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Abstract
We extend the well-known and efficient parsing algorithm of operator-precedence (OP) grammars to unrestricted
context-free grammar rules by means of newly defined precedence relations between nodes of syntax trees. Such
relations are defined over pairs of attributes of Knuth’s synthesized type that can be computed by a bottom-up
parser that operates locally and in any direction (or in parallel) on the input. An algorithm for computing,
given a grammar, the attributes and their relations is presented and supported by a tool. The new family of PR
grammars is characterized by the absence of conflicts between precedence relations. The corresponding family of
PR languages strictly include the OP family. A new normal form of PR grammars permits to prove the closure of
PR languages under union. Future developments towards Boolean closures and application to model checking are
mentioned.
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1. Introduction

Within formal language theory, the classical topic of grammars and syntactic methods has recently
seen advances motivated by new applications and by mathematical interest. We mention parsing
algorithms that exploit parallel hardware architectures [1, 2], and formal specifications of non-finite-
state systems [3] to be used in model checking. Concerning mathematical developments, we mention
recent research applying logic and algebraic methods to context-free languages [4, 5, 6, 7]. Such studies
deal with the operator-precedence (OP) subfamily of deterministic context-free languages [8], that
was historically motivated by their fast and compact parsing algorithm and by the capacity to define
artificial languages featuring operators layered by precedence. In later years, research on OP has never
stopped, but has focused on different aspects: grammar inference from examples of sentences [9],
Boolean closure properties [10], inclusion of visibly pushdown languages [11], parallel parsing [1, 2],
𝜔-languages for formal specifications [12], non-counting properties [13], logical characterization [12],
syntactic congruences [14].

Other efforts have attempted to increase the expressive power of OP grammars while keeping the
operator-form of their rules (e.g., [15, 16]), or to remove the inconvenience of the operator form (e.g.,
Wirth-Weber [17]). Our contribution addresses the latter problem and differs from other old [17]
and recent [18] proposals in that it strives to preserve most of the important formal properties of OP
languages.

We define a novel concept of precedence relation (PR) that applies also to grammars not constrained
by the operator-form. The new PRs differ from the known ones in their domain, which is neither
the terminal alphabet of OP, nor the total grammar alphabet of the Wirth-Weber simple-precedence
grammars, which by the way lack the closure and local parsability properties of OP. The domain of
the new attribute precedence relations (APR) is a finite set of attributes, so called because they can be
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computed bottom-up by a local parser as the semantic attributes of Knuth’s attributed grammars [19].
Four binary relations, called topological, between tree nodes that are adjacent on an antichain, are
introduced: sibling is self-explanatory, take/yield are similar to the OP relations of the same name,
while facing is a new one that holds between two nodes placed at greater distance from their least
common ancestor. In a tree decorated with the node attributes, the four topological relations induce
corresponding relations on the attribute domain. The PR grammars are those that do not have conflicts
in attribute relations. The PR language family strictly includes the OP family, of which it preserves
some essential properties: we prove local parsability, closure under reversal and union. Other algebraic
properties of OP languages (closure under concatenation and complement) are likely to hold but remain
to be proved. To experiment with PR grammars, the algorithm that computes the attributes and their
PRs has been implemented in a tool. We have found that many syntactic constructs found in typical
deterministic languages satisfy the PR property, also when the grammar rules violate the operator form.
The parsing algorithm for PR differs from the classic one for OP in that the arguments of precedence
relations are not given in the input string, but are computed as synthesized attributes by the parser.
The size of PR matrix, though larger than the one of the OP matrix, remains practical and should not
jeopardize parsing speed.

After Sect. 2 on preliminaries, the main Sect. 3 contains the topological PRs, the definition of attributes
and their PRs. Then the algorithm that computes and checks PRs for a grammar is presented. It involves
a new normal form for attributed grammars. The proof of closure under union ends Sect. 3. Sect. 4 proves
that each OP grammar is also PR, and that some PR grammars and languages are not OP. References to
related work have been placed in all sections where pertinent.

2. Preliminaries

The alphabet is denoted by Σ and the empty string by 𝜀. We say two letters 𝑥, 𝑦 are adjacent in a string
𝑧, if 𝑥𝑦 is a substring of 𝑧.

We assume familiarity with the basic theories of CF languages. A grammar is denoted by 𝐺 =
(Σ, 𝑉𝑁 , 𝑃, 𝑆) where the terminal and non-terminal alphabets are respectively Σ and 𝑉𝑁 and the total
alphabet is 𝑉 = Σ ∪ 𝑉𝑁 . The set 𝑃 contains rules of the form 𝐴 → 𝛼, 𝛼 ∈ 𝑉 +, 𝐴 ∈ 𝑉𝑁 . The set of
axioms is 𝑆 ⊆ 𝑉𝑁 . We need some cases: copy rule 𝛼 ∈ 𝑉𝑁 ; terminal rule 𝛼 ∈ Σ+; operator form rule if
𝛼 does not contain two adjacent nonterminals. The reserved terminal # is used to delimit a string. We
respectively denote by 𝐿(𝐺) ⊆ Σ+ and 𝑇 (𝐺) the language and the set of syntax trees defined by 𝐺.

Tree languages. We also use concepts and notation from the basic theory of regular tree languages
(e.g., in [20]). A tree domain is a finite set of the form {𝜀, 1, 2, . . . , 11, 12, . . .}.1 In a tree 𝑡, each node
is identified by a unique element of the tree domain 𝑑𝑜𝑚𝑡, for brevity here called a node-identifier nid.
The root nid is 𝜀, the root children have nid’s 1, 2, . . . , 𝑟, where 𝑟 is the rank of the root, etc. Each
node has a symbolic label on the tree alphabet Σ ∪ Γ, where the tree leaves have labels in Σ, and the
alphabet Γ is used for labeling the internal nodes. An unlabeled tree has Σ = Γ = {∙}, a skeletal tree
has Γ = {∙}. The frontier of a tree is the sequence of its leaves, that respects the order in which they
appear in a preorder visit of 𝑡, and is denoted by 𝐹 (𝑡) ∈ Σ+.

We often assume for simplicity that the trees are chain-free, i.e., a node has either rank > 1 or rank 1
when its child label is in Σ.

