
Displayed Universal Algebra in UniMath: Basic Definitions
and Results
Gianluca Amato1, Matteo Calosci2, Marco Maggesi2 and Cosimo Perini Brogi3

1Laboratorio di Logica Computazionale e Intelligenza Artificiale, Università di Chieti-Pescara
2Università di Firenze
3Scuola IMT Alti Studi Lucca

Abstract
Univalent mathematics and homotopy type theory provide a structural approach to formalizing mathematical
concepts. Inspired by the role of displayed categories in the univalent treatment of category theory, we develop
an analogous notion of displayed algebras for universal algebra. This modular and layered approach allows us
to construct and reason about algebraic structures over a fixed base. Classical constructions such as cartesian
products, pullbacks, semidirect products, and subalgebras naturally arise as total algebras of suitable displayed
algebras. The main results are fully formalized in the UniMath library.

Keywords
Homotopy type theory, Universal algebra, Displayed constructions, Computerized mathematics, UniMath

1. Introduction

1.1. Homotopy Type Theory and Univalent Foundations

Homotopy Type Theory (HoTT) is a modern approach to the foundations of mathematics that integrates
ideas from homotopy theory, type theory, and category theory [1]. At its core, HoTT proposes a new
way of thinking about mathematical objects where the notion of equality between terms can carry
additional structure.

In this framework, a type can be understood as a space, and its terms as points in that space. Two
terms are considered equal not just in the traditional sense, but by the existence of a path connecting
them - capturing the idea that identity can be continuous and structured. In this topologically inspired
point of view, two terms can be connected by multiple paths, leading us to consider paths between
paths, representing equalities between equalities. Since equality in this setting brings information on
how terms get identified, higher paths are not necessarily trivial (in the same way, topological spaces
are not necessarily simply connected). Moreover, this can be iterated, giving rise to a rich hierarchy
of higher-dimensional structures, where logical propositions and mathematical constructions can be
interpreted geometrically.

Type isomorphisms correspond to homotopy equivalence; by the univalence axiom of Vladimir
Voevodsky [2, 3], they can be computed as propositional equality on the Universe. This means that
equivalent types can be treated as any other two equal terms in the system; moreover, theorems
about one can be transported to the other. This aligns with the informal intuition of reasoning "up to
isomorphism" and allows bringing this intuition into formal, machine-verifiable mathematics.

The UniMath project builds on univalent foundations to provide a large, formally verified library of
mathematics [4] along with other systems such as Coq-HoTT [5] and Cubical Agda [6]. UniMath is
particularly well-suited to our purposes thanks to its extensive library, which offers the necessary tools

ICTCS’25: Italian Conference on Theoretical Computer Science, September 10–12, 2025, Pescara, Italy
$ gianluca.amato@unich.it (G. Amato); matteo.calosci@unifi.it (M. Calosci); marco.maggesi@unifi.it (M. Maggesi);
cosimo.perinibrogi@imtlucca.it (C. Perini Brogi)
� https://www.sci.unich.it/~amato (G. Amato); https://sites.google.com/unifi.it/maggesi/ (M. Maggesi);
https://sysma.imtlucca.it/people/cosimo-perini-brogi (C. Perini Brogi)
� 0000-0002-6214-5198 (G. Amato); 0009-0001-5237-7980 (M. Calosci); 0000-0003-4380-7691 (M. Maggesi);
0000-0001-7883-5727 (C. Perini Brogi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:gianluca.amato@unich.it
mailto:matteo.calosci@unifi.it
mailto:marco.maggesi@unifi.it
mailto:cosimo.perinibrogi@imtlucca.it
https://www.sci.unich.it/~amato
https://sites.google.com/unifi.it/maggesi/
https://sysma.imtlucca.it/people/cosimo-perini-brogi
https://orcid.org/0000-0002-6214-5198
https://orcid.org/0009-0001-5237-7980
https://orcid.org/0000-0003-4380-7691
https://orcid.org/0000-0001-7883-5727
https://creativecommons.org/licenses/by/4.0/deed.en


and infrastructure for developing universal algebra in a modular and structured way. Moreover, the
library also offers many implementations of algebraic structures (groups, ordered sets, . . . ) which may
be presented as instances of our constructions.

