘} 𝜑p
q(ifp.𝑏then𝐶1 else𝐶2) ≜ 𝜑p

q(𝐶1) where 𝜑p
q(𝐶1) = 𝜑p

q(𝐶2)

𝜑p
q(𝐼) = ∅ for 𝐼 /∈ {p.(q, 𝑘)T, ifp.𝑏then𝐶1 else𝐶2}

⟨p.(q, 1)!3; q.(p, 1)?𝑥;0,
Σ,
∅

⟩
(a)

⟨ q.(p, 1)?𝑥;0,
Σ[p.fb.q.1 ↦→ ✓],

{(p, q, 1, 3)}

⟩
(b)

⟨ q.(p, 1)?𝑥;0,
Σ′[q.fb.p.1 ↦→ 3],

∅

⟩
(c)

⟨ 0,
Σ′[q.fb.p.1 ↦→ 3✓][q.𝑥 ↦→ 3],

∅

⟩
(d)

⟨p.(q, 1)!3;0,
Σ,
∅

⟩
(e)

⟨q.(p, 1)?𝑥;0,
Σ,
∅

⟩
(f)

⟨0,
Σ,
∅

⟩
(g)

⟨ 0,
Σ[p.fb.q.1 ↦→ ✓],

{(p, q, 1, 3)}

⟩
(h)

⟨q.(p, 1)?𝑥;0,
Σ′,
∅

⟩
(i)

⟨
0,
Σ′,
∅

⟩
(j)

⟨
0,

Σ′[q.fb.p.1 ↦→ 3],
∅

⟩
(k)

CSend CDel

CRecv

CRecvFail
CSendFail

CSendFail

CSend
CRecvFail CRecvFail

CLoss

CDel

CLoss

CRecvFail

Σ(p.fb.q.1) = Σ(p.fb.q.1) = ⊥
Σ′ = Σ[p.fb.q.1 ↦→ ✓]

Figure 2: Labelled transition system illustrating all possible executions of an end-to-end communication in LC –

dashed (red) arrows are transitions that model failures.

Note that the function 𝜑p
q is partial and rejects choreographies that misuse runtime terms for frame

creation e.g., the condition on the case 𝐼;𝐶 excludes repetitions of runtime terms for the same 𝑘.

Proposition 1. If ⟨𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′,Σ′,𝐾 ′⟩ and Σ is consistent with 𝐶 , then Σ′ is consistent with 𝐶 ′.

Understanding failures We illustrate the realism of our model wrt communication failures with

a simple end-to-end communication. Consider the choreography p.(q, 1)!3; q.(p, 1)?𝑥; 0 where p
attempts to communicate the number 3 to q; the LTS in Figure 2 captures all the possible executions for

this program. For convenience of exposition, we assign a letter to each state. Also, we do not show

transition labels but rather the name of the rule applied to derive the transition – the transition from (a)

to (e) is the only one that also requires rule CDelayI.

Every run of the program begins in state (a) and eventually terminates reaching 0. We describe the

different situations at the ends of the possible executions.

(d) This is the final state of the only successful execution: the value 3 is marked as delivered and no

transition from (a) to (d) uses any of the rules that model send, receive, and omission failures.

(g) This state is reached if we have both a send and a receive omissions. In the path via (f), a send

omission stops the receive from ever succeeding. In the path via (e), we have a receive omission

because the receive is attempted before the send action had a chance to put the message in the

network. The latter case exemplifies how our semantics captures timeouts at the receiver. In fact,

(e) may transition to (h) failing because of timing, as this is before the successful transit.

(j) This state is reached because of an omission failure. In the path via (i), the omission failure causes

the receive to fail. In the path via (e), the receive fails regardless of the omission because of timing.

(k) This state is reached if the send succeeds but the receive fails because of timing issues: in the

path through (e), the receive is executed before the send; in the path through (b), the receive is

executed before the network could carry the message to the receiver.

3. Applications

Acknowledgements Assume a setting with omission failure (rule CLoss). In this setting, the

definition of p.𝑒 →𝑡
T q.𝑥 presented in Example 1 risks ending up in a state where the sender believes

it has completed a communication but the receiver has timed out due to the message being lost by

the network. This is a common problem in practice, which is addressed by switching to “best-effort”

strategies where delivery is possible (to varying degrees) but not certain.

The procedure below implements a simple communication protocol with capped retries and acknow-

ledgements to the sender. In this, the strategy use by comACK𝑒,𝑥 can be regarded as a simplification of

that of TCP; four-phase handshakes or other protocols are implementable in LC as well.

comACK𝑒,𝑥(s, r):1
(𝑘, 𝑘′)T : s → r; //Create new frame for this communication2
(𝑘′𝑎𝑐𝑘, 𝑘𝑎𝑐𝑘)

Unit : r → s; //Create new frame for the acknowledgement3
sendExpBackoff𝑒(s; 𝑘); //Send4
recvTimeout𝑥(r; 𝑘

′); //Receive5
sendExpBackoff𝑢𝑛𝑖𝑡(r; 𝑘

′
𝑎𝑐𝑘); //Send acknowledgement6

sendUntilACK𝑒,𝑥(s; 𝑘, 𝑘𝑎𝑐𝑘); //Call send procedure7

sendUntilACK𝑒,𝑥(s; 𝑘, 𝑘𝑎𝑐𝑘):8
recvTimeout𝑥(s; 𝑘𝑎𝑐𝑘); //Try receiving acknowledgement9
if s.(𝑛 > 0) ∧ ¬s.𝑘𝑎𝑐𝑘?then //Check number of attempts and received acknowledgement10
s.𝑛 := 𝑛− 1; //Update send attempt number11
sendExpBackoff𝑒(s; 𝑘); //Make another attempt at sending12
sendUntilACK𝑒,𝑥(s; 𝑘, 𝑘𝑎𝑐𝑘); //Repeat13

else0 //When acknowledgement has been received or we run out of attempts, end.14

Compensations With comACK𝑒,𝑥 we can also use LC to develop a new variant of choreographies

that does not assume reliable transmission, i.e., when we are in a setting with omission failures. In

this setting, a common pattern to deal with failures of best-effort communications are compensations.
Fault compensations can be defined in LC (for both settings with and without omission failures) using

conditionals, comACK𝑒,𝑥 (or variations thereof), and some syntax sugar to improve readability. An

expression s.𝑒 ⇒𝐵𝐸 r.𝑥{𝐶s}{𝐶r} is a communication as in comACK𝑒,𝑥(s, r) where choreographies 𝐶s

and 𝐶r are executed as compensations for faults detected by the sender s (no ack) or the receiver r,
respectively. An example of communications with fault compensations is the communication construct

defined in [16] where communication operations specify default values as compensations; this is

recovered in LC using local computations as, e.g., in s.𝑒 ⇒𝐵𝐸 r.𝑥{s.𝑥 := foo}{r.𝑥 := 42}.