We use the following relations on a tree domain: parent denoted 𝑝̇, sibling denoted 𝑠̇, and ances-
tor/descendant.

Given a tree, an antichain is a maximal lexically ordered sequence of nodes (nids) that are pairwise
unrelated by the ancestor-descendant relation. Notice that if 𝑛′ and 𝑛′′ are adjacent in an antichain,
they are either (i) adjacent siblings or (ii) descendants of adjacent siblings, such that 𝑛′ is a rightmost
descendant and 𝑛′′ is a leftmost descendant; in case (ii) 𝑛′ and 𝑛′′ are cousins not necessarily of the
same generation. E.g. some antichains of tree 𝑡 in Fig. 1 are: 𝐹 (𝑡); 11, 12, 13, 2, 3; 1, 2, 3; 𝜀; on the
other hand 12, 13, 2, 3 is not an antichain since it is not maximal. The set of antichains of a tree is

1We assume to have rank at most 9, otherwise a separator such as · would be needed.



partially ordered by the reduction operation that substitutes the parent nid for the sequence of all its
children nid’s.

For a syntax tree, the label of an antichain is a string over Σ ∪ 𝑉𝑁 that derives from an axiom, i.e., a
sentential form.

3. Precedence relations

The traditional order of presentation of operator precedence as a relation between the terminal symbols
of a grammar is not possible here because in a free form grammar some rules may not contain terminals.
However, the concept of precedence can be reformulated for certain objects more hidden than terminals,
to be called attributes. Such attributes need to be bottom-up and locally computable by a parser that
starts from the attributes of the input terminals, so that the precedence relations between attributes make
parsing deterministic. A natural question is whether nonterminal symbols can be used as attributes
in the previous sense, since other well-known precedence-oriented grammar models (chiefly Wirth-
Weber [21] and followers [22]) define precedence on terminals and nonterminals. The answer is negative
since Wirth-Weber parsers necessarily operate from left to right and do not have the local parsing
property; the corresponding language family loses the closure properties of OP languages, e.g., is not
closed under union [23].

First, we introduce four topological precedence relations (facing, sibling, taking, yielding) on the
nodes of (unlabeled) skeletal trees in analogy with the classical genealogical relations between nodes
(parent, sibling, cousin, etc.). Then we define the attributes as bottom-up computable values on the
nodes of skeletal trees whose frontier is labeled on Σ. For any tree in 𝑇 (𝐺) and for any two tree
nodes their topological precedence relation naturally maps on their attributes. A grammar has the PR
property if between the same pair of attributes at most one of the four relations holds. The finite set
of attributes found in the trees of grammar 𝐺 and their APRs are computed by an algorithm.2 The
algorithm constructs a grammar in a new normal form, called attributed. An informal presentation of
the parsing algorithm and its local parsability property comes after. The closure under union for the PR
languages having non-conflictual APRs concludes the section.

Topological relations on unlabeled trees For a tree 𝑡, with parent relation 𝑝̇, we define four sets
of binary relations for any pair of nodes 𝑛′, 𝑛′′ that are adjacent in an antichain.

Definition 1 (Precedence relations on tree domain). Four topological precedence relation types (PR),
named yield precedence, take precedence, facing and sibling are defined on the tree domain 𝑑𝑜𝑚𝑡. Let
nodes 𝑛′ and 𝑛′′ be adjacent in an antichain of tree 𝑡 and let 𝑛 be their nearest common ancestor. Notice
that the adjacency (𝑛′, 𝑛′′) implies that 𝑛′ is met before 𝑛′′ during a left-to-right, depth-first visit of the
tree nodes.

yield
(𝑛′, 𝑛′′) ∈ Yield, better written in infix notation as 𝑛′ 𝑦̇ 𝑛′′, if
𝑛 𝑝̇ 𝑛′ (i.e., 𝑛′ is child of 𝑛) and 𝑛′′ is a leftmost descendant but not
a child of 𝑛.

take
(𝑛′, 𝑛′′) ∈ Take, or 𝑛′ 𝑡̇ 𝑛′′, if 𝑛′ is a rightmost descendant but not
a child of 𝑛 and 𝑛 𝑝̇ 𝑛′′.

facing (𝑛′, 𝑛′′) ∈ Face, or 𝑛′ 𝑓̇ 𝑛′′ if 𝑛′ and 𝑛′′ are resp. a rightmost and
a leftmost descendant – but not children of 𝑛.

sibling (𝑛′, 𝑛′′) ∈ Sibl, or 𝑛′ 𝑠̇ 𝑛′′ if 𝑛′ and 𝑛′′ are children of 𝑛.

The set of PR types is denoted by 𝑅̇ = {𝑓̇ , 𝑠̇, 𝑡̇, 𝑦̇} and 𝑟̇ ∈ 𝑅̇ stands for a generic PR type.
The graph with nodes 𝑑𝑜𝑚𝑡 and with the arcs, labeled on 𝑅̇, that represent the parent relation 𝑝̇ (already
in 𝑡) and the precedence relations 𝑅̇, is called a parse graph; it is a supergraph of the tree graph 𝑡, denoted
super(𝑡).
2The algorithm is incorporated in the interactive tool (avaible at https://pradella.faculty.polimi.it/prgrweb.html) which aids
testing of the PR property, otherwise painful by hand.

https://pradella.faculty.polimi.it/prgrweb.html


Clearly, on a given tree the relations in 𝑅̇ are mutually exclusive, i.e., disjoint, and for any pair
of (antichain) adjacent nodes 𝑛′ and 𝑛′′ exactly one 𝑛 𝑟̇ 𝑛′ exists. Notice also that in the traditional
representation of syntax trees the sibling arcs are understood and not displayed.
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ṡ
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ḟ

ẏ

ẏ
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Figure 1: Top. The graph super(𝑡) representing the 𝑅̇ relations on the tree domain 𝑡. Notice that the antichains
are the maximal left-to-right paths over the dashed/dotted arcs representing PR’s. Bottom. The attributes for
the skeletal tree with frontier 𝑎𝑏𝑎𝑏𝑏𝑏. Internal and leaf attributes are resp. bracketed and parenthesized. The
attributes of nodes 1, 2, 13 and 21 (evidenced in magenta) are involved in conflicts.