In this context, our goal is to develop a formalization of Universal Algebra that is naturally aligned
with the principles and foundational philosophy of univalent mathematics in UniMath.

1.2. General framework

Both universal algebra and category theory provide unifying frameworks for studying algebraic struc-
tures in abstract terms [7, 8, 9].

In universal algebra, a structure – be it a group, a ring, or a lattice – is described as a theory, i.e. in
terms of abstract operations over a carrier and a set of equations these operations are required to satisfy.
This way, once a theory is specified, specific instances of algebraic structures are defined as models of
that theory, and an algebra homomorphism is a structure-preserving map between models [10].

In category theory, Lawvere theories provide a presentation-invariant version of algebraic theories,
where algebraic operations are given by morphisms in the Lawvere theory. Specific instances of
algebraic structures are defined as product-preserving functors from a Lawvere theory to categories
with finite products. This reveals universal algebra as the theory of all structures that can be defined in
categories with finite products [11].

The work started with [12] showed that many categorical constructions can be developed modularly
both at the objects and morphisms levels (as well as at higher categorical levels [13]), by adding
progressively layers of further structure. Similarly, in universal algebra, it is often possible to modularly
construct an algebraic structure. In this work, we show how to rephrase the methods of displayed
categories in order to deal with classical concepts of universal algebra, making the analogy we have just
sketched more precise. We thus widen the investigations on the notion of displayed algebras [14, 15, 16],
with a focus on developing universal algebra with the displayed-category style.

Concretely, given a base algebra, we display the additional algebraic structure – elements and
operations – in a structured layer above such base. This approach not only streamlines proofs of
properties and constructions but also facilitates the reuse of generic lemmas across different algebraic
contexts. This way we can reap the organizational benefits of displayed formalisms, both for the
mathematical developments of universal algebra and their computer implementations.

1.3. Source code

Our code is freely available from our GitHub repository1 and it is already integrated in the official
UniMath library. When discussing concepts which are available in our source code, we will provide
specific links below, denoted by the icon 2.

2. Universal Algebra in Univalent Foundations

2.1. Development in UniMath

This work extends our previous development [17, 18], which introduced the first (precategorical) imple-
mentation of universal algebra in the UniMath system. There, we formalized multi-sorted signatures,
algebras, homomorphisms, and categories of algebras, and addressed the absence of general inductive
types in UniMath by introducing a stack-based encoding of terms. This encoding enabled the con-
struction of term algebras with desired computational properties and of homotopy W-types with finite
branching. The present work builds upon and generalizes that foundation by developing a theory of
displayed algebras, which allows for modular, layered constructions over a given base algebra.

1https://github.com/UniMathUA/UniMath/tree/ICTCS-2025

.
https://github.com/UniMathUA/UniMath/tree/ICTCS-2025


We report here some of the key constructions of our development. We refer to our earlier work for
further details. We start with the basic definition of signature and algebra. We require that the type of
sorts has a decidable equality and that the type of operations is an hSet (a set in the homotopical sense).

Definition signature2 : UU :=
∑︀

(S: decSet) (O: hSet), O → list S × S.

Definition algebra2 (𝜎: signature): UU
:=

∑︀
A: sUU (sorts 𝜎),

∏︀
nm: names 𝜎, A⋆ (arity nm) → A (sort nm).

The construction of the algebra of terms is based on the idea of a stack machine that we roughly
sketch below:

1. A sequence of function symbols is thought of as a series of commands to be executed by a stack
machine whose stack is made of sorts, and which we define by means of a maybe monad.

Definition oplist2 (𝜎: signature):= list (names 𝜎).

Definition stack2 (𝜎: signature): UU := maybe (list (sorts 𝜎)).

2. When an operation symbol is executed, its arity is popped out from the stack and replaced by
its range. When a stack underflow occurs, or when the sorts present in the stack are not the
ones expected by the operator, the stack goes into an error condition which is propagated by
successive operations. We implement this process by means of two functions:

Definition opexec2 (nm: names 𝜎): stack 𝜎 → stack 𝜎.

Definition oplistexec2 (l: oplist 𝜎): stack 𝜎.

The former is the stack transformation corresponding to the execution of the operation symbol
nm. The latter returns the stack corresponding to the execution of the entire oplist argument
starting from the empty stack. The list is executed from the last to the first operation symbol.