Any/Many communications We can also implement more complex communication primitives, like

those in [27, 28]. Below are procedures that iteratively attempt at sending some frames until the sender

stack accepts all or any of them, respectively, using a round-robin strategy.

sendAll𝑛,𝑒(s; 𝑘1, . . . , 𝑘𝑛):1
s.𝑘𝑛!𝑒; //Send to the last frame in the list2
if s.𝑘𝑛!then //Check if send was successful3

sendAll𝑛−1,𝑒(s; 𝑘1, . . . , 𝑘𝑛−1) //Send to the remaining frames4
elsesendAll𝑛,𝑒(s; 𝑘2, . . . , 𝑘𝑛, 𝑘1) //Otherwise, try this frame again later5

sendAny𝑛,𝑒(s; 𝑘1, . . . , 𝑘𝑛):1
s.𝑘1!𝑒; //Send to the first frame in the list2
if¬s.𝑘1!then //Check if send was unsuccessful3

sendAny𝑛,𝑒(s; 𝑘2, . . . , 𝑘𝑛, 𝑘1) //Retry cycling through the frames4
else0 //End function if the send succeeded5

We omit the dual procedures for receiving all or some frames, which are similarly defined. Combining

these it is possible to implement scatter/gather communication primitives from [27].

scatter𝑒,𝑥(s, r1, . . . , r𝑛; ∅):1
(𝑘1, 𝑘

′
1)

T : s → r1; . . . (𝑘𝑛, 𝑘
′
𝑛)

T : s → rn; //Create frames2
sendAll𝑒(s; 𝑘1, . . . , 𝑘𝑛); //Call send all on the new frames3
recvTimeout𝑥(r1; 𝑘

′
1); . . . recvTimeout𝑥(r𝑛; 𝑘

′
𝑛) //Each receiver receives on its frame.4

Two-phase commit LC can be used to implement common protocols for dealing with failures. The

two-phase commit protocol [29] is a protocol for getting a set of participants to agree to either commit

or abort their local transaction thus providing a mechanism for distributed transactions in presence of

unreliable communication. Each participant sends the controller a vote to commit or a veto for aborting

the transaction. The controller tallies all the votes and decides to globally commit if all are in favour

(a missing vote is regarded as a veto) and to globally abort otherwise. The controller then sends its

decision to each participant, trying repeatedly to send until it receives an acknowledgement. Meanwhile

the participants wait for the decision before they commit or abort their local transaction acknowledging

the outcome to the controller. We base our code on the version of the protocol presented in [29].

2PhaseCommit(c, p1, . . . , pn;):1
(𝑘𝑣1 , 𝑘

′
𝑣1)

Bool : p1 → c; . . . ; (𝑘𝑣𝑛 , 𝑘
′
𝑣𝑛)

Bool : pn → c; //Frames for votes2

(𝑘𝑑1 , 𝑘
′
𝑑1
)Bool : c → p1; . . . ; (𝑘𝑑𝑛 , 𝑘

′
𝑑𝑛
)Bool : c → pn; //Frames for decision3

(𝑘𝑎1 , 𝑘
′
𝑎1
)Unit : p1 → c; . . . ; (𝑘𝑎𝑛 , 𝑘

′
𝑎𝑛
)Unit : pn → c; //Frames for acknowledgements4

c.𝑣1 := 𝑓𝑎𝑙𝑠𝑒; . . . ; c.𝑣𝑛 := 𝑓𝑎𝑙𝑠𝑒; //All votes start out false at c5
p1.𝑘𝑣1 !vote(); . . . ; pn.𝑘𝑣𝑛 !vote(); //Participants send votes6
c.𝑘′𝑣1?𝑣1; . . . ; c.𝑘

′
𝑣𝑛?𝑣𝑛; //Controller receives votes (they remain false if receive fails)7

c.𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 := 𝑣1 ∧ · · · ∧ 𝑣𝑛; //Decision on whether to commit is made - only if all voted yes8
sendAllUntilAck(c; 𝑘𝑑1 , . . . , 𝑘𝑑𝑛 , 𝑘

′
𝑎1
, . . . , 𝑘′𝑎𝑛

); //c sends the decision9
recvDec(p1; 𝑘

′
𝑑1
, 𝑘𝑎1); . . . ; recvDec(pn; 𝑘

′
𝑑𝑛
, 𝑘𝑎𝑛) //ps receive decisions10

sendAllUntilAck𝑛(c; 𝑘𝑑1, . . . , 𝑘𝑑𝑛 , 𝑘𝑎1 , . . . , 𝑘𝑎𝑛):11
c.𝑘𝑑𝑛

!𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛; //c sends the decision to a participant12
c.𝑘𝑎𝑛

?𝑥; //c receives acknowledgement from that participant13
if𝑘𝑎𝑛

?then //If the acknowledgement was received14
sendAllUntilAck𝑛−1(c; 𝑘𝑑1

, . . . , 𝑘𝑑𝑛−1
, 𝑘𝑎1

, . . . , 𝑘𝑎𝑛−1
) //Send to other participants15

elsesendAllUntilAck𝑛(c; 𝑘𝑑2 , . . . , 𝑘𝑑𝑛 , 𝑘𝑑1 , 𝑘𝑎2 , . . . , 𝑘𝑎𝑛 , 𝑘𝑎1) //Try again later16

recvDec(p; 𝑘𝑑, 𝑘𝑎):17
p.𝑘𝑑?𝑑𝑒𝑐; //Try receiving the decision18
ifp.𝑘𝑑?then //If receive was successful19

ifp.𝑑𝑒𝑐thenp.𝑚𝑒𝑚𝑜𝑟𝑦 := commit()20
elsep.𝑚𝑒𝑚𝑜𝑟𝑦 := abort()21
sendExpBackoff𝑢𝑛𝑖𝑡(p, 𝑘𝑎) //Keep sending acknowledgement until successful22

elserecvDec(p; 𝑘𝑑, 𝑘𝑎) //If receive decision was unsuccessful, try again23

Note that sendAllUntilAck is a combination of sendAll and sendUntilAck without the check on

the number of send attempts; we omitted this for brevity but it could easily be reintroduced if one is

concerned about c being blocked by a lost acknowledgement.