Example 1 (Topological PRs). Fig. 1, top, shows a tree (solid arcs representing 𝑝̇) and its supergraph
(dashed arcs for 𝑡̇, 𝑦̇ and dotted ones for 𝑠̇). The maximal paths over 𝑅̇ arcs (excluding 𝑝̇) are the antichains.
In antichain 1 21 22 3 the arcs between the adjacent pairs (1, 21), (21, 22), and (22, 3) have the respective
type 𝑦̇, 𝑠̇, and 𝑡̇.

3.1. Node attributes and their precedence relations

In a labeled tree domain, the topological PRs naturally induce four corresponding relations on node
labels. Our main contribution is the definition of a novel domain of node labels, called attributes such
that their precedence relations will permit to extend the desirable properties of OP grammars to a
broader family of CF grammars and languages.

To define node attributes on a tree we introduce a function that can be computed bottom-up by a
local parser.3 Intuitively, a local (bottom-up deterministic) parser has the property that its decision to
enter a shift or a reduce move only depends on the current input letter and on a finite neighborhood
thereof. This enables the parser to use precedence relations between attributes to locate the next handle

3Ours are synthesized semantic attributes in Knuth’s [19] sense, since a node attribute is computed on a tree as a function of
the values of children attributes.



inside the current antichain of the tree under construction. Upon handle reduction, the parser computes
the attribute of the parent node, and a new antichain replaces the current one. Such a process can be
done in any order, not necessarily left-to-right.

We stress that not any locally computable function would qualify for the intended use, because some
essential requirements must me met. The attribute should

1. permit to parse any OP grammar,

2. enable local parsability for non-operator-form grammars of common syntax constructs,

3. preserve all or most of the closure properties of OP languages;

4. moreover, the cost of computing attributes should not penalize parsing speed.

The following definition combines simplicity with empirical adequacy; it is the simplest one among
several others we examined and discarded.

The attribute of a node 𝑛 has the form ⟨𝜆, 𝜌,flag⟩ where 𝜆 and 𝜌 are precedence relations, respectively
for the left- and right-borders (defined below) of the node. The flag component is in {leaf, internal},
specifying whether the rank of 𝑛 is null or not. For readability, we will write (𝜆, 𝜌) for ⟨𝜆, 𝜌, leaf⟩, and
[𝜆, 𝜌] for ⟨𝜆, 𝜌, internal⟩. We exclude from the next definition any tree containing a linear chain, in
agreement with the practice of OP grammar parsing.

Definition 2 (Attributes of tree nodes). Let 𝑡 be a chain-free tree with frontier 𝐹 (𝑡) over Σ. For a leaf
node 𝑛, let 𝑝𝑟𝑒𝑑(𝑛) and 𝑠𝑢𝑐(𝑛) be the (adjacent) leaf node resp. preceding and following 𝑛 in the string
𝐹 (𝑡). If 𝑛 is the first or last symbol of 𝐹 (𝑡), resp. let 𝑝𝑟𝑒𝑑(𝑛) = # and 𝑠𝑢𝑐(𝑛) = #.
Denote by 𝑝𝑟𝑒𝑑(𝑛) 𝑟̇1 𝑛 and by 𝑛 𝑟̇2 𝑠𝑢𝑐(𝑛), with 𝑟1̇, 𝑟2̇ ∈ 𝑅̇, the topological PR (see Def. 1) between the
nodes 𝑝𝑟𝑒𝑑(𝑛), 𝑛 and between 𝑛, 𝑠𝑢𝑐(𝑛), respectively. Conventionally, for 𝑎 ∈ Σ, assume # 𝑦̇ 𝑎 and
𝑎 𝑡̇#.
The recursive definition of the attribute 𝛼 of a node 𝑛 follows.

𝛼(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
(𝑝𝑟𝑒𝑑(𝑛) 𝑟̇1 𝑛 , 𝑛 𝑟̇2 𝑠𝑢𝑐(𝑛)), if 𝑛 is a leaf
[𝑥, 𝑦′] , if 𝑛 has rank ℓ > 0, where

𝛼(𝑛1) = ⟨𝑥, 𝑦, 𝑓⟩,
𝛼(𝑛ℓ) = ⟨𝑥′, 𝑦′, 𝑓 ′⟩

(1)

A tree where each node carries its attribute is called attributed. The set of attributes of a tree 𝑡 and a tree
language 𝑇 are denoted resp. by 𝐴(𝑡) and 𝐴(𝑇 ), or 𝐴(𝐺) if 𝑇 = 𝑇 (𝐺).
The set 𝐴(𝑇 ) conflicts iff it contains two attributes 𝛼, 𝛼′ such that 𝛼 = ⟨𝑎 𝑟̇1 𝑏 , 𝑏 𝑟̇2 𝑐, 𝑓⟩, 𝛼′ =
⟨𝑎 𝑟̇′1 𝑏 , 𝑏 𝑟̇′2 𝑐, 𝑓 ′⟩, and 𝑟̇1 ̸= 𝑟̇′1, or 𝑟̇2 ̸= 𝑟̇′2.

Given a tree with frontier over Σ, we compute the attributes starting with the leaf attributes, then
proceeding in any topological order with respect to the child-parent relation. Fig. 1, bottom, shows the
attributes for a skeletal tree with frontier 𝑎𝑏𝑎𝑏𝑎.

Since the left and right borders of a node are the same as respectively the left border of the first child
and the right border of the last child, if node 𝑛 has rank 1 and its child 𝑛1 is internal, their attributes
are identical, 𝛼(𝑛) = 𝛼(𝑛1), so that the two values are redundant and some spurious conflicts arise
when their PRs are computed. To exclude them, Def. 2 is restricted to chain-free trees.

We formalize the precedence relations between the attributes of adjacent nodes in a tree.

Definition 3 (Precedence relations on node attributes). Let 𝑡 be a tree and consider the parse graph
super(𝑡). Let 𝑛′ and 𝑛′′ be nodes in 𝑑𝑜𝑚𝑡 and let the topological relation 𝑛′ 𝑟̇ 𝑛′′ hold. Then the attribute
pair (𝛼(𝑛′), 𝛼(𝑛′′)) has the attribute precedence relation (APR) 𝑟̇, i.e., 𝛼(𝑛′) 𝑟̇ 𝛼(𝑛′′).
We call APR(𝑡) the set of PR among attribute pairs of the nodes of a tree 𝑡. Moreover, given a set 𝑇 of trees,
we define APR(𝑇 ) =

⋃︀
𝑡∈𝑇 APR(𝑡).

