
The Black-and-White Coloring Problem on
Tree-Structured Hypergraphs
Shira Zucker1

1Computer Science Department, Sapir Academic College, Israel

Abstract
The Black-and-White Coloring (BWC) problem seeks to find a partial vertex coloring of a graph (or hypergraph)
that maximizes the number of white vertices for each number of black vertices, such that no black and white
vertices are adjacent. This problem is NP-complete in general. In this paper, we present a polynomial-time
algorithm to solve the BWC problem on a family of sparse hypergraphs whose hyperedge intersection graph
forms a tree.

Keywords
combinatorial optimization, anticoloring, BWC, hypergraph, line graph

1. Introduction

The Black-and-White Coloring (BWC) problem on a graph is defined as follows. Given a finite connected
undirected graph 𝐺 and a positive integer 𝑏, find a partial coloring of 𝐺 with exactly 𝑏 black vertices and
with 𝑤 white vertices, where 𝑤 is as large as possible and with the restriction that the black and white
vertices are not adjacent. The hypergraph version of BWC is defined analogously: Given a hypergraph
𝐻 and a positive integer 𝑏, find a partial coloring of 𝐻 with exactly 𝑏 black vertices and with 𝑤 white
vertices, where 𝑤 is as large as possible and with the restriction that no hyperedge in 𝐸 contains black
and white vertices. The remaining vertices are left uncolored. Note that once the set of black vertices is
fixed, the white vertices are determined, and the resulting coloring is deemed optimal. In this context, a
solution is fully characterized by its set of black vertices.

The BWC problem has several practical applications. An example arises in chemical storage, where
storage locations are represented by vertices and each hyperedge corresponds to a group of locations
that must store mutually compatible chemicals. In this context, colors represent chemical types: A
black vertex might indicate a location storing a reactive chemical, while a white vertex indicates a
location with a nonreactive (safe) chemical. The BWC constraint ensures that no hyperedge (i.e., group
of storage locations) contains incompatible chemicals, thereby enabling safe and efficient use of storage
space. Another example arises in social network analysis, where individuals must be assigned to groups
in a way that avoids conflicts of interest. For example, one group may represent members who support
a particular initiative, while another group represents those who oppose it. The BWC model ensures
that no individual in favor (black) is placed in direct interaction with an opponent (white), while neutral
or undecided individuals can remain uncolored. This abstraction allows analysts to identify stable
partitions of the network that minimize tension and highlight potential zones of agreement or conflict.
For additional applications, see [1].

The problem was originated by Berge, who raised the following instance [6]. Given positive integers 𝑛
and 𝑏 ≤ 𝑛2, place 𝑏 black and 𝑤 white queens on an 𝑛×𝑛 chessboard, so that no black queen and white
queen attack each other and with 𝑤 as large as possible. Hansen et al. [10] formalized the general BWC
problem and proved its NP-completeness while providing an 𝑂(𝑛3) algorithm for trees. Berend and
Zucker later improved this runtime to 𝑂(𝑛2 lg3 𝑛) for trees [2]. Related anticoloring problems based on
rook placements [14] and king placements [1] have also been studied.

ICTCS 2025: Italian Conference on Theoretical Computer Science, September 10–12, 2025, Pescara, Italy
$ shiraz@sapir.ac.il (S. Zucker)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:shiraz@sapir.ac.il
https://creativecommons.org/licenses/by/4.0/deed.en

The Black-and-White Coloring problem can be naturally extended to settings involving more than
two colors. This leads to the notion of an anticoloring, which is a partial vertex coloring of a graph
with two or more colors such that no edge connects vertices of different colors. Formally, in the
general anticoloring problem, we are given an undirected graph 𝐺 and integers 𝑏1, . . . , 𝑏𝑘, and the
task is to decide whether there exists a coloring in which exactly 𝑏𝑗 vertices are assigned color 𝑗 (for
each 𝑗 = 1, . . . , 𝑘), while all other vertices may remain uncolored. Such a coloring is referred to as a
(𝑏1, . . . , 𝑏𝑘)-anticoloring. It was observed by [14] that this formulation can be conveniently expressed
as an integer linear program. Heuristic methods, including tabu search [4] and a greedy probabilistic
approach [5], have been proposed to solve the problem. In [16], the BWC problem was solved for chordal
graphs. In addition, a two-approximation algorithm was presented in [15] to minimize erroneous edges
in the full-coloring version (in which every vertex is colored black or white, while minimizing the
number of edges connecting differently colored vertices).

A problem closely related to BWC is the separation problem. Here, one is given an 𝑛-vertex graph 𝐺
and a constant 𝛼 < 1, and the goal is to partition the vertices of 𝐺 into three sets 𝐴,𝐵,𝐶 with the
following properties:

(i) no edge has one endpoint in 𝐴 and the other in 𝐵,
(ii) both 𝐴 and 𝐵 contain at most 𝛼𝑛 vertices, for 𝛼 < 1, and

(iii) the set 𝐶 is relatively small.