4. Typing

LC programs can get stuck if procedures are called on wrong arguments, communication actions are

performed against the wrong frames or processes, and guards of conditionals are not of the expected

type. We introduce a type system for LC that rejects this kind of programs and ensures progress.

Type judgements are of the form Γ ⊢ 𝐶 where Γ is an environment for tracking the types of

choreographic procedures, frames and the local memory.

Γ := 𝑋⟨ #»p ;
»

𝑘 : T⟩ | p.𝑐 : 𝐹 | p.𝑥 : T 𝐹 := !T | ?T

Γ, p.𝑘 : !T, q.𝑘′ : ?T ⊢ 𝐶

Γ ⊢ (𝑘, 𝑘′)T : p → q;𝐶
TCom

Γ(p.𝑘) ∈ {!T, ?T} Γ ⊢ 𝐶

Γ ⊢ p.(q, 𝑘)T;𝐶
TFrame

Γ(p.𝑐) = !T Γ(p) ⊢ 𝑠 : T Γ ⊢ 𝐶

Γ ⊢ p.𝑐!𝑠;𝐶
TSend

Γ(p.𝑐) = ?T Γ(p.𝑥) = T Γ ⊢ 𝐶

Γ ⊢ p.𝑐?𝑥;𝐶
TRecv

Figure 3: Lossy Choreographies, typing rules (selection), see [21, §4].

The frame types !T and ?T denote a frame that sends a payload of type T and one that receives a

payload of type T. We write Γ(p.𝑐) and Γ(p.𝑥) for the type of frame p.𝑐 and of variable p.𝑥, and Γ(p)
for the environment local to p. Just like we assumed a user-defined local language, we do the same for

the local type system, which we assume has local judgements Γ(p) ⊢ 𝑠 : T extended to account for

guards about frame status (𝑐!, 𝑐?, 𝑐?𝑙) as one would expect (see [21, §4] for details).

For the most part, these rules are fairly intuitive. We report a selection of illustrative derivation rules

of the type system in Figure 3, the full system is available in the report [21, §4]. Rule TCom adds both

ends of the frame to the environment with the expected send and receive types and rule TFrame checks

that the runtime term for frame creation refers to a frame in the environment.
2

Rules TSend and TRecv

check that the type of the frame matches the type of the payload and the variable it gets stored on.

Definition 2. We say that a configuration ⟨𝐶,Σ,𝐾⟩ is well-typed if there is a type environment

Γ such that (1) Γ ⊢ 𝐶; (2) Γ ⊢ Σ(p.𝑥) : Γ(p.𝑥) for any variable p.𝑥 ∈ Σ; (3) Γ(p.(q,𝑚)) = !T,

Γ(q.(p,𝑚)) = ?T, and ⊢ 𝑣 : T for any (p, q,𝑚, 𝑣) ∈ 𝐾 ; (4) Σ is consistent with 𝐶 .

Our type system enjoys typability preservation: if a configuration is well-typed then so is any

configuration that can be reached from it.

Proposition 2 (Typability Preservation). Given a well-typed configuration ⟨𝐶,Σ,𝐾⟩ and set of procedure
definitions 𝒞, if ⟨𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′,Σ′,𝐾 ′⟩, then ⟨𝐶 ′,Σ′,𝐾 ′⟩ is also well-typed.

Well-typed configurations enjoy progress: they either do an action or their choreography is 0.

Theorem 1 (Progress). Given a well-typed ⟨𝐶,Σ,𝐾⟩ and 𝒞, 𝐶 = 0 or ⟨𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′,Σ′,𝐾 ′⟩.

5. Compilation to Process Implementations

We present an EndPoint Projection (EPP) procedure that compiles a choreography to a concurrent

implementation in terms of a process calculus, which assumes the same failure model as in LC.

Lossy Processes The target process language, Lossy Processes, is based on Recursive Processes –

the textbook target for choreography projection [4]. We extend the semantics so that (i) send and

receive operations may fail and (ii) messages are tagged with numeric (frame) identifiers. Numeric

frame identifiers act as message sequence numbers. However, the model does not offer any mechan-

ism for maintaining counters synchronised among connected processes nor can such mechanism be

programmed since these counters are inaccessible. The only way to maintain synchrony is to write

programs where frame declarations are carefully matched at communicating process. In the next section

we leverage the fact that processes projected from a choreography enjoy this by construction.

The next grammar allows for writing process programs, or behaviours (𝐵).

𝐵 ::= 𝐿;𝐵 | 0 𝑠 ::= 𝑙 | 𝑒 𝑏 ::= 𝑒 | 𝑐 𝑐 ::= 𝑘 | (p,𝑚)

𝐿 ::= (p, 𝑘) | 𝑐!𝑠 | 𝑐?𝑥 | 𝑥 := 𝑠 | if 𝑏then𝐵1 else𝐵2 | 𝑐&{𝑙1 : 𝐵𝑖}𝑖∈𝐼 | 𝑋⟨ #»p ; #»𝑐 ⟩

2

For conciseness, neither rule check for misuses of runtime terms like p.(q, 𝑘)T; p.(q, 𝑘)T or (𝑘, 𝑘′)T : p → q; p.(q, 𝑘)T as

these are already excluded by Definition 1; these checks amount to adding the premises 𝑘 /∈ 𝜑p
q(𝐶) and 𝑘′ /∈ 𝜑q

p(𝐶).

