Realizability Models and Complexity Classes
Fugenio Moggi’

!DIBRIS, Genova Univ,, v. Dodecaneso 35, 16146 Genova, Italy

Abstract

Realizability models allow to define categories with very rich mathematical structure starting from untyped
computational models, typically partial Combinatory Algebras (pCAs).

We propose a generalization of realizability models, in which pCAs are replaced by monoids of maps (on a
set of data), which allow to consider also restricted computational models, where complexity constrains can be
taken into account (e.g., the monoid of maps on bit strings computable in linear time). We give some examples of
monoids (on bit strings) based on complexity classes, and state how the mathematical structure of these categories
relates to properties of the corresponding monoid.

Keywords
Realizability models, Category theory, Complexity theory

1. Introduction

This communication is related to a journal submission, which proposes categories where one can
interpret calculi for collection types (aka bulk types), like those in [1]. These calculi provide a framework
for database query languages that go beyond traditional relational database, and have a lot in common
with metalanguages for computational types [2], but there are also important differences

« Equality of collections is decidable, and can be added as an operation with a boolean result, while
equality of programs is undecidable;

« Functional types and recursive definitions are available in most programming languages, but
they are unacceptable in database languages, since they are incompatible with decidable equality.

Calculi for collection types are interpreted in categories with finite products, and collection types are
interpreted by strong monads. In [3] Manes identifies certain finitary monads on the category S of
sets, called collection monads, as an appropriate semantics for collection types. These monads have a
well-behaved notion of membership, and collections have only finitely many members.

In the journal submission we propose to replace the category S of sets with (small) lextensive sub-
categories C of S, whose arrows are maps computable by low complexity algorithms, e.g., working in
linear or polynomial time. In this communication we report only some results, that could be of interest
also for researchers focused on Complexity Theory, namely:

« The construction of categories associated to a monoid C' of (total) maps on a set D (of data).

« Very weak conditions on C' implying that the associated categories are lextensive and have a
lextensive faithful global section functor into S.

CEUR-WS.org/Vol-4039/paper07.pdf

« More stringent conditions on C implying that the associated categories have a NNO (Natural
Number Object) N and a list monad L, i.e., a strong monad mapping an object X to the free
monoid over X.

Realizability Models and Complexity Theory. The way realizability models use Category Theory
in relation to Computability Theory works as follows: 1) one starts from a computational model,

ICTCS 2025: Italian Conference on Theoretical Computer Science, September 10-12, 2025, Pescara, Italy
& moggi@unige.it (E. Moggi)

PN

&’ https://person.dibris.unige.it/moggi-eugenio/ (E. Moggi)
® 0000-0001-8018-6543 (E. Moggi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings


mailto:moggi@unige.it
https://person.dibris.unige.it/moggi-eugenio/
https://orcid.org/0000-0001-8018-6543
https://creativecommons.org/licenses/by/4.0/deed.en

typically a pCA (D, -), where the elements of D can be interpreted as data or programs and the binary
application e - d (when defined) returns the output produced by executing program e with input dj
2) then one defines a category C using the pCA; 3) and finally one studies how category-theoretic
properties of C relate to properties of the pCA. The seminal example of this approach is in [4], where
Hyland defines the Effective topos using Kleene’s first applicative structure, and then studies this topos
and several of its sub-categories. In Complexity Theory the main focus is on complexity classes, i.e., sets
C of maps (or predicates) on a set D (e.g., the set of strings A* on an alphabet), while computational
models play an ancillary role. Therefore, we consider a variant of realizability models, where the starting
point is a sub-monoid C' of D — D (i.e., C contains the identity on D and is closed under composition).

2. Lextensive Categories

Lextensive categories have finite limits (in particular products) and well-behaved finite sums, where the
definition of well-behaved is formalized by the notion of extensive category (see [5]). A lextensive functor
is a functor between lextensive categories preserving finite limits and finite sums, and a lextensive
sub-category is a sub-category whose inclusion functor is lextensive. We use also the terminology lex
category for a category with finite limits, and similarly for lex functor and lex sub-category.