The set 𝐶 functions as a separator of 𝐺, since deleting it divides the graph into two subgraphs of
bounded size. Using the vertices of 𝐴 as black, those of 𝐵 as white, and leaving 𝐶 uncolored, one
obtains a BWC of the graph (not necessarily an optimal one).

Typically, the separation problem is studied within specific graph classes 𝒮 that are closed under
taking subgraphs. An 𝑓(𝑛)-separator theorem for 𝒮 (see, e.g., [11]) asserts that every graph 𝐺 ∈ 𝒮
admits such a partition with |𝐶| ≤ 𝑓(𝑛).

In this paper, we extend the study of the BWC problem to hypergraphs. A hypergraph 𝐻 = (𝑉,𝐸)
generalizes a graph by allowing each hyperedge 𝑒 ∈ 𝐸 to be a subset of 𝑉 . In the hypergraph
version of the BWC problem, the restriction is that no hyperedge may contain both black and white
vertices simultaneously. Our focus on sparse hypergraphs, where the weighted line graph forms a tree,
allows us to leverage the tree structure for an efficient dynamic programming solution. Compared to
previous work on trees, which achieved the complexities of time 𝑂(𝑛3) [10] and 𝑂(𝑛2 lg3 𝑛) [2], our
algorithm runs in 𝑂(𝑛3), remarkably efficient given the increased complexity of hypergraphs compared
to graphs. Note that such hypergraphs possess a small separator, similarly to trees and chordal graphs,
facilitating efficient decomposition and dynamic programming. Our algorithm computes all pairs
(𝑏, 𝑤) representing optimal BWC’s for a given hypergraph, providing a comprehensive solution for the
optimization variant of the problem.

The remainder of the paper is organized as follows. In Section 2 we present some basic notions.
Section 3 gives the main results. Section 4 details the proofs and describes the algorithm. Finally,
Section 5 describes future research directions.

2. Basic Notions

We begin by recalling the notion of a (𝑏, 𝑤)-coloring for the BWC problem. A (𝑏, 𝑤)-coloring of a
graph (or hypergraph) is a feasible partial coloring with exactly 𝑏 black and 𝑤 white vertices, where
the constraints of the BWC problem are respected. A pair (𝑏, 𝑤) is said to be non-dominated if there
is no other feasible BWC solution that simultaneously uses at least 𝑏 black vertices and at least 𝑤
white vertices, while having a strictly larger total number of colored vertices. Any (𝑏, 𝑤)-coloring
corresponding to a non-dominated pair is termed an optimal BWC.

Our algorithm computes the set of all non-dominated pairs simultaneously. We will show how to use
it to find the required BWC. The main result is summarized in Theorem 3.1.

Hypergraphs and the Weighted Line Tree. A hypergraph 𝐻 = (𝑉,𝐸) is defined as usual, with
each hyperedge 𝑒 ∈ 𝐸 being a subset of 𝑉 .

We construct the weighted line graph 𝐿(𝐻) = (𝑉𝑇 , 𝐸𝑇) as follows:

1. Each vertex ℎ ∈ 𝑉𝑇 corresponds to a hyperedge 𝑒ℎ ∈ 𝐸 and is assigned the weight 𝜈(ℎ) = |𝑒ℎ|.
2. Two vertices ℎ and ℎ′ in 𝐿(𝐻) are adjacent (that is, (ℎ, ℎ′) ∈ 𝐸𝑇) if and only if 𝑒ℎ ∩ 𝑒ℎ′ ̸= ∅. The

edge (ℎ, ℎ′) is assigned the weight 𝜇(ℎ, ℎ′) = |𝑒ℎ ∩ 𝑒ℎ′ |.

Under the restriction that the hyperedge intersection pattern forms a tree, 𝐿(𝐻) is a tree and we
refer to it as weighted line tree. Our approach first solves a modified full-coloring problem on this tree
(in which every vertex is colored either black or white,) and then derives a feasible BWC for 𝐻 . As
usual, denote |𝑉 | = 𝑛, |𝐸| = 𝑚. Note that if a vertex 𝑣 ∈ 𝑉 is in three hyperedges 𝑒1, 𝑒2, 𝑒3, then
𝑒1 ∩ 𝑒2 ̸= ∅, 𝑒2 ∩ 𝑒3 ̸= ∅, 𝑒1 ∩ 𝑒3 ̸= ∅, which forms a triangle in 𝐿(𝐻). Since 𝐿(𝐻) is a tree, this is
impossible in our case, and therefore each vertex of 𝐻 is contained in at most two hyperedges and
therefore 𝑚 ≤ 2𝑛.