The set APR(𝑇 ) conflicts iff it contains two relations 𝛼 𝑟̇ 𝛼′ and 𝛼 𝑟̇′ 𝛼′ with 𝑟̇ ̸= 𝑟̇′.
A set 𝑇 of attributed trees has the precedence relation property (PRP) if no conflict occurs in APR(𝑇 ). A
grammar 𝐺 has the PRP if the set 𝐴(𝐺) has the PRP; we say that 𝐺 is a PR grammar.



Remarks. The two entities involved in a conflict may occur in the same or in distinct trees of language
𝑇 . Two types of conflicts are defined: conflict (1) holds between leaf attributes involving the same triple
of terminals, while conflict (2) concerns two APRs between the same attribute pair 𝛼, 𝛼′. Notice that
conflicts of type (2) may involve leaf and internal attributes.

Example 2 (Precedence relations on attributes). The following APRs for the attribute set 𝐴(𝑡) of Fig. 1,
bottom, are easily found by inspecting the super-graph in Fig. 1, top. We omit the relations involving the
delimiter, e.g., # 𝑦̇ [#𝑦̇𝑎, 𝑎𝑓̇𝑏].

1 11 12 13 2 = 21 211 22 3

1[#𝑦̇𝑎, 𝑎𝑓̇𝑏] 𝑠̇, 𝑦̇ 𝑦̇

11(#𝑦̇𝑎, 𝑎𝑠̇𝑏) 𝑠̇

12(𝑎𝑠̇𝑏, 𝑏𝑠̇𝑎) 𝑠̇

13(𝑏𝑠̇𝑎, 𝑎𝑓̇𝑏) 𝑡̇, 𝑓̇ 𝑓̇

2 = 21[𝑎𝑓̇𝑏, 𝑏𝑡̇𝑏] 𝑠̇ 𝑠̇

211(𝑎𝑓̇𝑏, 𝑏𝑡̇𝑏) 𝑡̇

22(𝑏𝑡̇𝑏, 𝑏𝑡̇𝑏) 𝑡̇

3(𝑏𝑡̇𝑏, 𝑏𝑡̇#)

Set PR has two conflicts of type (2) (evidenced in magenta) between the attribute of node 1 vs the attribute
of nodes 2, 21 and between the attribute of node 13 vs 2, 21.

Example 3 (PR on grammars.). The grammar 𝐺1 : {𝑆 → 𝑎𝑆𝑎𝑏𝑎 | 𝑐} has the PRP. Its attributes and
their precedence relations APRs (explained later) follow.

α0
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We anticipate that 𝐿(𝐺1) is not an OP language.

Computation of the attributes and PRs for a grammar We outline the algorithm implemented in
our interactive tool that computes the attributes of a grammar and their PRs. Preliminarily, we observe
that it would be unpractical to compute attributes and PRs on a tree by tree basis, since the number of
syntax trees in a language is often not finite and it is not immediate to set a bound on the number of
trees needed. Let 𝐺 = (Σ, 𝑉𝑁 , 𝑃, 𝑆) and denote by 𝐴(𝐺) the set of attributes of any node in any tree
in 𝑇 (𝐺).

We first compute for each nonterminal 𝑋 ∈ 𝑉𝑁 the borders of the terminal strings derived from 𝑋 .

𝑏𝑜𝑟𝑑𝑒𝑟(𝑋) = {(𝑏, 𝑏) | 𝑋 → 𝑏 ∈ 𝑃} ∪ {(𝑏, 𝑐) | 𝑋 +→ 𝑏𝑥𝑐 where 𝑥 ∈ Σ*}.



The algorithm computes a grammar ̃︀𝐺 = (̃︀Σ, ̃︀𝑉𝑁 , ̃︀𝑃 , ̃︀𝑆), called attributed normal form ANF, essentially
equivalent to 𝐺, whose terminal and nonterminal symbols are resp. in Σ×𝐴(𝐺) and in 𝑉𝑁 ×𝐴(𝐺).
In the former case, the attributes pertain to leaves, in the latter case they pertain to internal nodes. The
algorithm computes 𝐴(𝐺) along with the rules of ̃︀𝐺, starting from the axioms. From the ANF rules, the
APRs are then computed.

Initialization. All components of ̃︀𝐺 are set to ∅.

(1) For each axiom 𝑋 ∈ 𝑆, for each pair (𝑏, 𝑐) ∈ border(𝑋)̃︀𝑉𝑁 := ̃︀𝑉𝑁 ∪ {⟨𝑋,𝛼⟩} where 𝛼 = ⟨#𝑦̇𝑏, 𝑐𝑡̇#, internal⟩

(2) For each nonterminal ⟨𝑋0, 𝛼0⟩ ∈ ̃︀𝑉𝑁 , for each rule 𝑋0 → 𝑋1 . . . 𝑋ℓ ∈ 𝑃

Consider the tree, where 𝛼𝑖 =

⟨ 𝜆𝑖⏞  ⏟  
𝑎𝑖𝑟̇𝑖𝑏𝑖,

𝜌𝑖⏞  ⏟  
𝑐𝑖𝑟̇

′
𝑖 𝑑𝑖, flag𝑖

⟩
.

α0

α1 α2 . . . αℓ

Compute all ℓ-tuples 𝛼1, 𝛼2, . . . , 𝛼ℓ of attribute values such that the following conditions
hold.