From any (locally small) category C with a terminal object 1 (i.e., the product of zero objects) one can
define the global section functor I a C(1,—):C —— S to the category of sets. Such functor preserves
all small limits existing in C. We are mainly interested in lextensive categories such that I" is faithful
and lextensive. The following result gives sufficient conditions on C to have such a property.

Theorem 2.1. IfC is lextensive, non-trivial (i.e., 0 2 1) and has enough points (i.e., I is faithful), then
I':C ——> S is lextensive, moreover the action I':C(X,Y) ——= S(I'X,T'Y) of T on each hom-set is
bijective when X is a finite sum of 1s.

The theorem above implies that a C satisfying the assumption is (equivalent to) a lextensive sub-category
of S, which contains the category Sy of finite sets as a full lextensive sub-category.

The rational for considering lextensive categories is that in them one can define

« an object of booleans, namely 2 21 +1
 decidable predicates1 on an object X, i.e., arrows X —> 2
« when an object X has a decidable equality, i.e., a (necessarily unique) arrow eq: X x X —> 2
classifying the diagonal sub-object X ——= X x X.
In a lextensive category C some objects may not have a decidable equality, The following constructions
define lextensive full sub-categories of C, where all objects have a decidable equality.

Theorem 2.2. IfC is lextensive, let Cy be the full sub-category of the objects X € C with a decidable
equality, then C; is a lextensive sub-category of C.

Theorem 2.3. IfC is lextensive and X & C has a decidable equality and the objects 1, X + X and X x X
are retracts of X, let P[ X be the full sub-category of C consisting of the decidable sub-objects” of X, then
P[X]q is a lextensive sub-category of Cq.

In a lextensive category, where all objects have a decidable equality, one can interpret a typed language,
where the BNF for typesis 7::= b | 0| 1 | 71 + 72 | 71 * 72 | {z: 7|¢}, with b base type and ¢
boolean formula (or equivalently a term of type 1 + 1). A possible BNF for boolean formulas is
¢::=T |e1 = ez | ¢1 A P2 | —¢, with e and ey terms of the same type. Note that the last clause
{z: 7|¢} in the BNF for types means that the language has dependent types.

"This notion of decidability is not related to that in Computability Theory.
®Alternatively decidable predicates on X.



3. Category of Assemblies & co.

We introduce the category of assemblies A[C] for a sub-monoid C of the monoid D — D of total
maps on a set D, and some of its full sub-categories. The aim is to provide realizability-like models for
low-complexity Domain Specific Languages (DSL), where D is the set of data manipulated by programs
in the DSL, and C' are the maps computed by such programs. The idea (following [6]) is to replace
application with composition and to abstract from programs in favor of functions, in order to achieve
greater flexibility over realizability models based on pCA, like the Effective topos [4]. The definition of
A[C], given below, is an instance of a construction in [7] based on computability structures.

Definition 3.1 (Assemblies). The category A[C] of C-assemblies is defined as follows
« an object X is a pair (| X|,Fx) with | X| set and FxC D x | X| surjective, ie., Yz € | X|.3d €
D.dFx x;adst dFx xis called an encoding of x.
« anarrow f: X —> Yisamap f:|X| = |Y|st.dbx 2 = f'(d) Fy f(z) for some f' € C
called a realizer of f (notation f’ I f).
The faithful forgetful functor U from A[C] to S maps X to | X|.

Remark 3.2. If C is a sub-monoid of D — D, then one can define a computability structure C with
one datatype D and the set of relations C(D, D) consisting of the graphs of maps in C. In this way
A[C] coincides with the category of assemblies for the computability structure C [7]. If (D, -) is a (total)
Combinatory Algebra (CA), let C' be the set of computed maps on D (i.e., the f s.t. f(d) = e - d for
some e € D), then C is a sub-monoid of D — D, and the category of C'-assemblies coincides with
the category of assemblies for the CA (D, -). More generally, if (D, -) is an applicative structure with
identity and composition combinators, then the set of computed maps is a sub-monoid of D — D.

We now give some examples of C' (and D) that do not arise from a CA.

Example 3.3. Examples of monoids on the set N of natural numbers are:

1. the set TR of total recursive maps
2. the set PR of primitive recursive maps
3. the set E,, of maps in the n-th level of Grzegorczyk hierarchy.