Weighted Functions. For clarity, the weight functions of the vertices and edges of 𝑇 are defined by:

𝜈(ℎ) = |𝑒ℎ|, ℎ ∈ 𝑉𝑇 , 𝑒ℎ ∈ 𝐸,
𝜇(ℎ, ℎ′) = |𝑒ℎ ∩ 𝑒ℎ′ |, (ℎ, ℎ′) ∈ 𝐸𝑇 , 𝑒ℎ, 𝑒ℎ′ ∈ 𝐸

(1)

Coloring Notions. In addition to a BWC of 𝐻 , we introduce a full-coloring of the weighted line
tree 𝑇 . A full-coloring of 𝑇 is a complete assignment of black or white to every vertex (without the
constraint that adjacent vertices be of different colors). Given a full-coloring of 𝑇 , a BWC of 𝐻 is
obtained by coloring each vertex 𝑣 ∈ 𝑉 with the color assigned to each hyperedge containing 𝑣 if all
such hyperedges are uniformly colored; otherwise, 𝑣 remains uncolored.

For each vertex ℎ in the weighted line tree 𝑇 , we store a field ℎ.cList, which is a dictionary with
two keys: black and white. The value ℎ.cList[black] is the list 𝐵ℎ, containing non-dominated pairs
(𝑏, 𝑤) for the subtree rooted at ℎ with ℎ colored black, and ℎ.cList[white] is the list 𝑊ℎ, containing
non-dominated pairs (𝑏, 𝑤) for the subtree rooted at ℎ with ℎ colored white. The content of this field
for the root of 𝑇 gives the desired non-dominated pairs for the hypergraph.

Figure 1 illustrates an example where a BWC with 6 black and 9 white vertices of a hypergraph
is derived from a corresponding full-coloring of its weighted line tree. The numbers written inside
each vertex ℎ𝑖 of the weighted line tree demonstrate the value 𝜈(ℎ𝑖) = |𝑒𝑖|. The weights of each edge
(ℎ𝑖, ℎ𝑗) demonstrate the value 𝜇(ℎ𝑖, ℎ𝑗) = |𝑒𝑖 ∩ 𝑒𝑗 |.

Figure 1: left: a BWC of a hypergraph, right: a corresponding full-coloring of its weighted line tree

3. Main Results

Theorem 3.1. Algorithm 1 computes the complete list of non-dominated pairs for any hypergraph 𝐻 =
(𝑉,𝐸) whose hyperedge intersection pattern forms a tree structure. The algorithm runs in 𝑂(|𝑉 |3) time.

fullColorLineTree(𝐻,𝑇)
Input: A hypergraph 𝐻 and its weighted line tree 𝑇 (with weight functions 𝜈 and 𝜇 defined in (1))
Output: The list optPairs of non-dominated pairs (𝑏, 𝑤) for 𝐻

𝑅← root(𝑇)
for each leaf ℎ of 𝑇 // Initialization
ℎ.cList[black]← (𝜈(ℎ), 0)
ℎ.cList[white]← (0, 𝜈(ℎ))

𝑅.cList← solveLineTree(𝐻,𝑅) // Compute lists for internal nodes
optPairs← 𝑅.cList[black] ∪𝑅.cList[white]
contract(optPairs) // Remove dominated pairs
return optPairs

Algorithm 1: Compute all non-dominated pairs for a weighted line tree

Once the list of all non-dominated pairs is obtained, the maximal number of white vertices corre-
sponding to any prescribed number 𝑏 of black vertices can be determined by scanning for the pair (𝑏′, 𝑤)
with minimal 𝑏′ ≥ 𝑏. We later discuss how to recover the actual BWC from the computed information.

Assume that 𝑇 is arbitrarily rooted. For each vertex ℎ of 𝑇 , the two lists 𝐵ℎ and 𝑊ℎ are computed
recursively. Algorithm 1 initializes these lists for the leaves and then invokes the recursive procedure
in Algorithm 2 to compute the lists for the internal vertices. Two auxiliary routines, extension
(Algorithm 3) and merge (Algorithm 4), are used to extend the lists when adding a new parent and
to merge lists from different subtrees, respectively. Eventually, the algorithm uses the procedure
contract, which gets a list and deletes all dominated pairs (as well as repeated occurrences of pairs).
This procedure uses the bucket-sort algorithm (cf. [7]).

4. Proofs and Detailed Algorithm Description

In this section, we describe the algorithm in detail and prove its correctness. Throughout, 𝐻 =
(𝑉,𝐸) denotes a hypergraph and 𝑇 = 𝐿(𝐻) = (𝑉𝑇 , 𝐸𝑇) its weighted line tree. There is a natural
correspondence between subtrees of 𝑇 and subhypergraphs of 𝐻 ; that is, for a subtree 𝑇 ′ with vertices
corresponding to the hyperedges 𝑒1, . . . , 𝑒𝑡, the associated subhypergraph is induced by 𝑒1 ∪ · · · ∪ 𝑒𝑡.

4.1. From Full-Coloring to BWC

Although a full-coloring does not necessarily respect any BWC constraints of 𝐻 , it provides the basis
from which a feasible BWC is derived. For each vertex 𝑣 ∈ 𝑉 , if all hyperedges containing 𝑣 receive the
same color, then 𝑣 is colored accordingly; otherwise, 𝑣 is left uncolored. This procedure guarantees that
no hyperedge contains both black and white vertices.