𝑚 = Σ(p.fc.q) Σ′ = Σ[p.fc.q ↦→ 𝑚+ 1, p.fb.q.𝑚 ↦→ ⊥]

⟨p[(q, 𝑘);𝐵],Σ,𝐾⟩ p→q−−−→ℬ ⟨p[𝐵[(q,𝑚)/𝑘]],Σ′,𝐾⟩
PFrame

𝜎(p) ⊢ 𝑆 ↓ 𝑣 Σ′ = 𝜎[p.fb.q.𝑚 ↦→ ✓]

⟨p[(q,𝑚)!𝑠;𝐵],Σ,𝐾⟩ p.(q,𝑚)→−−−−−−→ℬ ⟨p[𝐵],Σ′,𝐾 ∪ {(p, q,𝑚, 𝑣)}⟩
PSend

Σ(p.fb.q.𝑚) ∈ {𝑣, 𝑣✓}

⟨p[(q,𝑚)?𝑥;𝐵],Σ,𝐾⟩ →p.(q,𝑚)−−−−−−→ℬ ⟨p[𝐵],Σ[p.fb.q.𝑚 ↦→ 𝑣, 𝑥 ↦→ 𝑣✓],𝐾⟩
PRecv

⟨𝑁,Σ,𝐾⟩ 𝜇−→ℬ ⟨𝑁 ′,Σ′,𝐾 ′⟩
⟨𝑁 | 𝑀,Σ,𝐾⟩ 𝜇−→ℬ ⟨𝑁 ′ | 𝑀,Σ′,𝐾 ′⟩

NPar

⟨p[(q,𝑚)!𝑠;𝐵],Σ,𝐾⟩ p.(q,𝑚)→−−−−−−→ℬ ⟨p[𝐵],Σ,𝐾⟩
PSendFail

Σ(p.fb.q.𝑚) = ⊥

⟨p[(q,𝑚)?𝑥;𝐵],Σ,𝐾⟩ →p.(q,𝑚)−−−−−−→ℬ ⟨p[𝐵],Σ,𝐾⟩
PRecvFail

⟨𝑁,Σ,𝐾 ⊎ {(p, q,𝑚, 𝑣)}⟩ 𝜏−→ℬ ⟨𝑁,Σ,𝐾⟩
NLoss

⟨𝑁,Σ,𝐾 ⊎ {(p, q,𝑚, 𝑣)}⟩ 𝜏−→ℬ ⟨𝑁,Σ[q.fb.p.𝑚 ↦→ 𝑣],𝐾⟩
NDel

Figure 4: Process model, operational semantics (selection), see [21, §5].

Term (p, 𝑘) represent the creation of a new frame. Terms 𝑐!𝑠 and 𝑐?𝑥 express send and receive actions

for 𝑐. Term 𝑐&{𝑙1 : 𝐵𝑖}𝑖∈𝐼 describes a branching based on a label communicated for 𝑐, if any label 𝑙𝑖 has

been successfully received then, the process proceeds with the corresponding behaviour 𝐵𝑖 otherwise

it proceeds with the one labelled with default which is reserved for this purpose and cannot be sent.

If 𝐼 = ∅, then the term is simply discarded. Guard 𝑐 states that the last communication action for frame

𝑐 has been successfully completed. Remaining terms are standard.

Borrowing notation from [4], a network (of processes) 𝑁 is a map from process names to process

behaviours such that only finitely many are mapped to behaviours other than 0; the set of these processes

is called domain of the network. We write p[𝐵] for the network where process p has behaviour 𝐵 and

every other process has behaviour 0. The parallel composition of two networks 𝑁 and 𝑁 ′
with disjoint

domains, 𝑁 | 𝑁 ′
, simply assigns to each process its behaviour in the network defining it.

The semantics of networks is given as an LTS. States are configurations ⟨𝑁,Σ,𝐾⟩ where 𝑁 is a

network and Σ and 𝐾 are as in the LTS of LC. The transition relation uses the same labels of LC and is

parameterised in a set ℬ of procedure definitions. We report a selection of the core rules in Figure 4

which we discuss below—the remaining ones are standard and can be found in [21, §5].

Rule PFrame models the creation at p of a new frame for q using the value 𝑚 of the corresponding

counter. Rule PSend models the sending of a message 𝑣 to frame (q,𝑚), marking the frame as sent and

rule PSendFail models the case where the send fails. Dually, rules PRecv and PRecvFail model the

successful reception of a message from frame (q,𝑚), marking the frame as received and storing in 𝑥
the received value 𝑣, and the case where the receive fails, respectively. Rules NLoss and NDel model

the loss and delivery of messages by the network like rules CLoss and CDel.

EndPoint Projection Given a choreography 𝐶 , the projected behaviour of process p in 𝐶 is defined

as J𝐶Kp where J−Kp is the partial function defined by structural recursion in Figure 5. Each case in the

definition follows the intuition of writing, for each choreographic term, the local actions performed

by the given process. For instance, p.𝑐!𝑠 is skipped during the projection of any process but p, for

which the send action 𝑐!𝑠 is produced. Cases for receiving, procedure calls, and frame creation are

similar. The projection of frame declaration expands it to two frame creation runtime terms similarly

to its semantics, ensuring that as long as the starting configuration is consistent, the frame counters

will remain synchronised for the entire execution. The case for conditionals combines the normal

conditionals and branching over labels selection but otherwise follows the standard approach (see

e.g., [3, 4, 26, 30–32]). The (partial) merging operator ⊔ from [3] is used to merge the behaviour of a

process that does not know (yet) which branch has been chosen by the the process evaluating the guard.

Intuitively, 𝐵 ⊔ 𝐵′
behaves as 𝐵 and 𝐵′

up to branching, where branches of 𝐵 or 𝐵′
with distinct

q
(𝑘, 𝑘′)T : p → q;𝐶

y
r
≜

q
p.(q, 𝑘)T; q.(p, 𝑘′)T;𝐶

y
r

q
p.(q, 𝑘)T;𝐶

y
r

{︃
(q, 𝑘); J𝐶Kr if r = p

J𝐶Kr else

Jp.𝑐!𝑠;𝐶Kr ≜

{︃
𝑐!𝑠; J𝐶Kr if r = p

J𝐶Kr else

Jp.𝑐?𝑥;𝐶Kr ≜

{︃
𝑐?𝑥; J𝐶Kr if r = p

J𝐶Kr else

Jp.𝑥 := 𝑠;𝐶Kr ≜

{︃
𝑥 := 𝑠; J𝐶Kr if r = p

J𝐶Kr else

J𝑋⟨ #»p ; #»𝑐 ⟩;𝐶Kr ≜

{︃
𝑋𝑖(

#»p ∖ r; #»𝑐); J𝐶Kr if r = #»p [𝑖]

J𝐶Kr else

J #»q :𝑋[#»p ; #»𝑐].𝐶 ′;𝐶Kr ≜

{︃
𝑋𝑖(

#»p ∖ r; #»𝑐); J𝐶 ′Kr if r ∈ #»q and r = #»p [𝑖]

J𝐶Kr else

J0Kr ≜ 0

s
ifp.𝑏then𝐶1

else𝐶2;𝐶

{

r

≜

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑐&{𝑙 : J𝐶1Kr ,default : J𝐶2Kr}); J𝐶Kr if p.𝑏 = r.𝑐?𝑙

(if𝑒then J𝐶1Kr else J𝐶2Kr); J𝐶Kr if p.𝑏 = r.𝑒

(if 𝑐then J𝐶1Kr else J𝐶2Kr); J𝐶Kr if p.𝑏 = r.𝑐! or p.𝑏 = r.𝑐?