1. 𝜆1 = 𝜆0, 𝜌ℓ = 𝜌0;

2. ∀1 ≤ 𝑖 ≤ ℓ, (𝑎𝑖, 𝑑𝑖) ∈ border(𝑋𝑖);

3. ∀1 ≤ 𝑖 < ℓ, 𝜆𝑖+1 = 𝜌𝑖;

4. ∀1 ≤ 𝑖 < ℓ, the relation type is defined by the table:
flag𝑖 = leaf ∧ flag𝑖+1 = leaf : 𝑟̇′𝑖 = 𝑠̇
flag𝑖 = leaf ∧ flag𝑖+1 = internal : 𝑟̇′𝑖 = 𝑦̇
flag𝑖 = internal ∧ flag𝑖+1 = leaf : 𝑟̇′𝑖 = 𝑡̇

flag𝑖 = internal ∧ flag𝑖+1 = internal : 𝑟̇′𝑖 = 𝑓̇

For each such ℓ-tuple add the corresponding nonterminal and rule to the ANF grammar:̃︀𝑉𝑁 := ̃︀𝑉𝑁 ∪ {⟨𝑋1, 𝛼1⟩, . . . , ⟨𝑋ℓ, 𝛼ℓ⟩}̃︀𝑃 := ̃︀𝑃 ∪ {⟨𝑋0, 𝛼0⟩ → ⟨𝑋1, 𝛼1⟩ . . . ⟨𝑋ℓ, 𝛼ℓ⟩} .

(3) If nothing new is produced by step (2) terminate, else return to step (2).

Notes. 𝛼0 is the value that would be computed from 𝛼1, 𝛼2, . . . , 𝛼ℓ by Def. 2, Eq. (1). For all 𝑖, 𝑟̇𝑖+1 = 𝑟̇′𝑖.
The attributes 𝐴(𝐺) are the second components of the nonterminals ̃︀𝑉𝑁 .
The relations APR(𝐺) are computed as follows.
For each pair of adjacent symbols 𝑊,𝑍 in the right-hand side of a rule of ̃︀𝑃 the following PRs exist

between the attributes of a rightmost descendant 𝑊 ′ of 𝑊 and of a leftmost descendant 𝑍 ′ of 𝑍 .
condition relation condition relation

𝑊 ′ = 𝑊 leaf, 𝑍 ′ = 𝑍 leaf 𝑠̇ 𝑊 ′ = 𝑊 leaf, 𝑍
+→ 𝑍 ′𝑥 𝑦̇

𝑊
+→ 𝑦𝑊 ′, 𝑍 ′ = 𝑍 𝑡̇ 𝑊

+→ 𝑦𝑊 ′, 𝑍
+→ 𝑍 ′𝑥 𝑓̇

The next property of ANF grammars immediately descends from the construction above.

Proposition 1. Let 𝑇 (𝐺) be a set of chain-free syntax trees. There is a one-to-one correspondence between
the ANF trees 𝑇 ( ̃︀𝐺) and the trees 𝑇 (𝐺) such that for each pair of corresponding trees ̃︀𝑡 and 𝑡, for each pair̃︀𝑛, 𝑛 of corresponding nodes in ̃︀𝑡 and 𝑡, the labels are resp. ⟨𝐶,𝛼(𝑛)⟩ and 𝐶 where 𝐶 ∈ 𝑉 .



Therefore 𝐿(𝐺) is identical to the projection on Σ of 𝐿( ̃︀𝐺).
Remark. Proposition 1 can be made to hold also when a tree in 𝑇 (𝐺) contains a chain: it suffices to

collapse its (internal) nodes into a single node and to adjust accordingly the correspondence between
nonterminal names.

Example 4 (ANF grammar). For the equivalent variant 𝐺2 : {𝑆 → 𝐴𝑆𝑎𝑏𝑎 | 𝑐 , 𝐴 → 𝑎} of grammar
𝐺1 : {𝑆 → 𝑎𝑆𝑎𝑏𝑎 | 𝑐} in Ex. 3, we show the ANF as output by the tool:

0 : 𝑆[#𝑦̇𝑎, 𝑎𝑡̇#] → 𝐴[#𝑦̇𝑎, 𝑎𝑓̇𝑎] 𝑆[𝑎𝑓̇𝑎, 𝑎𝑡̇𝑎] 𝑎(𝑎𝑡̇𝑎, 𝑎𝑠̇𝑏) 𝑏(𝑎𝑠̇𝑏, 𝑏𝑠̇𝑎) 𝑎(𝑏𝑠̇𝑎, 𝑎𝑡̇#)

1 : 𝑆[#𝑦̇𝑎, 𝑎𝑡̇#] → 𝐴[#𝑦̇𝑎, 𝑎𝑓̇𝑐] 𝑆[𝑎𝑓̇𝑐, 𝑐𝑡̇𝑎] 𝑎(𝑐𝑡̇𝑎, 𝑎𝑠̇𝑏) 𝑏(𝑎𝑠̇𝑏, 𝑏𝑠̇𝑎) 𝑎(𝑏𝑠̇𝑎, 𝑎𝑡̇#)
2 : 𝑆[#𝑦̇𝑐, 𝑐𝑡̇#] → 𝑐(#𝑦̇𝑐, 𝑐𝑡̇#)

3 : 𝐴[#𝑦̇𝑎, 𝑎𝑓̇𝑎] → 𝑎(#𝑦̇𝑎, 𝑎𝑓̇𝑎)

4 : 𝑆[𝑎𝑓̇𝑎, 𝑎𝑡̇𝑎] → 𝐴[𝑎𝑓̇𝑎, 𝑎𝑓̇𝑎] 𝑆[𝑎𝑓̇𝑎, 𝑎𝑡̇𝑎] 𝑎(𝑎𝑡̇𝑎, 𝑎𝑠̇𝑏) 𝑏(𝑎𝑠̇𝑏, 𝑏𝑠̇𝑎) 𝑎(𝑏𝑠̇𝑎, 𝑎𝑡̇𝑎)

5 : 𝑆[𝑎𝑓̇𝑎, 𝑎𝑡̇𝑎] → 𝐴[𝑎𝑓̇𝑎, 𝑎𝑓̇𝑐] 𝑆[𝑎𝑓̇𝑐, 𝑐𝑡̇𝑎] 𝑎(𝑐𝑡̇𝑎, 𝑎𝑠̇𝑏) 𝑏(𝑎𝑠̇𝑏, 𝑏𝑠̇𝑎) 𝑎(𝑏𝑠̇𝑎, 𝑎𝑡̇𝑎)

6 : 𝐴[#𝑦̇𝑎, 𝑎𝑓̇𝑐] → 𝑎(#𝑦̇𝑎, 𝑎𝑓̇𝑐)