Let 𝑏 and 𝑤 denote the total number of black and white vertices in the resulting BWC. A full-coloring
that produces the pair (𝑏, 𝑤) will be called a (𝑏, 𝑤)-full-coloring of 𝑇 .

We will show later how to find a (𝑏, 𝑤)-full-coloring of 𝑇 from the output of Algorithm 1.

4.2. Recursive Computation on the Weighted Line Tree

Assume that 𝑇 is arbitrarily rooted. For each vertex ℎ of 𝑇 , we maintain two lists, 𝐵ℎ and 𝑊ℎ, as
explained before. These lists are stored in the field ℎ.cList.

Algorithm 1 initializes the process and, after executing Algorithm 2, compiles the final list of non-
dominated pairs. Algorithm 2 recursively computes this list. For each internal vertex 𝑅 with chil-
dren 𝑟1, 𝑟2, . . . , 𝑟𝑑, it first obtains the lists for each child (using a post-order traversal), then calls the
extension procedure (Algorithm 3) to update the lists by adding the parent 𝑅 as the new root of the
corresponding subtree, and finally merges these updated lists using the merge procedure (Algorithm 4).

solveLineTree(𝐻,𝑅)
Input: A hypergraph 𝐻 and a root 𝑅 of its weighted line tree
Output: 𝑅.cList

if 𝑅 is a leaf
return 𝑅.cList

𝑟1, 𝑟2, . . . , 𝑟𝑑 ← all children of 𝑅
for 𝑖← 1 to 𝑑

𝑟𝑖.cList← solveLineTree(𝐻, 𝑟𝑖)
list𝑖 ← extension(𝐻, 𝑟𝑖.cList[black], (𝑟𝑖.cList[white], 𝑅)

// Extend 𝑇ℎ𝑖
by adding 𝑅 as a parent

for 𝑖← 2 to 𝑑
list1 ← merge(𝐻, list1[black], list𝑖[black], list1[white], list𝑖[white])

𝑅.cList← list1
return 𝑅.cList

Algorithm 2: Generate cList for the subtree rooted at 𝑅

extension(𝐻,𝐵𝑟,𝑊𝑟, 𝑅)
Input: A hypergraph 𝐻 ; the lists 𝐵𝑟,𝑊𝑟 for 𝑟 = root of a subtree; and the new parent 𝑅
Output: The updated lists 𝐵𝑅,𝑊𝑅 for the subtree with root 𝑅, whose only child is r

𝐵𝑅,𝑊𝑅 ← empty list
for each (𝑏, 𝑤) ∈ 𝐵𝑟

append(𝐵𝑅, (𝑏+ 𝜈(𝑅)− 𝜇(𝑅, 𝑟), 𝑤))
append(𝑊𝑅, (𝑏− 𝜇(𝑅, 𝑟), 𝑤 + 𝜈(𝑅)− 𝜇(𝑅, 𝑟)))

for each (𝑏, 𝑤) ∈𝑊𝑟

append(𝑊𝑅, (𝑏, 𝑤 + 𝜈(𝑅)− 𝜇(𝑅, 𝑟)))
append(𝐵𝑅, (𝑏+ 𝜈(𝑅)− 𝜇(𝑅, 𝑟), 𝑤 − 𝜇(𝑅, 𝑟)))

contract(𝐵𝑅) // Remove dominated pairs
contract(𝑊𝑅)
return 𝐵𝑅,𝑊𝑅

Algorithm 3: Extend a subtree by adding a new root

The extension procedure (Algorithm 3) takes as input the lists for the root of a subtree and ‘lifts’ the
solution by introducing a new root 𝑅 (which becomes the parent). The merge procedure (Algorithm 4)
then combines the lists of two subtrees with the same new root.

The Contract function (Algorithm 5) removes dominated pairs to maintain only non-dominated
pairs: This procedure uses the bucket-sort algorithm (cf. [7]).

Example 4.1. Tables 1–6 show the performance of the algorithm on the weighted line tree of Figure 1.
Table 1 gives the initial lists for the leaves ℎ1, ℎ4 and ℎ6. For example, ℎ1 corresponds to a hyperedge of size
3, so 𝐵ℎ1 = (3, 0) (all vertices black) and 𝑊ℎ1 = (0, 3) (all vertices white). Table 2 gives the resulting lists
after performing Algorithm 3 on ℎ6.cList and ℎ4.cList to obtain ℎ5.cList and ℎ3.cList, respectively. For ℎ5,
which has child ℎ6, the pair (6, 0) in 𝐵ℎ6 is extended to (7, 0) by adding 𝜈(ℎ5)− 𝜇(ℎ5, ℎ6) = 3− 2 = 1
black vertex, and (0, 6) in ℎ6 becomes (0, 7). The pair (0, 6) in 𝑊ℎ6 is extended to (1, 4) in by adding
𝜈(ℎ5) − 𝜇(ℎ5, ℎ6) = 1 black vertex and subtracting 𝜇(ℎ5, ℎ6 = 2) white vertices, since the vertices in
ℎ5 ∩ ℎ6 should be left uncolored. Tables 3,4 and 5 calculate ℎ2.cList step by step. Table 3 presents the
temporary lists list1, list2, and list3 for ℎ2, calculated by applying Algorithm 3 to the children ℎ1, ℎ5, and
ℎ3, respectively. For example, list1 corresponds to ℎ1 extended with ℎ2 as the new root, resulting in (5, 0)