Several additional lemmas are required in order to make us able to handle stacks – by concatenat-
ing, splitting, etc. – without incurring failures breaking down the whole process.2

3. Finally, we define a term to be just a list of operation symbols that, after being executed by
oplistexec, returns a list of length one with appropriate sort:3

Definition isaterm2 (s: sorts 𝜎) (l: oplist 𝜎): UU
:= oplistexec l = just [s].

Definition term2 (𝜎: signature) (s: sorts 𝜎): UU
:=

∑︀
t: oplist 𝜎, isaterm s t.

2.2. Displayed algebras and current development

The natural starting point of our work is the formal definition of displayed algebras.

Definition. Given an algebra ℬ over a multi-sorted signature 𝜎, a displayed algebra 2 over ℬ consists of:
· a family of “fiber” types indexed over terms of ℬ;
· a family of “overop“ functions indexed over any operation name 𝑓 of 𝜎 and any vector 𝑣 of terms of
ℬ each having the appropriate sort specified by the arity of 𝑓 . Each function has the product of the
fiber of the components of 𝑣 as domain and the fiber of 𝑓ℬ(𝑣) as codomain.

This is depicted in the following:

2In particular, since we need to decide when a stack is correctly executed and when an underflow occurs, we see the reasons
for choosing sorts to constitute a decidable set.

3From a purely HoTT-perspective, we can easily see also that the type of stacks over 𝜎 is an hSet, so that the property of
being a term is not proof-relevant (isapropisaterm2).

https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Signatures.v#L20
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Algebras.v#L14-L15
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Terms.v#L36-L40
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Terms.v#L48
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Terms.v#L71-L72
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Terms.v#L74
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Terms.v#L76
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Terms.v#L440-L443
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L12
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/Terms.v#L78-L81


overop 𝑓 𝑣

𝑓ℬ
𝑣1 𝑣2

ℬ

fib(𝑣1) fib(𝑣2) fib(𝑓ℬ(𝑣))

Unfortunately, formalized mathematics sometimes makes obscure concepts which are otherwise
quite natural. The formal definition of a displayed algebra in UniMath is the following:

Definition disp_alg2 {𝜎: signature} (B: algebra 𝜎) :=∑︀
fib : (

∏︀
(s: sorts 𝜎) (b: support B s), UU),∏︀

(nm: names 𝜎) (base_xs: hvec (vec_map B (arity nm))),
hvec (h1map_vec (v := arity nm) fib base_xs)
→ fib (sort nm) (ops B nm (base_xs)).

In a straightforward and natural way, every displayed category gives rise to a total category. Analo-
gously, from a displayed algebra we can build the associated total algebra 2. The carriers are dependent
pairs with the carriers of ℬ in the first component and the fiber types in the second one. Operations are
built from the ones of ℬ and the overop functions.

Definition total_alg2 {A: algebra 𝜎} (D: disp_alg A) : algebra 𝜎.

This construction is one of the primary motivations for working with displayed structures since it
provides a clear, modular framework for assembling algebras from simpler components.

In the categorical setting, a displayed category encodes the same information as a functor into the
base category. In our algebraic setting, we show the analogous result 2:

Theorem. Given an algebra ℬ over a multi-sorted signature 𝜎 with hSet carriers , the type of algebra
morphisms targetting ℬ is equivalent to the type of displayed algebras over ℬ.

Proof sketch. From any homomorphism ℎ targeting ℬ, we construct the displayed algebra of its fibers
2. Fiber types are given by the fiber under ℎ of the specific index term, and overop functions are
derived from the operations in the source algebra: their well-typedness depends on the fact that ℎ is a
homomorphism.

On the other hand taking the projections on the first component of the total algebra carriers leads to
the definition of the forgetful homomorphism 2.

We finally show that taking the displayed algebra of the fiber and taking the forgetful homomorphism
of a total algebra are operations inverse to each other. This also requires verifying higher coherence
conditions between the type components of the whole construction.

This final step is both conceptually and technically the most delicate part of the development: it has no
direct analogue in classical mathematics, as it relies crucially on the dependent and homotopical nature
of types in univalent foundations. The argument is relatively long and involves managing multiple layers
of dependent data and coherence, which would be invisible or collapsed in a set-theoretic setting.