(J𝐶1Kr ⊔ J𝐶2Kr); J𝐶Kr else

Figure 5: EndPoint Projection, process behaviours.

labels are also included. One proceeds homomorphically (e.g., 𝑘!𝑒;𝐵 ⊔ 𝑘!𝑒;𝐵′
is 𝑘!𝑒; (𝐵 ⊔𝐵′)) on all

terms but branches which are handled defining the merge of 𝑐&{𝑙𝑖 : 𝐵𝑖}𝑖∈𝐼 ;𝐵 and 𝑐&{𝑙𝑗 : 𝐵′
𝑗}𝑗∈𝐽 ;𝐵′

as 𝑐&{𝑙ℎ : 𝐵′′
ℎ}ℎ∈𝐻 ; (𝐵 ⊔𝐵′) where {𝑙ℎ : 𝐵′′

ℎ}ℎ∈𝐻 is the union of {𝑙𝑖 : 𝐵𝑖}𝑖∈𝐼∖𝐽 , {𝑙𝑗 : 𝐵′
𝑗}𝑗∈𝐽∖𝐼 , and

{𝑙𝑔 : 𝐵𝑔 ⊔𝐵′
𝑔}𝑔∈𝐼∩𝐽 . A choreography 𝐶 is projected to J𝐶K ≜ 𝜆p. J𝐶Kp and procedure definitions as:

J𝒞K ≜
⋃︀

𝑋(p1,...pn;
#»
𝑘)=𝐶∈𝒞

{︁
𝑋𝑖(p1, . . . , p𝑖−1, p𝑖+1, . . . pn;

#»

𝑘)J𝐶Kp𝑖
⃒⃒⃒
1 ≤ 𝑖 ≤ 𝑛

}︁
.

Observe that since a procedure 𝑋 may be called multiple times on any combination of its arguments it

is necessary to project the behaviour of each possible process parameter p𝑖 as the procedure 𝑋𝑖.

There is an operational correspondence between choreographies and their projections, which we

can be formulated in the standard way up to the ‘branching’ relation ⊒ (the natural order induced by

merging i.e., 𝐵1 ⊒ 𝐵2 iff 𝐵1 ⊔𝐵3 = 𝐵2 for some 𝐵3 [4]). This relation accounts for the well-known

fact in choreographic programming that, after a conditional is executed at the choreography level, some

processes get to know about the chosen branch only after a while (through selections) and thus have

temporary ‘dead code’ (branches that are never going to be selected) [4, Chapter 6].

Theorem 2 (EPP). Given a well-typed ⟨𝐶,Σ,𝐾⟩ and 𝒞 such that J𝐶K and J𝒞K are defined, then:
• If ⟨𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′,Σ′,𝐾 ′⟩ then J𝐶,Σ,𝐾K 𝜇−→J𝒞K 𝑁 such that J𝐶 ′K ⊒ 𝑁 .
• If ⟨J𝐶K ,Σ,𝐾⟩ 𝜇−→J𝒞K ⟨𝑁,Σ′,𝐾 ′⟩, then ⟨𝐶,Σ,𝐾⟩ 𝜇−→𝒞 ⟨𝐶 ′,Σ′,𝐾 ′⟩ such that J𝐶 ′K ⊒ 𝑁 .

6. Related Work

The work nearest to ours is [16], which extends multiparty session types (MPST) [15] – protocol specific-

ations without data or computation – with optional blocks that can become no-op non-deterministically.

While our initial motivation is similar, we address a different setting and see our work as complementary.

Our focus is providing guarantees on implementations, and thus choreographies in LC are concrete

programs, unlike protocol specifications. Another key difference is that communication in [16] is

synchronous – both sender and receiver know if the communication failed – whereas in LC it is asyn-

chronous. This requires defining and analysing send and receive actions separately, as success in sending

does not guarantee success in receiving. This separation is is crucial for enabling different recovery

strategies for senders and receivers in LC whereas in [16] recovery strategies cannot be specified at all.

Another extension of MPST focuses on process failures (instead of communication failures) [17].

Like LC and unlike [16], it supports asynchronous communication. However, it differs significantly

from LC by assuming some processes cannot fail and that communication between non-failed processes

is reliable. In contrast, LC allows messages to arrive in any order or not at all. The failure mode of [17]

lies between crash [33] and fail-stop [34, 35] modes, which impose stronger reliability assumptions

than to the omission modes of LC [19, 20]. Process failures can be encoded in LC, e.g., via internal

nondeterministic choices to proceed or shut down.

In [36], MPST are augmented with controlled exceptions. These are different from communication

failures, because they are controlled by the programmer and their propagation is ensured through

communications that are assumed reliable. The same difference applies to a later refinement of this

approach [37] and a similar extension of session types to exception handling in a functional setting [38].

A different approach to MPST with failures is seen in [39]. Like LC, they allow communication to

fail, but when this happens they kill the session where the failure occurred. Similarly to [36], this

mechanism for killing sessions assumes a reliable way to communicate failures between processes.

In [27], the authors propose a choreographic language for programming systems where processes

are implemented as pools of redundant replicas that may and communicate via reliable multicast. No

recovery can be programmed, and there is no presentation of how the approach can be adopted in

realistic process models. Therefore, this approach is from from ours and and [16].

Some work on choreographies include choice operators that behave nondeterministically, e.g., 𝐶+𝐶 ′
,

read ‘run either 𝐶 or 𝐶 ′
’ [3, 4, 15, 31, 40]. These operators do not capture the failure modes we

are interested in for two reasons: they are explicitly programmed and thus predictable, and their

formalizations assume reliable propagation of choice information among processes.

Our approach of recovering high-level choreographic constructs by wrapping lower-level commu-

nication actions (as in Example 1) follows the practice established by Choral, the most expressive

implementation of choreographic programming to date [6, 41]. However, Choral does not come with a

formal semantics. LC thus offers a useful theory to reason about recovery strategies before they are

implemented, which can be done through our accompanying implementation as a Choral library [21].

Recent work explored how choreographic programming can be offered as embedded domain-specific

languages in, for example, Haskell and Rust [7, 8, 42, 43]. Differently from Choral, these languages

are based on interpretation rather than compilation. We think that our ideas are applicable also to

these languages, but it would require updating both the languages and their interpretation functions –

whereas our implementation does not require any change to Choral itself, it is ‘just a library’.