merge(𝐻,𝐵𝑅1 , 𝐵𝑅2 ,𝑊𝑅1 ,𝑊𝑅2)
Input: 𝐵𝑅𝑖 ,𝑊𝑅𝑖 : lists for the roots 𝑅𝑖, 𝑖 = 1, 2, of the subtrees (𝑅1 and 𝑅2 are copies of root R)
Output: 𝐵𝑅,𝑊𝑅: the merged lists for the unified root 𝑅

𝐵𝑅,𝑊𝑅 ← empty list
for each (𝑏1, 𝑤1) ∈ 𝐵𝑅1

for each (𝑏2, 𝑤2) ∈ 𝐵𝑅2

append(𝐵𝑅, (𝑏1 + 𝑏2 − 𝜈(𝑅), 𝑤1 + 𝑤2))
contract(𝐵𝑅) //delete dominated pairs
for each (𝑏1, 𝑤1) ∈𝑊𝑅1

for each (𝑏2, 𝑤2) ∈𝑊𝑅2

append(𝑊𝑅, (𝑏1 + 𝑏2, 𝑤1 + 𝑤2 − 𝜈(𝑅)))
contract(𝑊𝑅) //delete dominated pairs
return 𝐵𝑅,𝑊𝑅

Algorithm 4: Merge two subtrees with a common root

contract(𝐿)
Input: List 𝐿 of (𝑏, 𝑤) pairs
Output: List 𝐿′ containing only non-dominated pairs from 𝐿

if |𝐿| ≤ 1
return 𝐿

Sort 𝐿 by (𝑏, 𝑤) lexicographically //sort by black count, then by white count
𝐿′ ← ∅
maxWhite← −1
for (𝑏, 𝑤) ∈ 𝐿 in sorted order //process in order to increase black count
if 𝑤 > maxWhite
𝐿′ ← 𝐿′ ∪ {(𝑏, 𝑤)}
maxWhite← 𝑤

return 𝐿′

Algorithm 5: Contract dominated pairs from a list

Table 1
First step: Initializing

𝐵ℎ1
𝑊ℎ1

𝐵ℎ6
𝑊ℎ6

𝐵ℎ4
𝑊ℎ4

(3,0) (0,3) (6,0) (0,6) (3,0) (0,3)

in the black list by adding 𝜈(ℎ2)− 𝜇(ℎ2, ℎ1) = 3− 1 = 2 black vertices to (3, 0), and (2, 2) when ℎ1 is
white, reflecting the intersection ℎ2 ∩ ℎ1. Note that for clarity, we added a row named ‘colored’ to Table 3,
which marks the vertices that are colored after performing Algorithm 3 (in contrast to the uncolored ones).
These data can later be used to find the BWC itself. Table 4 shows the result of applying Algorithm 4 to
combine list1 and list2 for ℎ2 before removing the dominated pairs, producing pairs like (11, 0) by merging
(5, 0) ∈ list1[black] and (9, 0) ∈ list2[black], subtracting 𝜈(ℎ2) = 3 to obtain 5 + 9 − 3 = 11 black
vertices. Table 5 then completes the computation of ℎ2.cList by merging the result from Table 4 with list3,
yielding the final non-dominated pairs such as (10, 5), after eliminating dominated pairs like (10, 4) that
are superseded by pairs with more colored vertices.

Table 2
Second step: Computing ℎ5.cList and ℎ3.cList

𝐵ℎ5
𝑊ℎ5

𝐵ℎ3
𝑊ℎ3

(7,0),(1,4) (0,7),(4,1) (6,0),(3,1) (0,6),(1,3)

Table 3
Third step: Temporary lists for ℎ2

list1
black (5,0) (2,2)
white (0,5) (2,2)

colored ℎ2 ℎ2 − ℎ1

list2
black (9,0),(3,4) (2,6),(6,0)
white (0,9),(4,3) (6,2),(0,6)

colored ℎ2 ℎ2 − ℎ5

list3
black (8,0),(3,3) (2,5),(5,0)
white (0,8),(3,3) (5,2),(0,5)

colored ℎ2 ℎ2 − ℎ3

Table 4
Computing ℎ2.cList by performing Algorithm 4 on the two first temporary lists

Lists before deleting dominated pairs
𝐵ℎ2

(11,0),(5,4),(8,2),(2,6),(4,6),(8,0),(1,8)
𝑊ℎ2 (0,11),(4,5),(6,4),(0,8),(2,8),(6,2),(8,1)

Table 5
Computing ℎ2.cList by performing Algorithm 4 on the two last temporary lists

Lists of ℎ2 after deleting dominated pairs
𝐵ℎ2 (16,0),(13,2),(11,3),(10,5),(9,6),(7,7),(6,8),(4,9)
𝑊ℎ2

(0,16),(2,13),(3,11),(5,10),(6,9),(7,7),(8,6),(9,4)

4.3. Correctness Proofs

We now briefly outline the proofs that establish the correctness of the algorithm.