2.3. Motivating Examples.

We emphasize how various familiar algebraic constructions – in particular, those admitting a staged or
layered description – can be systematically recovered by taking the total algebra of a displayed algebra.
Here are some examples:

https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L12-L16
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L32
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L32-L43
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L322-L370
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L112-L113
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L112-L113
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L81


Cartesian Products: A displayed algebra can encode how algebraic operations behave component-
wise on a product of carriers. Collecting these componentwise structures into a single object
yields the familiar cartesian product algebra 2 as its total algebra.

Pullbacks: By generalizing the previous example, one can display algebraic structure along pullback
squares to obtain a pullback of algebras. The resulting total algebra thus inherits its operations
from the displayed structure, reflecting the universal property of the pullback on the level of
algebras.

Semidirect Products: The semidirect product of groups can also be viewed as the total algebra of a
suitable displayed algebra. Here, one “displays” how a normal subgroup and a quotient group
interact, and then reassembles this information into the total structure defining the semidirect
product.4

Subalgebras: Consider a displayed algebra that restricts the underlying carriers of a larger algebra to
subsets closed under its operations. When one collects this restricted (or “sub”) structure into a
single object, the total algebra precisely captures 2 the notion of a subalgebra 2.

3. Related and future work

This paper builds upon our original UniMath library for universal algebra [18]. Other formalizations
of universal algebra in dependent type theory are [20, 21, 22, 23, 24, 25, 26]. In the univalent setting,
universal algebra is formalised in [27, 28].

Our novel implementation of displayed algebras is inspired by the work in displayed categories
started with [12]; in future, we plan to explore further connections between their displaying methods
for categories and our constructions at the algebraic level. At the same time, we plan to extend our
original UniMath library for universal algebra by making extensive use of the techniques of displayed
algebras that we communicate here. Finally, it would be relevant to bridge our formalization of universal
algebra in UniMath with the existing library on Lawvere theories5 in the same univalent system and
investigate potential transfers of results between the categorical and universal languages for algebraic
structures using a unified displayed formalism.

Acknowledgments

This work was partially supported by: the project SERICS ‘Security and Rights in CyberSpace’ –
PE0000014, financed within PNRR, M4C2 I. 1. 3, funded by the European Union - NextGenerationEU; the
MIUR project PRIN 2017JZ2SW5 ‘Real and Complex Manifolds: Topology, Geometry and holomorphic
dynamics’; the PNRR project FAIR – Future AI Research (PE00000013), Spoke 9 - Green-aware AI, under
the NRRP MUR program funded by the NextGenerationEU; Istituto Nazionale di Alta Matematica –
INdAM groups GNAMPA, GNCS and GNSAGA.

Declaration on Generative AI

During the preparation of this work, the authors used X-GPT-4 to: Drafting content, Paraphrase and
reword, Improve writing style. After using these tools, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s content.

4While semidirect products of groups have well-known generalizations to other contexts in universal algebra [19], those
generalizations are not treated here.

5https://github.com/UniMath/UniMath/tree/master/UniMath/AlgebraicTheories 2

https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/DisplayedAlgebras.v#L136
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/SubAlgebras.v#L255-L257
https://github.com/UniMathUA/UniMath/blob/ICTCS-2025/UniMath/Algebra/Universal/SubAlgebras.v#L14
https://github.com/UniMath/UniMath/tree/master/UniMath/AlgebraicTheories


References

[1] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathe-
matics, https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[2] P. Aczel, On Voevodsky’s univalence axiom, Mathematical Logic: Proof Theory, Constructive
Mathematics, Samuel R. Buss, Ulrich Kohlenbach, and Michael Rathjen (Eds.). Mathematisches
Forschungsinstitut Oberwolfach, Oberwolfach (2011) 2967.

[3] M. H. Escardó, A self-contained, brief and complete formulation of Voevodsky’s Univalence Axiom,
https://arxiv.org/abs/1803.02294, 2018. doi:10.48550/ARXIV.1803.02294.