7 : 𝑆[𝑎𝑓̇𝑐, 𝑐𝑡̇𝑎] → 𝑐(𝑎𝑓̇𝑐, 𝑐𝑡̇𝑎)

8 : 𝐴[𝑎𝑓̇𝑎, 𝑎𝑓̇𝑎] → 𝑎(𝑎𝑓̇𝑎, 𝑎𝑓̇𝑎)

9 : 𝐴[𝑎𝑓̇𝑎, 𝑎𝑓̇𝑐] → 𝑎(𝑎𝑓̇𝑎, 𝑎𝑓̇𝑐)

The attributed tree of 𝑎𝑐𝑎𝑏𝑎 is below:

S[#ẏa, aṫ#]

A[#ẏa, aḟc]

a(#ẏa, aḟc)

S[aḟc, cṫa]

c(aḟc, cṫa)

a(cṫa, aṡb) b(aṡb, bṡa) a(bṡa, aṫ#)

Precedence-parsing algorithm The parsing algorithm for PR grammars is analogous to the one for
OP grammars described in [8] and in textbooks, see e.g. Alg. 4.5 of [24]. It is a shift-reduce algorithm
purely driven by the APRs and constructs a skeletal parse tree with nodes labeled by attributes. Notice
that the nonterminals do not influence parsing and are not pushed on the parsing tape. Following
tradition, we describe the algorithm as a left-to-right one that constructs the tree in the reversed order
of a rightmost derivation, but in reality it may work in any order, also mixing leftwards and rightwards
moves; it can also operate in parallel if the input is sectioned into substrings, each one processed by an
independent parser [1].

Such a parser accepts also some strings not in 𝐿(𝐺) if their APRs comply with PR(𝐺). Far from
being a defect, this property is fundamental for the algebraic theory of OP languages [10, 11, 12] and its
application to model-checking of formal specification beyond the finite-state domain [5, 7]. To obtain
the actual syntax tree of grammar 𝐺, a second algorithm tries to match the attributed skeletal parse
tree against the grammar rules. If it does not succeed the string is rejected, otherwise a syntax tree is
returned. The second algorithm does not differ from the classic case of OP grammars and we omit it.

The parsing algorithm differs from the classic OP one in two related aspects: (i) the grammar rules
may exhibit adjacent nonterminals, and (ii) precedence relations involve attributes instead of terminals.
We informally proceed to describe it.

The initial parser tape (which in left-to-right mode is a pushdown stack) is the input 𝑥 = #𝑏1 . . . 𝑏𝑛#.
For the current input letter 𝑏𝑖, the attribute 𝛼(𝑏𝑖) is found in the APR table by look-up of the triple
𝑏𝑖−1𝑏𝑖𝑏𝑖+1, and it is pushed on the stack. If relation 𝛼(𝑏𝑖) 𝑟̇ 𝛼(𝑏𝑖+1) is 𝑠̇ or 𝑦̇ attribute 𝛼(𝑏𝑖+1) is pushed
on the stack together with 𝑟̇ (shift move). If 𝑟̇ = 𝑓̇ or 𝑟̇ = 𝑡̇ the parser executes a reduction; else 𝑟̇ is
undefined and the parser enters an error mode. In a reduction move, the stack is scanned backwards
while relations 𝑠̇ occur, until a relation 𝑦̇ is found. The (finite) tape section in between 𝑦̇ and 𝑓̇ or 𝑡̇ is
the handle. The handle is replaced by a single element, namely the attribute value (computed as in
Eq. (1)) of the handle parent. Then the relations between the two attributes, one preceding the other



following the parent attribute, determine the next parser move. The parser accepts if it completely
scans the input and reduces to a single node, i.e. the root of the attributed skeletal tree.

Remark on local parsability. The earliest formal definition of local parsability (LP) we know is in [25]
and concerns a restricted family of regular languages called code-words. For context-free languages, LP
is a characteristic property of the OP family; it is preserved by some families that include OP and still
use operator form rules, see in particular [15]. On the other hand, LP is lost by the more general family
of Wirth-Weber simple precedence WWSP languages [21] that does not rely on the operator form, but
extend the definition of PR to the total alphabet (terminal and nonterminal); the WWSP parser operates
necessarily from left to right starting from the beginning of the input.

Our PR parser has the local parsing property. The local parsability property is important for efficiently
implementing data-parallelism in parsers. The techniques for OP parser parallelization in [1] should be
also applicable to the PR parser.

Language recognized by parser vs language defined by grammar Since the set of strings
recognized by the PR parser only depends on the PRs of 𝐺, we denoted it by 𝐿(PR(𝐺)). Clearly
𝐿(𝐺) ⊆ 𝐿(PR(𝐺)). Interestingly, 𝐿(PR(𝐺)) is included in the language defined by a PR grammar,
called free, (the free PR grammars are the counterpart of the free OP grammars [10]) which is obtained
from the ANF grammar ̃︀𝐺 by a straightforward transformation.

The free grammar associated to ̃︀𝐺 is ̂︀𝐺 = (Σ, ̂︀𝑉𝑁 , ̂︀𝑃 , ̂︀𝑆) where ̂︀𝑉𝑁 = 𝐴(𝐺) and ̂︀𝑆 = {𝛼 ∈ 𝐴(𝐺) |
⟨𝐴,𝛼⟩ ∈ ̃︀𝑆}.

To define the rules of the free grammar, we need a projection. The projection ℎ : ̃︀𝑉𝑁 ∪ ̃︀Σ → ̂︀𝑉𝑁 ∪ Σ
is defined as ℎ(⟨𝑋, 𝛼⟩) = 𝛼, 𝑋 ∈ 𝑉𝑁 , i.e., the nonterminals that have identical attributes are coalesced,
and ℎ(⟨𝑏, 𝛼⟩) = 𝑏, 𝑏 ∈ Σ, i.e., it erases the (leaf) attributes of type 1 thus making the terminal alphabet
identical to Σ. The rule set is ̂︀𝑃 = ℎ( ̃︀𝑃 ).

Example 5 (Free grammar vs ANF grammar). The grammar 𝐺 = {𝑆 → 𝑎𝐴, 𝐴 → 𝑎𝐵, 𝐵 → 𝑎} has
the ANF below.