Our new primitive for communication declaration is reminiscent of the ‘cut’ operator found in session-

typed process calculi for connecting two endpoints of a channel [44–47]. While there is a superficial

similarity in that both endpoints and our frames are created in pairs, endpoint pairs represent channels,

whereas frame pairs represent single communications. More importantly, the dynamic creation of

endpoints requires synchronisation, unlike our frames, which is crucial for our development due to

unreliable communication. Session types typically guarantee system-wide progress by restricting

communication structures or process topologies, whereas LC does not require such restrictions.

7. Conclusion

Choreographic programming has seen significant advancements over the past decade, but always under

the strong assumption of reliable communication [1, 4, 6–8, 11, 23–25, 48–51]. Our study frees the

paradigm from this assumption, reaching all the way to standard failure modes and realistic protocols.

Our work covers all failure modes with honest participants. A natural next step is therefore to

investigate Byzantine failures modes where participants may act maliciously. Exploring this direction

would touch on a realm where possible guarantees are more limited. Therefore, it would be interesting

and challenging to understand how close choreographic programming can be brought to the theoretical

limit. Another interesting direction is to explore a quantitative semantics of Lossy Choreographies. For

instance, in a probabilistic settings, failures are characterised by probability distributions. This would

enable reasoning about aspects such as quality of service, throughput, probability of critical failure, etc.

Acknowledgments

Partially supported by Villum Fonden (grant no. 29518), and by the Ministry of Education and Research

Centres of Excellence grant TK213 Estonian Centre of Excellence in Artificial Intelligence (EXAI). Co-

funded by the European Union (ERC, CHORDS, 101124225). Views and opinions expressed are however

those of the authors only and do not necessarily reflect those of the European Union or the European

Research Council. Neither the European Union nor the granting authority can be held responsible for

them.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] F. Montesi, Choreographic Programming, Ph.D. Thesis, IT University of Copenhagen, 2013. URL:

https://www.fabriziomontesi.com/files/choreographic-programming.pdf.

[2] R. Needham, M. Schroeder, Using encryption for authentication in large networks of computers,

Commun. ACM 21 (1978) 993–999. doi:10.1145/359657.359659.

[3] M. Carbone, K. Honda, N. Yoshida, Structured communication-centered programming for web

services, ACM Trans. Program. Lang. Syst. 34 (2012) 8.

[4] F. Montesi, Introduction to Choreographies, Cambridge University Press, 2023. doi:10.1017/
9781108981491.

[5] T. Leesatapornwongsa, J. F. Lukman, S. Lu, H. S. Gunawi, TaxDC: A taxonomy of non-deterministic

concurrency bugs in datacenter distributed systems, in: ASPLOS, ACM, 2016, pp. 517–530.

[6] S. Giallorenzo, F. Montesi, M. Peressotti, Choral: Object-oriented choreographic programming,

ACM Trans. Program. Lang. Syst. 46 (2024). URL: https://doi.org/10.1145/3632398. doi:10.1145/
3632398.

[7] G. Shen, S. Kashiwa, L. Kuper, Haschor: Functional choreographic programming for all (functional

pearl), Proc. ACM Program. Lang. 7 (2023) 541–565. URL: https://doi.org/10.1145/3607849. doi:10.
1145/3607849.

[8] S. Kashiwa, G. Shen, S. Zare, L. Kuper, Portable, efficient, and practical library-level choreographic

programming, CoRR abs/2311.11472 (2023). URL: https://doi.org/10.48550/arXiv.2311.11472. doi:10.
48550/ARXIV.2311.11472. arXiv:2311.11472.

[9] L. Cruz-Filipe, F. Montesi, M. Peressotti, A formal theory of choreographic programming,

J. Autom. Reason. 67 (2023) 21. URL: https://doi.org/10.1007/s10817-023-09665-3. doi:10.1007/
S10817-023-09665-3.

[10] L. Cruz-Filipe, F. Montesi, M. Peressotti, Certifying choreography compilation, in: A. Cerone, P. C.

Ölveczky (Eds.), Theoretical Aspects of Computing - ICTAC 2021 - 18th International Colloquium,

Virtual Event, Nur-Sultan, Kazakhstan, September 8-10, 2021, Proceedings, volume 12819 of Lecture
Notes in Computer Science, Springer, 2021, pp. 115–133. doi:10.1007/978-3-030-85315-0_8.

[11] A. K. Hirsch, D. Garg, Pirouette: higher-order typed functional choreographies, Proc. ACM

Program. Lang. 6 (2022) 1–27. URL: https://doi.org/10.1145/3498684. doi:10.1145/3498684.

[12] J. Å. Pohjola, A. Gómez-Londoño, J. Shaker, M. Norrish, Kalas: A verified, end-to-end compiler for

a choreographic language, in: J. Andronick, L. de Moura (Eds.), 13th International Conference

on Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 27:1–27:18. URL: https://doi.org/10.

4230/LIPIcs.ITP.2022.27. doi:10.4230/LIPICS.ITP.2022.27.

[13] C. Acay, J. Gancher, R. Recto, A. C. Myers, Secure synthesis of distributed cryptographic applica-

tions (technical report), CoRR abs/2401.04131 (2024). URL: https://doi.org/10.48550/arXiv.2401.

04131. doi:10.48550/ARXIV.2401.04131. arXiv:2401.04131.

https://www.fabriziomontesi.com/files/choreographic-programming.pdf
http://dx.doi.org/10.1145/359657.359659
http://dx.doi.org/10.1017/9781108981491
http://dx.doi.org/10.1017/9781108981491
https://doi.org/10.1145/3632398
http://dx.doi.org/10.1145/3632398
http://dx.doi.org/10.1145/3632398
https://doi.org/10.1145/3607849
http://dx.doi.org/10.1145/3607849
http://dx.doi.org/10.1145/3607849
https://doi.org/10.48550/arXiv.2311.11472
http://dx.doi.org/10.48550/ARXIV.2311.11472
http://dx.doi.org/10.48550/ARXIV.2311.11472
http://arxiv.org/abs/2311.11472
https://doi.org/10.1007/s10817-023-09665-3
http://dx.doi.org/10.1007/S10817-023-09665-3
http://dx.doi.org/10.1007/S10817-023-09665-3
http://dx.doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.1145/3498684
http://dx.doi.org/10.1145/3498684
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27
http://dx.doi.org/10.4230/LIPICS.ITP.2022.27
https://doi.org/10.48550/arXiv.2401.04131
https://doi.org/10.48550/arXiv.2401.04131
http://dx.doi.org/10.48550/ARXIV.2401.04131
http://arxiv.org/abs/2401.04131

[14] C. Acay, R. Recto, J. Gancher, A. C. Myers, E. Shi, Viaduct: an extensible, optimizing compiler

for secure distributed programs, in: S. N. Freund, E. Yahav (Eds.), PLDI ’21: 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation, Virtual Event,

Canada, June 20-25, 2021, ACM, 2021, pp. 740–755. URL: https://doi.org/10.1145/3453483.3454074.

doi:10.1145/3453483.3454074.