[4] V. Voevodsky, B. Ahrens, D. Grayson, et al., Unimath — a computer-checked library of univalent
mathematics, Available at http://unimath.org, 2025. URL: https://github.com/UniMath/UniMath.
doi:10.5281/zenodo.8427604.

[5] A. Bauer, J. Gross, P. L. Lumsdaine, M. Shulman, M. Sozeau, B. Spitters, The HoTT library: a
formalization of homotopy type theory in Coq, in: Y. Bertot, V. Vafeiadis (Eds.), Proceedings of the
6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January
16-17, 2017, ACM, 2017, pp. 164–172. URL: https://doi.org/10.1145/3018610.3018615. doi:10.1145/
3018610.3018615.

[6] A. Vezzosi, A. Mörtberg, A. Abel, Cubical agda: a dependently typed programming language
with univalence and higher inductive types, Proc. ACM Program. Lang. 3 (2019). URL: https:
//doi.org/10.1145/3341691. doi:10.1145/3341691.

[7] M. Hyland, J. Power, The category theoretic understanding of universal algebra: Lawvere theories
and monads, Electronic Notes in Theoretical Computer Science 172 (2007) 437–458.

[8] G. Grätzer, Universal algebra, Springer Science & Business Media, 2008.
[9] J. Adámek, J. Rosickỳ, E. M. Vitale, Algebraic theories: a categorical introduction to general algebra,

volume 184, Cambridge University Press, 2010.
[10] H. P. Sankappanavar, S. Burris, A course in universal algebra, Graduate Texts Math 78 (1981) 56.
[11] F. W. Lawvere, Functorial semantics of algebraic theories, Proceedings of the National Academy

of Sciences 50 (1963) 869–872.
[12] B. Ahrens, P. L. Lumsdaine, Displayed Categories, Logical Methods in Computer Science Volume

15, Issue 1 (2019). URL: https://lmcs.episciences.org/5252. doi:10.23638/LMCS-15(1:20)2019.
[13] B. Ahrens, D. Frumin, M. Maggesi, N. Veltri, N. van der Weide, Bicategories in univalent foun-

dations, Mathematical Structures in Computer Science 31 (2021) 1232–1269. doi:10.1017/
S0960129522000032.

[14] A. Kaposi, A. Kovàcs, T. Altenkirch, Constructing quotient inductive-inductive types, Proceedings
of the ACM on Programming Languages 3 (2019) 1–24. URL: https://doi.org/10.1145/3290315.
doi:10.1145/3290315.

[15] A. Kovács, Type-Theoretic Signatures for Algebraic Theories and Inductive Types, Ph.D. thesis,
Eötvös Loránd University Doctoral School of Informatics, 2022. URL: https://arxiv.org/abs/2302.
08837.

[16] K. Sojakova, Higher inductive types as homotopy-initial algebras, in: Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’15,
ACM, New York, NY, USA, 2015, p. 31–42. doi:10.1145/2676726.2676983.

[17] G. Amato, M. Maggesi, M. Parton, C. Perini Brogi, Universal algebra in UniMath, in: Workshop
on Homotopy Type Theory/Univalent Foundations – HoTT/UF2020, 2020, pp. 1–4. URL: https:
//hott-uf.github.io/2020/.

[18] G. Amato, M. Calosci, M. Maggesi, C. Perini Brogi, Universal algebra in UniMath, Mathematical
Structures in Computer Science 34 (2024) 869 – 891. doi:10.1017/S0960129524000367.

[19] A. Facchini, D. Stanovský, Semidirect products in universal algebra, 2023. URL: https://arxiv.org/
abs/2311.04321. arXiv:2311.04321.

[20] V. Capretta, Universal algebra in type theory, in: Y. Bertot, G. Dowek, A. Hirschowits, C. Paulin,
L. Théry (Eds.), Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs
’99, volume 1690 of LNCS, Springer, 1999, pp. 131–148. URL: http://www-sop.inria.fr/lemme/