ANF grammar ̃︀𝐺 free grammar ̂︀𝐺
𝑆[#𝑦̇𝑎, 𝑎𝑡̇#] → 𝑎(#𝑦̇𝑎, 𝑎𝑦̇𝑎)𝐴[𝑎𝑦̇𝑎, 𝑎𝑡̇#] [#𝑦̇𝑎, 𝑎𝑡̇#] → 𝑎 [𝑎𝑦̇𝑎, 𝑎𝑡̇#]
𝐴[𝑎𝑦̇𝑎, 𝑎𝑡̇#] → 𝑎(𝑎𝑦̇𝑎, 𝑎𝑦̇𝑎)𝐵[𝑎𝑦̇𝑎, 𝑎𝑡̇#] [𝑎𝑦̇𝑎, 𝑎𝑡̇#] → 𝑎 [𝑎𝑦̇𝑎, 𝑎𝑡̇#]
𝐵[𝑎𝑦̇𝑎, 𝑎𝑡̇#] → 𝑎(𝑎𝑦̇𝑎, 𝑎𝑡̇#) [𝑎𝑦̇𝑎, 𝑎𝑡̇#] → 𝑎

Notice that 𝐿(𝐺) = 𝑎3 and 𝐿( ̂︀𝐺) = 𝑎+𝑎.

The next statement is immediate.

Proposition 2. The language inclusion relations hold: 𝐿(𝐺) ⊆ 𝐿(PR(𝐺)) ⊆ 𝐿( ̂︀𝐺).

In fact, the APR(𝐺) used by the parser at each reduction step are included into, but not necessarily
saturate the APRs of the free grammar. Therefore the parser may reject some strings in 𝐿( ̂︀𝐺).

Union It is natural to consider as compatible two PR grammars such that their APRs do not clash, in
the sense that their union does not contain a conflict. For compatible grammars closure under union is
immediate.

Theorem 1 (Closure under union). Let 𝐺′ and 𝐺′′ be PR grammars such that the set PR(𝐺′) ∪ PR(𝐺′′)
is conflict-free. The language 𝐿(𝐺′) ∪ 𝐿(𝐺′′) has the PR property.

Proof. Assume for simplicity and without loss of generality that the grammars are free from copy rules.
Let 𝑉 ′

𝑁 ∩ 𝑉 ′′
𝑁 = ∅, and define 𝐺 as (Σ, 𝑉 ′

𝑁 ∪ 𝑉 ′′
𝑁 , 𝑃 ′ ∪ 𝑃 ′′, 𝑆′ ∪ 𝑆′′) so that 𝐿(𝐺) = 𝐿(𝐺′) ∪ 𝐿(𝐺′′).

Since PR(𝐺) = PR(𝐺′) ∪ PR(𝐺′′) is conflict-free, grammar 𝐺 is PR.
We observe that grammar 𝐺 may be ambiguous in a mild way that does not prevent deterministic

parsing. More precisely a string 𝑥 ∈ 𝐿(𝐺) may have two structurally identical syntax trees that only
differ in the nonterminal labels. In that case the parser will compute only one syntax tree with two
labels per internal node.



4. Comparison with Operator-Precedence languages

Our objective was to define a novel type of precedence relation and a corresponding family of languages
that include the OPL yet do not require the operator form of grammars. We show that every OP
grammar has the PRP.

We recall that on operator-precedence grammars three precedence relations, for brevity OPR, are
defined over (Σ∪#)2: 𝑎⋖ 𝑏, 𝑎⋗ 𝑏 and 𝑎

.
= 𝑏, resp. named yield, take, equal in precedence. Notice that

such relations are defined between two terminals that are adjacent, or also separated by a nonterminal,
in a sentential form (antichain). Although conceptually similar, our APR definitions differ in three
ways: they are defined on attributes, they include the facing relation, and are only defined between two
nodes that are adjacent in antichains. This requires a more analytical comparison of the effect of the
no-conflict condition for OPR and APR, in the next lemma.

Lemma 1 (Operator-precedence grammars vs PR grammars). Let 𝐺 be an operator precedence grammar.
Then G meets the PR property.

Proof. Assuming the relations OPR(𝐺) ⊆ (Σ ∪#)2 to be conflict-free, we prove that the relations
APR(𝐺) are conflict-free. First, the obvious constraints imposed on APRs by the operator form are:
neither facing relations nor relations between two internal tree nodes are possible. The remaining
cases are: (1) relations 𝑦̇, 𝑡̇, 𝑠̇ between two (adjacent) leaves, and (2) relations between a leaf and an
internal node or conversely. For cases (1) and (2) we prove that a conflict in APR(𝐺) implies a conflict
in OPR(𝐺).
Let the conflicting pairs be 𝑚′,𝑚′′ and 𝑛′, 𝑛′′ with 𝛼(𝑚′) = 𝛼(𝑛′), 𝛼(𝑚′′) = 𝛼(𝑛′′).

1. Leaf-Leaf. From definitions, a terminal-terminal PR implies in OPR the corresponding relation
through the correspondence: 𝑦̇ ↦→ ⋖, 𝑡̇ ↦→ ⋗, 𝑠̇ ↦→ .

=. We prove just the case for the conflict
𝑚′ 𝑦̇ 𝑚′′, 𝑛′ 𝑠̇ 𝑛′′ schematized below, the others being similar.

•

. . . m′, c •

m′′, d . . .

. . .

leftmost descendent −→

•

. . . n′, c n′′, d . . .

From 𝑚′ 𝑦̇ 𝑚′′, the attributes of the first pair have the form 𝛼(𝑚′) = (. . . 𝑐, 𝑐 𝑦̇ 𝑑) and 𝛼(𝑚′′) =
(𝑐 𝑦̇ 𝑑, 𝑑 . . .). From 𝑛′ 𝑠̇ 𝑛′′, the attributes of the second pair have the form 𝛼(𝑛′) = (. . . 𝑐, 𝑐 𝑠̇ 𝑑)
and 𝛼(𝑛′′) = (𝑐 𝑠̇ 𝑑, 𝑑 . . .), whence the OPG conflict 𝑐⋖ 𝑑, 𝑐 .