The following inclusions hold: E,, C E,11 C |J,, E» = PR C TR. E3 coincides with the set of Kalmar
elementary maps, that are defined without using bounded recursion.

Before giving examples of monoids on the set B* of bit-strings, where B = {0, 1}, we recall some
notions and results from Computational Complexity (see [8])°. We consider three types of complexity
classes: output (size), time and space.

Definition 3.4. If f: B* — B* and g:N — N (monotone and > 1), then

1. feOUT(g) <2 the map n — MmaxX|y, <y, | f(u)] is in O(g)
2. feTIME(g) <2 there is a TM computing f and working in time O(g)
3. fe SPACE(yg) <& there is a TM computing f and working in space O(g)*.

*We assume that a TM M computing a partial map on B* has one read-only input tape (where the input is written before the
computation starts), one write-only output tape (where the output is written before the end of the computation), several
working tapes (on which M may use symbols from a larger alphabet A O B).

*For space complexity only the cells on working tapes used in the computation count, the cells on the read-only input tape
and the write-only output tape are ignored.



LO=0UT(n) > LS=SPACE(n)NLO > LT =TIME(n)
n n n

PO=[JoUT(*) > PS=|]SPACE®")NPO 2 PT=|JTIME(@")
k>0 k>0 k>0

Ul

(S = SPACE(logn)

Figure 1: Sub-monoids of B* — B* and their inclusion relations.

The output classes contain also non-computable maps, but they are useful in combination with the
classes defined in terms of Turing Machines. For instance, the class T M E(n") is not closed under
composition when k > 1, while TTM E(n*) N OUT(n) is a sub-monoid of B* — B*.

We recall well-known inclusions between different types of complexity classes (see [8, Thm 9.4]):

TIME(g) € SPACE(g) NOUT(g) and SPACE(g) C | JTIME(n /™)
c>0

Lemma 3.5. If all maps g;,t;, s;: N — N are monotone, then the following hold:
1. If f; € OUT(g;) fori = 1,2, then3c > 0.fy 0 fi € OUT (g2(c * g1(n))).
2. If fi e TIME(t;) NOUT\(g;) fori = 1,2, then
de>0.fy0 f1 € TIME(tl(n) + g1(n) + tQ(C * gl(n)))

3. If fi € SPACE(s;) NOUT\(g;) fori = 1,2, then
dc > 0.fa0 f1 € SPACE(s1(n) +log gi(n) + sa(c* gi1(n))).

Example 3.6. By Lemma 3.5, the subsets in Figure 1 are sub-monoids of B* — B*.

We consider two remarkable full sub-categories of A[C]: M[C] of modest sets and P[C] of predicates.
Definition 3.7 (Special assemblies). Given an assembly X € A[C] we say that

1. X is a modest set (X € M[C]) 25 by is the graph of a partial surjective map from D to | X|.
2. X is a predicate (X € P[C)) EN | X| € D and I-x is the identity relation A| x| on |X].

M[C] is replete (i.e., an assembly isomorphic in A[C] to a modest set is a modest set) and essentially
small, because it is equivalent to the small category of PERs (Partial Equivalence Relations) on D. P[C]
is small, but not replete. However, one can modify the definition of P[C] to make it replete.

The following properties of C' imply that A[C], M[C] and P[C] satisfy the assumptions of Thm 2.1.

Definition 3.8. Given a sub-monoid C' C D — D we consider the properties:
K D has at least two elements (say by and b1) and A\z: D.d € C for every d € D
P there is a map p: D? — D and two maps pg,p; € C s.t.

« pi(p(xo,x1)) = z; for every zg,z1 € D

« \z: D.p(fox, fix) € C for every fo, f1 € C
E thereisamapt € C s.t. t(p(p(zo, x1), p(x2,23))) = (22 if g = 21 else x3).

Property (P), i.e., encoding of pairs, is needed to express (E), i.e., equality testing; (K) and (P) implies
that D is infinite. All monoids in Examples 3.3 and 3.6 satisfy properties (K,P,E).