https://homotopytypetheory.org/book
https://arxiv.org/abs/1803.02294
http://dx.doi.org/10.48550/ARXIV.1803.02294
http://unimath.org
https://github.com/UniMath/UniMath
http://dx.doi.org/10.5281/zenodo.8427604
https://doi.org/10.1145/3018610.3018615
http://dx.doi.org/10.1145/3018610.3018615
http://dx.doi.org/10.1145/3018610.3018615
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3341691
http://dx.doi.org/10.1145/3341691
https://lmcs.episciences.org/5252
http://dx.doi.org/10.23638/LMCS-15(1:20)2019
http://dx.doi.org/10.1017/S0960129522000032
http://dx.doi.org/10.1017/S0960129522000032
https://doi.org/10.1145/3290315
http://dx.doi.org/10.1145/3290315
https://arxiv.org/abs/2302.08837
https://arxiv.org/abs/2302.08837
http://dx.doi.org/10.1145/2676726.2676983
https://hott-uf.github.io/2020/
https://hott-uf.github.io/2020/
http://dx.doi.org/10.1017/S0960129524000367
https://arxiv.org/abs/2311.04321
https://arxiv.org/abs/2311.04321
http://arxiv.org/abs/2311.04321
http://www-sop.inria.fr/lemme/Venanzio.Capretta/universal_algebra.html
http://www-sop.inria.fr/lemme/Venanzio.Capretta/universal_algebra.html


Venanzio.Capretta/universal_algebra.html.
[21] E. Gunther, A. Gadea, M. Pagano, Formalization of universal algebra in Agda, Electronic Notes in

Theoretical Computer Science 338 (2018) 147–166. URL: https://www.sciencedirect.com/science/
article/pii/S1571066118300768.

[22] A. Abel, Birkhoff’s Completeness Theorem for Multi-Sorted Algebras Formalized in Agda, CoRR
abs/2111.07936 (2021). URL: https://arxiv.org/abs/2111.07936. arXiv:2111.07936.

[23] W. DeMeo, J. Carette, A Machine-Checked Proof of Birkhoff’s Variety Theorem in Martin-Löf
Type Theory, in: H. Basold, J. Cockx, S. Ghilezan (Eds.), 27th International Conference on
Types for Proofs and Programs (TYPES 2021), volume 239 of Leibniz International Proceedings
in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
2022, pp. 4:1–4:21. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2021.4.
doi:10.4230/LIPIcs.TYPES.2021.4.

[24] W. DeMeo, The Agda Universal Algebra Library, Part 1: Foundation, arXiv preprint
arXiv:2103.05581 (2021).

[25] W. DeMeo, The Agda Universal Algebra Library, Part 2: Structure, arXiv preprint arXiv:2103.09092
(2021).

[26] W. DeMeo, J. Carette, The Agda Universal Algebra Library (agda-algebras), GitHub.com, 2021.
doi:10.5281/zenodo.5765793, documentation available at https://ualib.org.

[27] A. Lynge, Universal algebra in HoTT, 2017. URL: https://github.com/andreaslyn/Work/blob/master/
Math-Bachelor.pdf, bachelor’s thesis, Department of Mathematics, Aarhus University.

[28] A. Lynge, B. Spitters, Universal algebra in HoTT, in: TYPES 2019, 25th International Conference
on Types for Proofs and Programs, 2019, pp. 1–2. URL: http://www.ii.uib.no/~bezem/abstracts/
TYPES_2019_paper_7.

http://www-sop.inria.fr/lemme/Venanzio.Capretta/universal_algebra.html
http://www-sop.inria.fr/lemme/Venanzio.Capretta/universal_algebra.html
http://www-sop.inria.fr/lemme/Venanzio.Capretta/universal_algebra.html
https://www.sciencedirect.com/science/article/pii/S1571066118300768
https://www.sciencedirect.com/science/article/pii/S1571066118300768
https://arxiv.org/abs/2111.07936
http://arxiv.org/abs/2111.07936
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2021.4
http://dx.doi.org/10.4230/LIPIcs.TYPES.2021.4
http://dx.doi.org/10.5281/zenodo.5765793
https://github.com/andreaslyn/Work/blob/master/Math-Bachelor.pdf
https://github.com/andreaslyn/Work/blob/master/Math-Bachelor.pdf
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_7
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_7

	1 Introduction
	1.1 Homotopy Type Theory and Univalent Foundations
	1.2 General framework
	1.3 Source code

	2 Universal Algebra in Univalent Foundations
	2.1 Development in UniMath
	2.2 Displayed algebras and current development
	2.3 Motivating Examples.

	3 Related and future work