= 𝑑.

2. Leaf-Internal (Internal-Leaf is similar and omitted). By symmetry it suffices to prove the case for
the two pairs 𝑚′ 𝑦̇ 𝑚′′ and 𝑛′ 𝑠̇ 𝑛′′, resp. schematized in tree 𝑡, and in the trees 𝑡1 and 𝑡2.

t t1 t2

•

. . . m′, c •

m′′

leftmost
descendantd . . . e rightmost descendant

f

. . .

•

. . . n′, c n′′

d . . . e

n′′′, f . . .

•

•

. . . n′, c n′′

d . . . e

n′′′, f . . .

From 𝑚′ 𝑦̇ 𝑚′′ the attributes in tree 𝑡 have the forms: 𝛼(𝑚′) = (. . . 𝑐, 𝑐 𝑦̇ 𝑑) and 𝛼(𝑚′′) =
[𝑐 𝑦̇ 𝑑, 𝑒 𝑡̇ 𝑓 ]. The corresponding OPRs are 𝑐⋖ 𝑑, 𝑒⋗ 𝑓 . In addition, relation 𝑐⋖ 𝑓 holds since the
nonterminal label of 𝑚′′ is “transparent”, by convention in OP. From 𝑛′ 𝑠̇ 𝑛′′, the attributes forms
in trees 𝑡1 and 𝑡2 are 𝛼(𝑛′) = (. . . 𝑐, 𝑐 𝑦̇ 𝑑) and 𝛼(𝑛′′) = [𝑐 𝑦̇ 𝑑, 𝑒 𝑡̇ 𝑓 ]. The possible subcases for
𝑛′′′, schematized in tree 𝑡1 and 𝑡2, differ in the respective APRs: 𝛼(𝑛′′) 𝑠̇ 𝛼(𝑛′′′) and 𝛼(𝑛′′) 𝑡̇ 𝛼(𝑛′′′).
They imply respectively the OPRs 𝑐 .

= 𝑓 and 𝑐⋗ 𝑓 , conflicting in both cases with the previous
OPR 𝑐⋖ 𝑓 of tree 𝑡.



Theorem 2. The family of OP grammars is strictly included in the family of operator form grammars
that have the PR property.

Proof. The weak inclusion follows from Lemma 1. The strict inclusion is witnessed by the PR grammar
𝑆 → 𝑋 | 𝑌, 𝑋 → 𝑋𝑠 | 𝑠, 𝑌 → 𝐴𝑠𝑌 | 𝐴𝑠, 𝐴 → 𝑎 that has the OP conflict 𝑠⋖ 𝑠, 𝑠⋗ 𝑠.

Lemma 2. The PR language 𝐿 = {𝑎𝑛𝑐(𝑎𝑏𝑎)𝑛 | 𝑛 ≥ 0} of Ex. 3 is not defined by any OP grammar.

Proof. From the pumping lemma for CF languages, any long enough sentence in 𝐿 can be written as
𝑢𝑣𝑛𝑥𝑦𝑛𝑧, 𝑛 ≥ 1, where 𝑢, 𝑥, 𝑧 are finite strings, 𝑣 = 𝑎, and 𝑦 is a cyclic permutation of 𝑎𝑏𝑎. Therefore
any (operator-form grammar) for 𝐿 must produce a derivation of the form 𝑍

+→ 𝑎𝑍𝑦 where the cases
for 𝑦 are: 𝑎𝑏𝑎, 𝑎𝑎𝑏, 𝑏𝑎𝑎. This can be done in finitely many ways, each one can be proved to lead to OP
conflicts. We just consider some cases, omitting the others, which are similar.

1. 𝑦 = 𝑎𝑏𝑎 and rule 𝑆 → 𝑎𝑆𝑎𝑏𝑎. Conflicts: 𝑎⋖ 𝑎, 𝑎⋗ 𝑎, 𝑎 .
= 𝑎.

2. 𝑦 = 𝑎𝑎𝑏 and rule 𝑋 → 𝑎𝑋𝑎𝑎𝑏. Conflicts: 𝑎⋖ 𝑎, 𝑎 .
= 𝑎. Similarly for case 𝑦 = 𝑏𝑎𝑎.

3. 𝑦 = 𝑎𝑏𝑎 and rules 𝑆 → 𝑎𝑋𝑏𝑎 , 𝑋 → 𝑆𝑎, i.e., 𝑆 2→ 𝑎𝑆𝑎𝑏𝑎. Conflicts: 𝑎 .
= 𝑏, 𝑎⋗ 𝑏.

Theorem 3. The family of OP languages is strictly included in the family of PR languages.

At last, we discuss a drawback of OP rules that we have been able to cure using PR grammars.
Consider a set of operators that are syntactically equivalent, e.g., in arithmetic expressions, the multiply
and divide. In OP rules we cannot factor out both operators into a nonterminal div_mult → * | /,
without creating a non-operator rule such as 𝐹 → 𝑇 div_mult𝐹 . We have experimentally found that
such a transformation of typical OP grammars preserves the PRP. Notice that factoring transforms an
OP grammar into the well-known generalized Chomsky normal form (GCNF), where only two types of
rules are present: 𝐵 → 𝑐 with 𝑐 ∈ Σ, and 𝐵 → 𝑦 with 𝑦 ∈ 𝑉 +

𝑁 . In the GCNF, the only PR between
terminals is 𝑓̇ . The question whether for any OP the corresponding GCNF has the PRP is open.

5. Conclusion

The idea of (sinthesized) attributes as the support of precedence relations is original and quite general,
and its realization in Def. 2 is a satisfactory instantiation we arrived at after experimenting with other
more complex definitions on a set of typical but small grammar examples. We intend to extend the
experimentation to representative collections of grammars for artificial languages, to confirm the
attribute definition or to improve it.
Several natural and interesting theoretical questions are ahead. The Boolean closure of the family
of PR-compatible languages, if proved, would open the way to developing logical definitions of PR
languages, in view of application to model checking of formal specifications.
Concerning syntactic properties, it would be interesting to extend PR definitions when regular expres-
sions are permitted in grammar rules (as done for OP in [26]). Another range of open questions is
which grammar transformations (e.g., into Greibach normal form) preserve the PR property.
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