Theorem 3.9. If a sub-monoid C C D — D has properties (K,P,E), then:

1. A[C], M[C] and P[C]| are lextensive categories, and I is lextensive.
2. In P[C] every object has a decidable equality.

3. The forgetful functor U: A[C| ——= S is isomorphic to I".

4. A map e is epi in A|[C] (M[C] or P[C]) <= Te isepiinS.

When D = (), the following relations among categories hold, where F' - G means “F left-adjoint to G”

<— —U—>
P[C]——= M[C] L A[C] n S (1)

Moreover, under the assumptions of Theorem 3.9, one has the following lextensive functors, where S,
is the category of countable sets. Moreover, P[C] and M[C] are equivalnet to S,, when C' = D — D
with D countable.

Sy © Sw © S

I

U (2)

P[C] ———= M[C] —— A[C]

If C has finite products, then one can ask whether C has a NNO 1 $ N —2> N or a list monad L,
given by the adjuntion between C and the category of monoids in C (in this case L1 is a NNO).

Theorem 3.10. If a sub-monoid C C D — D has properties (K,P,E) and is closed under primitive
recursion, then A[C|, M[C] and P[C] have a parametric NNO and a strong list monad L.

Among the monoids in Example 3.3 and 3.6 only TR and PR are closed under primitive recursion, in all
other cases the category A[C] (M[C] and P[C]) fails to have a NNO (and consequently a list monad).

A lex sub-category C of S may have a NNO-structure 1 SN SN , which does not have the
universal property of a NNO in C, but it does in S. In this case we say that the structure behaves
like a NNO. Similarly, we say that a (strong) monad LL on C behaves like a list monad, when it is the
restriction of a list monad on S. Since structures satisfying a universal property are unique up to
(unique) isomorphism, NNO-structures in C that behave like a NNO are isomorphic in S, but may fail
to be isomorphic in C. However, some of these unique isomorphisms in S are morphisms in C, thus
these structures form a preorder. For instance, in P[C], where C' is any of the monoids in Figure 1, the
unary and binary encodings, N and Ng, of the natural numbers behave like a NNO. However, only the
isomorphism from N; to Ny in S is a morphism also in P[C].

It is relatively easy to prove (basically an encoding exercise), that for all C' in Examples 3.3 and 3.6 the
category A[C] (M[C] and P[C]) have structures that behave like a NNO and like a list monad, with the
caveat that for the monoid LO and its sub-monoid LS and LT, the obvious monad Il behaving like a list
monad is not strong, i.e., it does not have a tensorial strength X; x L(X2) —> L(X; x X2).

Declaration on Generative Al

The author have not employed any Generative Al tools.



References

[1]

(2]
(3]

P. Buneman, S. A. Naqvi, V. Tannen, L. Wong, Principles of Programming with Complex Objects and
Collection Types, Theoretical Computer Science 149 (1995) 3-48. d0i:10.1016/0304-3975(95)
00024-0Q.

E. Moggi, Notions of Computation and Monads, Information and Computation/information and
Control 93 (1991) 55-92. doi:10.1016/0890-5401(91)90052-4.

E. G. Manes, Implementing Collection Classes with Monads, Mathematical Structures in Computer
Science 8 (1998) 231-276. d0i:10.1017/50960129598002515.

[4] J. M. E. Hyland, The effective topos, in: Studies in Logic and the Foundations of Mathematics,

(5]
(6]

volume 110, Elsevier, 1982, pp. 165-216.

A. Carboni, S. Lack, R. Walters, Introduction to extensive and distributive categories, Journal of
Pure and Applied Algebra 84 (1993).

D. S. Scott, Relating theories of the lambda calculus, To HB Curry: Essays on combinatory logic,
lambda calculus and formalism (1980) 403-450.

[7] J. Longley, Computability structures, simulations and realizability, Mathematical Structures in

(8]

Computer Science 24 (2014) e240201.
C. H. Papadimitriou, Computational Complexity, Addison Wesley, 1994.


http://dx.doi.org/10.1016/0304-3975(95)00024-Q
http://dx.doi.org/10.1016/0304-3975(95)00024-Q
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1017/S0960129598002515

	1 Introduction
	2 Lextensive Categories
	3 Category of Assemblies & co.