Lemma 4.1. The lists produced by Algorithm 3 on 𝑟.cList contain all non-dominated pairs for the
subtree 𝑇𝑟 extended by the new root 𝑅.

Proof: Consider a subtree rooted at 𝑟 with lists 𝐵𝑟 and 𝑊𝑟, which, by induction, contain all non-
dominated pairs for 𝑇𝑟 . When extending to a new root 𝑅, we consider two cases for 𝑅’s color.
Case 1: 𝑅 is colored black.

• If 𝑟 is also colored black, for each pair (𝑏, 𝑤) ∈ 𝐵𝑟, the extended pair becomes (𝑏 + 𝜈(𝑅) −
𝜇(𝑅, 𝑟), 𝑤). This is because the vertices in 𝑒𝑅 ∖𝑒𝑟 are newly colored black, adding 𝜈(𝑅)−𝜇(𝑅, 𝑟)
black vertices, while the vertices in 𝑒𝑅 ∩ 𝑒𝑟 remain black.

• If 𝑟 is colored white, for each pair (𝑏, 𝑤) ∈𝑊𝑟 , the extended pair becomes (𝑏+𝜈(𝑅)−𝜇(𝑅, 𝑟), 𝑤−
𝜇(𝑅, 𝑟)). Here, vertices in 𝑒𝑅 ∖ 𝑒𝑟 are colored black, but vertices in 𝑒𝑅 ∩ 𝑒𝑟 must be uncolored
since 𝑟 is white and 𝑅 is black, so we subtract 𝜇(𝑅, 𝑟) from the white count.

Case 2: 𝑅 is colored white.

• If 𝑟 is also colored white, for each pair (𝑏, 𝑤) ∈𝑊𝑟 , the extended pair becomes (𝑏, 𝑤 + 𝜈(𝑅)−
𝜇(𝑅, 𝑟)), as vertices in 𝑒𝑅 ∖ 𝑒𝑟 are newly colored white.

• If 𝑟 is colored black, for each pair (𝑏, 𝑤) ∈ 𝐵𝑟, the extended pair becomes (𝑏 − 𝜇(𝑅, 𝑟), 𝑤 +
𝜈(𝑅)−𝜇(𝑅, 𝑟)). Vertices in 𝑒𝑅∩𝑒𝑟 must be uncolored due to conflicting colors (black in 𝑟, white
in 𝑅), so we subtract 𝜇(𝑅, 𝑟) from the black count and add 𝜈(𝑅)− 𝜇(𝑅, 𝑟) white vertices.

These updates ensure that all possible colorings of the extended subtree are considered, and the
contract procedure removes any dominated pairs, leaving only the non-dominated ones.

Lemma 4.2. If the lists for two subtrees rooted at 𝑅1 and 𝑅2 contain all non-dominated pairs for their
respective subtrees, then Algorithm 4 produces the correct lists for their merge at 𝑅.

Proof: Since 𝑅1 and 𝑅2 are copies of 𝑅, they correspond to the same hyperedge 𝑒𝑅. Therefore, the
algorithm merges lists of the same color:
Case 1: Merging black lists 𝐵𝑅1 and 𝐵𝑅2 . For pairs (𝑏1, 𝑤1) ∈ 𝐵𝑅1 and (𝑏2, 𝑤2) ∈ 𝐵𝑅2 , the

merged pair is (𝑏1 + 𝑏2 − 𝜈(𝑅), 𝑤1 + 𝑤2). The number 𝜈(𝑅) that is subtracted from the counting of
black vertices represents the vertices belonging to the hyperedge 𝑅. Obviously, some of these vertices
should be colored black in the BWC, but some of them should be left uncolored, as they belong to
𝑒𝑅 ∩ ℎ, for some hyperedge ℎ that is colored white in the full-coloring of 𝐿(𝐻). For each vertex in 𝑒𝑅
that should be colored black in the corresponding BWC of the subhypergraphs associated with both
trees rooted at 𝑅1 and 𝑅2, we need to subtract it to prevent double counting. We also need to subtract
all the vertices in 𝑒𝑅 that should be black only in the tree rooted at 𝑅1 and not in the tree rooted at
𝑅2 (or vice versa), as they should be left uncolored in the merged subtree. Note that since each 𝑣 ∈ 𝑉
belongs to at most two hyperedges, the case that 𝑣 is supposed to be left uncolored in both subtrees
rooted at 𝑅1 and 𝑅2 is not possible. Together we subtract 𝜈(𝑅) vertices.
Case 2: Merging white lists 𝑊𝑅1 and 𝑊𝑅2 . Similarly, for pairs (𝑏1, 𝑤1) ∈ 𝑊𝑅1 and (𝑏2, 𝑤2) ∈

𝑊𝑅2 , the merged pair is (𝑏1 + 𝑏2, 𝑤1 +𝑤2 − 𝜈(𝑅)), adjusting for overlapping white vertices in 𝑒𝑅 and
for vertices which are colored white in only one of the subtrees and uncolored in the second.