[15] K. Honda, N. Yoshida, M. Carbone, Multiparty Asynchronous Session Types, J. ACM 63 (2016) 9.

URL: http://doi.acm.org/10.1145/2827695. doi:10.1145/2827695.

[16] M. Adameit, K. Peters, U. Nestmann, Session types for link failures, in: FORTE, volume 10321 of

Lecture Notes in Computer Science, Springer, 2017, pp. 1–16.

[17] M. Viering, R. Hu, P. Eugster, L. Ziarek, A multiparty session typing discipline for fault-tolerant

event-driven distributed programming, Proc. ACM Program. Lang. 5 (2021) 1–30. URL: https:

//doi.org/10.1145/3485501. doi:10.1145/3485501.

[18] V. Hadzilacos, Issues of fault tolerance in concurrent computations (databases, reliability, transac-

tions, agreement protocols, distributed computing), Ph.D. thesis, USA, 1985. AAI8520209.

[19] K. J. Perry, S. Toueg, Distributed agreement in the presence of processor and communication

faults, IEEE Transactions on Software Engineering SE-12 (1986) 477–482. doi:10.1109/TSE.1986.
6312888.

[20] F. Cristian, Understanding fault-tolerant distributed systems, Commun. ACM 34 (1991) 56–78.

URL: https://doi.org/10.1145/102792.102801. doi:10.1145/102792.102801.

[21] E. Graversen, F. Montesi, M. Peressotti, A promising future: Omission failures in choreographic

programming, CoRR abs/1712.05465 (2025). URL: https://arxiv.org/abs/1712.05465v3. doi:10.48550/
arXiv.1712.05465. arXiv:1712.05465v3.

[22] D. Sangiorgi, D. Walker, The 𝜋-calculus: a Theory of Mobile Processes, Cambridge University

Press, 2001.

[23] S.-S. Jongmans, P. van den Bos, A predicate transformer for choreographies, in: I. Sergey (Ed.),

Programming Languages and Systems, Springer International Publishing, Cham, 2022, pp. 520–547.

[24] M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, J. Mauro, Dynamic choreographies: Theory

and implementation, Logical Methods in Computer Science 13 (2017).

[25] L. Cruz-Filipe, E. Graversen, F. Montesi, M. Peressotti, Reasoning about choreographic programs,

in: S. Jongmans, A. Lopes (Eds.), Coordination Models and Languages, volume 13908 of Lecture
Notes in Computer Science, Springer, 2023, pp. 144–162. doi:10.1007/978-3-031-35361-1_8.

[26] L. Cruz-Filipe, F. Montesi, Procedural choreographic programming, in: FORTE, LNCS, Springer,

2017.

[27] H. A. López, F. Nielson, H. R. Nielson, Enforcing availability in failure-aware communicating

systems, in: FORTE, volume 9688 of Lecture Notes in Computer Science, Springer, 2016, pp. 195–211.

[28] L. Cruz-Filipe, F. Montesi, M. Peressotti, Communication in choreographies, revisited, in: SAC,

ACM, 2018. To Appear.

[29] P. A. Bernstein, E. Newcomer, Chapter 8 - two-phase commit, in: P. A. Bernstein, E. Newcomer

(Eds.), Principles of Transaction Processing (Second Edition), The Morgan Kaufmann Series in

Data Management Systems, second edition ed., Morgan Kaufmann, San Francisco, 2009, pp. 223–

244. URL: https://www.sciencedirect.com/science/article/pii/B9781558606234000081. doi:10.1016/
B978-1-55860-623-4.00008-1.

[30] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, N. Yoshida, Global progress

in dynamically interleaved multiparty sessions, in: CONCUR, volume 5201 of LNCS, Springer,

2008, pp. 418–433.

[31] I. Lanese, C. Guidi, F. Montesi, G. Zavattaro, Bridging the gap between interaction- and process-

oriented choreographies, in: SEFM, 2008, pp. 323–332.

[32] L. Cruz-Filipe, F. Montesi, A core model for choreographic programming, in: O. Kouchnarenko,

R. Khosravi (Eds.), FACS, volume 10231 of LNCS, Springer, 2016. doi:10.1007/978-3-319-57666-4\
_3.

[33] L. Lamport, M. Fischer, Byzantine generals and transaction commit protocols, Technical Report,

Technical Report 62, SRI International, 1982.

https://doi.org/10.1145/3453483.3454074
http://dx.doi.org/10.1145/3453483.3454074
http://doi.acm.org/10.1145/2827695
http://dx.doi.org/10.1145/2827695
https://doi.org/10.1145/3485501
https://doi.org/10.1145/3485501
http://dx.doi.org/10.1145/3485501
http://dx.doi.org/10.1109/TSE.1986.6312888
http://dx.doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1145/102792.102801
http://dx.doi.org/10.1145/102792.102801
https://arxiv.org/abs/1712.05465v3
http://dx.doi.org/10.48550/arXiv.1712.05465
http://dx.doi.org/10.48550/arXiv.1712.05465
http://arxiv.org/abs/1712.05465v3
http://dx.doi.org/10.1007/978-3-031-35361-1_8
https://www.sciencedirect.com/science/article/pii/B9781558606234000081
http://dx.doi.org/10.1016/B978-1-55860-623-4.00008-1
http://dx.doi.org/10.1016/B978-1-55860-623-4.00008-1
http://dx.doi.org/10.1007/978-3-319-57666-4_3
http://dx.doi.org/10.1007/978-3-319-57666-4_3

[34] R. D. Schlichting, F. B. Schneider, Fail-stop processors: an approach to designing fault-tolerant

computing systems, ACM Trans. Comput. Syst. 1 (1983) 222–238. URL: https://doi.org/10.1145/

357369.357371. doi:10.1145/357369.357371.