The algorithm does not merge across different colors (e.g., black and white lists), ensuring consistency
in the color assignment to 𝑅. The contract procedure removes any dominated pairs from the merged
lists.

Lemma 4.3. For each vertex ℎ of 𝑇 , the calculated ℎ.cList contains all non-dominated pairs correspond-
ing to the subhypergraph induced by the subtree 𝑇ℎ.

Proof: The proof is by induction on the height of the subtree 𝑇ℎ. For a leaf ℎ, the initialization yields
the correct lists. Assuming the correctness for all subtrees of height less than 𝜂, by Lemmas 4.1 and 4.2,
Algorithm 3 and Algorithm 4 guarantee that the lists for a subtree of height 𝜂 are correct.

4.4. Recovering the BWC Coloring

In order to find a (𝑏, 𝑤)-full-coloring of 𝑇 for a pair (𝑏, 𝑤), we need to save some extra data during
the running of Algorithms 3 and 4. For each pair computed by Algorithm 3, performed on the subtree
rooted at ℎ, we will record that ℎ is colored black (white, respectively) if this pair was computed in 𝐵ℎ

(𝑊ℎ, respectively). For each pair computed using Algorithm 4, performed on the subtree rooted at ℎ,
we will record a link to the two pairs from which it was computed.

Algorithm 6 recovers the full-coloring itself, using backtracking and traversing the weighted line
tree 𝑇 top-down, starting from the root. Each vertex ℎ will be colored with the color (black or white)
chosen for it when computing the pair (𝑏, 𝑤) in ℎ.cList by Algorithm 3.

The second part of Algorithm 6 finds the BWC for 𝐻 . For each 𝑣 ∈ 𝑉 , it checks the colors of all
hyperedges containing 𝑣: if all are black, it colors 𝑣 black; if all are white, the algorithm colors it white;
otherwise, it leaves 𝑣 uncolored.

4.5. Runtime Analysis

The construction of the weighted line tree takes 𝑂(𝑚2 ·𝑘), where 𝑚 = |𝐸| is the number of hyperedges
and 𝑘 is the maximum size of a hyperedge [12]. Since 𝑚 ≤ 2𝑛 and 𝑘 ≤ 𝑛, this construction takes
𝑂(𝑛3).

The initialization of the leaves in Algorithm 1 takes 𝑂(𝑚) = 𝑂(𝑛).

recoverFullColoring(𝐻,𝑇, (𝑏, 𝑤))
Input: A hypergraph 𝐻 , its weighted line tree 𝑇 , and a target pair (𝑏, 𝑤)
Output: A full BWC coloring of 𝐻

function backtrack(ℎ, (𝑏, 𝑤))
if (𝑏, 𝑤) ∈ 𝐵ℎ

color[ℎ]← black

else if (𝑏, 𝑤) ∈𝑊ℎ

color[ℎ]← white

else
(𝑏1, 𝑤1), (𝑏2, 𝑤2)← source pairs from fusion used to get (𝑏, 𝑤)
for each child 𝑐 of ℎ

backtrack(𝑐, (𝑏𝑖, 𝑤𝑖)) // use the matching pair for each child
end function

𝑅← root(𝑇)
backtrack(𝑅, (𝑏, 𝑤)) // start from root and recover hyperedge colors in 𝑇
for each vertex 𝑣 ∈ 𝑉 (𝐻) // find the BWC for 𝐻
if all hyperedges containing 𝑣 are black
color[𝑣]← black

else if all hyperedges containing 𝑣 are white
color[𝑣]← white

else color[𝑣]← uncolored
return color

Algorithm 6: Recover a full-coloring from stored dynamic programming tables

Algorithm 2 calls Algorithm 3 and Algorithm 4 for each of the 𝑚 vertices of 𝑇 , which is 𝑂(𝑛) since
𝑚 ≤ 2𝑛. In algorithm 3, the input lists 𝐵𝑅,𝑊𝑅 each have a maximum size 𝑂(𝑛), since 𝑏, 𝑤 ≤ 𝑛,
and the dominated pairs are removed. Each iteration processes a pair in 𝑂(1) time. The procedure
contract removes dominated pairs using a bucket sort in 𝑂(𝑁 + 𝑛) time, where 𝑁 is the input list
size; here, 𝑁 = 𝑂(𝑛), so this is 𝑂(𝑛), and the total per call is 𝑂(𝑛).

Algorithm 4 iterates over pairs in 𝐵𝑅1 , 𝐵𝑅2 (or 𝑊𝑅1 ,𝑊𝑅2), which is 𝑂(𝑛2), since each list has size
𝑂(𝑛). The contract procedure here takes 𝑂(𝑁 + 𝑛) time with 𝑁 = 𝑂(𝑛2), so 𝑂(𝑛2), and the total
per call is 𝑂(𝑛2).

Algorithm 2 makes 𝑂(𝑛) calls to Algorithm 3, totaling 𝑂(𝑛2), and 𝑂(𝑛) calls to Algorithm 4 across
all merges (since 𝑇 has 𝑚− 1 = 𝑂(𝑛) edges), totaling 𝑂(𝑛3). Combining construction (𝑂(𝑛3)) and
initialization (𝑂(𝑛)), the overall runtime is 𝑂(𝑛3).

Note that this runtime is for finding the list of all non-dominated pairs.
In order to find a full-coloring (and after that the required BWC), we need to save data during

computations as explained in Section 4.4. Algorithm 6, which performs that, works on each vertex of 𝑇
in a constant time. Recall that each vertex of the hypergraph is contained in at most two hyperedges,
therefore, the second part of the algorithm is also linear. We find that the runtime of the algorithm is
still 𝑂(𝑛3).

5. Future Work

Our algorithm can be applied in scenarios like network partitioning, where hyperedges represent groups
of nodes that must be uniformly colored (e.g., assigning servers to compatible tasks). Future work could
implement and test the algorithm on real-world datasets, such as chemical storage hypergraphs from
compatibility databases or social network group structures, to evaluate its practical performance and

scalability.
Future research may extend our results to more general hypergraph classes such as Berge-acyclic

hypergraphs and other forms of hypertrees. Note that the weighted line graph of a Berge-acyclic
hypergraph is not necessarily a tree, so different techniques will be required. In addition, further work
may focus on improving the runtime of the algorithm (e.g., similarly to what was suggested in [2]) and
exploring practical heuristics for larger instances.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT, Gemini, and overleaf in order to
grammar and spelling check, paraphrase and reword. After using these tools, the author(s) reviewed
and edited the content as needed and assume(s) full responsibility for the content of the publication.

References

[1] D. Berend, E. Korach, and S. Zucker, Anticoloring of a family of grid graphs, Discrete Optimization,
5(3):647–662, 2008.

[2] D. Berend and S. Zucker, The Black-and-White coloring problem on trees, Journal of Graph
Algorithms and Applications, 13(2):133–152, 2009.

[3] D. Berend, E. Korach, and S. Zucker, A Reduction of the Anticoloring Problem to Connected
Graphs, Electronic Notes in Discrete Mathematics, 28:445–451, 2006.

[4] D. Berend, E. Korach and S. Zucker, Tabu Search for the BWC Problem, Journal of Global Opti-
mization: 54/4:649–667, DOI: 10.1007/s10898-011-9783-1, 2012.

[5] D. Berend and S. Mamana, A Greedy Probabilistic Heuristic for Graph Black-and-White Anticolor-
ing, Journal of Graph Algorithms and Applications, 18(1):1–14, 2024.

[6] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland, 1989.
[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press and McGraw-

Hill, 1990.
[8] P. Damaschke, On an Ordering Problem in Weighted Hypergraphs, Combinatorial Algorithms:

32nd International Workshop, IWOCA 2021, Proceedings Pages 252 - 264.
[9] J. Erickson, Lower bounds for linear satisfiability problems, Chicago Journal of Theoretical Computer

Science, 1999(8).
[10] P. Hansen, A. Hertz, and N. Quinodoz, Splitting trees, Discrete Mathematics, 165(6):403–419, 1997.
[11] R. J. Lipton and R. E. Tarjan, A Separator Theorem for Planar Graphs, SIAM Journal on Applied

Mathematics, 36(2):177–189, 1979.
[12] X. T. Liu, et al, Parallel Algorithms and Heuristics for Efficient Computation of High-Order Line

Graphs of Hypergraphs, arXiv:2010.11448, 2020.
[13] R. E. Tarjan, Efficiency of a Good But Not Linear Set Union Algorithm, Journal of the ACM,

22:215–225, 1975.
[14] O. Yahalom, Anticoloring Problems on Graphs, M.Sc. Thesis, Ben-Gurion University, 2001.
[15] S. Zucker, An Approximation Algorithm for the BWC Problem, in Proceedings of the 17th Interna-

tional Conference on Mathematical Methods in Science and Engineering (CMMSE’17), pp. 2063–2066,
2017.

[16] S. Zucker, The Black-and-White Coloring Problem on Chordal Graphs, Journal of Graph Algorithms
and Applications, 16(2):261–281, 2012.

	1 Introduction
	2 Basic Notions
	3 Main Results
	4 Proofs and Detailed Algorithm Description
	4.1 From Full-Coloring to BWC
	4.2 Recursive Computation on the Weighted Line Tree
	4.3 Correctness Proofs
	4.4 Recovering the BWC Coloring
	4.5 Runtime Analysis

	5 Future Work