[35] F. B. Schneider, Byzantine generals in action: implementing fail-stop processors, ACM Trans.

Comput. Syst. 2 (1984) 145–154. URL: https://doi.org/10.1145/190.357399. doi:10.1145/190.357399.

[36] S. Capecchi, E. Giachino, N. Yoshida, Global escape in multiparty sessions, Mathematical Structures

in Computer Science 26 (2016) 156–205. URL: http://dx.doi.org/10.1017/S0960129514000164. doi:10.
1017/S0960129514000164.

[37] T. Chen, M. Viering, A. Bejleri, L. Ziarek, P. Eugster, A type theory for robust failure handling in

distributed systems, in: FORTE, volume 9688 of Lecture Notes in Computer Science, Springer, 2016,

pp. 96–113.

[38] S. Fowler, S. Lindley, J. G. Morris, S. Decova, Exceptional asynchronous session types: session types

without tiers, Proc. ACM Program. Lang. 3 (2019) 28:1–28:29. URL: https://doi.org/10.1145/3290341.

doi:10.1145/3290341.

[39] N. Lagaillardie, R. Neykova, N. Yoshida, Stay safe under panic: Affine rust programming with

multiparty session types, in: K. Ali, J. Vitek (Eds.), 36th European Conference on Object-Oriented

Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany, volume 222 of LIPIcs, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 4:1–4:29. URL: https://doi.org/10.4230/LIPIcs.

ECOOP.2022.4. doi:10.4230/LIPICS.ECOOP.2022.4.

[40] Z. Qiu, X. Zhao, C. Cai, H. Yang, Towards the theoretical foundation of choreography, in: WWW,

ACM, 2007, pp. 973–982.

[41] D. Plyukhin, M. Peressotti, F. Montesi, Ozone: Fully out-of-order choreographies, in: J. Aldrich,

G. Salvaneschi (Eds.), 38th European Conference on Object-Oriented Programming, ECOOP 2024,

September 16-20, 2024, Vienna, Austria, volume 313 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2024, pp. 31:1–31:28. doi:10.4230/LIPICS.ECOOP.2024.31.

[42] S. Laddad, A. Cheung, J. M. Hellerstein, Suki: Choreographed distributed dataflow in rust,

CoRR abs/2406.1473 (2024). URL: https://arxiv.org/abs/2406.1473. doi:10.48550/arXiv.2406.1473.

arXiv:2406.1473.

[43] G. Shen, L. Kuper, Toward verified library-level choreographic programming with algebraic effects,

CoRR abs/2407.06509 (2024). URL: https://arxiv.org/abs/2407.06509. doi:10.48550/arXiv.2407.
06509. arXiv:2407.06509.

[44] V. T. Vasconcelos, Fundamentals of session types, Inf. Comput. 217 (2012) 52–70.

[45] M. Carbone, S. Lindley, F. Montesi, C. Schürmann, P. Wadler, Coherence generalises duality:

A logical explanation of multiparty session types, in: CONCUR, volume 59 of LIPIcs, Schloss

Dagstuhl, 2016, pp. 33:1–33:15.

[46] W. Kokke, F. Montesi, M. Peressotti, Better late than never: a fully-abstract semantics for classical

processes, Proc. ACM Program. Lang. 3 (2019) 24:1–24:29. URL: https://doi.org/10.1145/3290337.

doi:10.1145/3290337.

[47] W. Kokke, F. Montesi, M. Peressotti, Taking linear logic apart, in: T. Ehrhard, M. Fernández,

V. de Paiva, L. T. de Falco (Eds.), Proceedings Joint International Workshop on Linearity & Trends

in Linear Logic and Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018., volume

292 of Electronic Proceedings in Theoretical Computer Science, Open Publishing Association, 2018,

pp. 90–103. doi:10.4204/EPTCS.292.5.

[48] M. Carbone, F. Montesi, Deadlock-freedom-by-design: multiparty asynchronous global program-

ming, in: POPL, ACM, 2013, pp. 263–274.

[49] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou, D. Mostrous, L. Padovani,

A. Ravara, E. Tuosto, H. T. Vieira, G. Zavattaro, Foundations of session types and behavioural

contracts, ACM Comput. Surv. 49 (2016) 3:1–3:36.

[50] L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, M. Peressotti, Functional choreographic

programming, in: H. Seidl, Z. Liu, C. Pasareanu (Eds.), Theoretical Aspects of Computing - ICTAC

2022 - 19th International Colloquium, Tbilisi, Georgia, September 27-29, 2022, Proceedings, Lecture

Notes in Computer Science, Springer, 2022, pp. 212–237. doi:10.1007/978-3-031-17715-6_15.

https://doi.org/10.1145/357369.357371
https://doi.org/10.1145/357369.357371
http://dx.doi.org/10.1145/357369.357371
https://doi.org/10.1145/190.357399
http://dx.doi.org/10.1145/190.357399
http://dx.doi.org/10.1017/S0960129514000164
http://dx.doi.org/10.1017/S0960129514000164
http://dx.doi.org/10.1017/S0960129514000164
https://doi.org/10.1145/3290341
http://dx.doi.org/10.1145/3290341
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
http://dx.doi.org/10.4230/LIPICS.ECOOP.2022.4
http://dx.doi.org/10.4230/LIPICS.ECOOP.2024.31
https://arxiv.org/abs/2406.1473
http://dx.doi.org/10.48550/arXiv.2406.1473
http://arxiv.org/abs/2406.1473
https://arxiv.org/abs/2407.06509
http://dx.doi.org/10.48550/arXiv.2407.06509
http://dx.doi.org/10.48550/arXiv.2407.06509
http://arxiv.org/abs/2407.06509
https://doi.org/10.1145/3290337
http://dx.doi.org/10.1145/3290337
http://dx.doi.org/10.4204/EPTCS.292.5
http://dx.doi.org/10.1007/978-3-031-17715-6_15

[51] L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, M. Peressotti, Modular compilation for higher-

order functional choreographies, in: K. Ali, G. Salvaneschi (Eds.), 37th European Conference on

Object-Oriented Programming (ECOOP 2023), volume 263 of Leibniz International Proceedings in
Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2023,

pp. 7:1–7:37. doi:10.4230/LIPIcs.ECOOP.2023.7.

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.7

	1 Introduction
	2 Lossy Choreographies
	3 Applications
	4 Typing
	5 Compilation to Process Implementations
	6 Related Work
	7 Conclusion

