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Abstract
We report on recent work [16] on the reachability analysis of nonlinear ordinary differential equations (odes).
Relying on Carleman linearization and Krylov projection, we describe a method that, given a nonlinear ode
system, generates a small linear approximation of the original dynamics. The construction is independent of
the initial condition. Used in conjunction with zonotopes, this yields CKR, an accurate reachability analysis
algorithm.
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1. Introduction

The analysis of systems of nonlinear ordinary differential equations (odes) poses formidable challenges
to theoreticians and practitioners. Among the great variety of existing formal methods, many focus on
computing detailed, effective descriptions of the set of reachable states over a given time horizon, see
e.g. [37, 24, 22, 23, 2, 3] and references therein. These descriptions, variously called reachsets, flowpipes
etc., are typically obtained in a piecewise fashion; that is, by sewing together local approximations over
different regions of the state space and/or time. In particular, given a nonlinear system of odes in the
state variables 𝑥 = (𝑥1, ..., 𝑥𝑛)

𝑇

𝑥̇ = 𝑓(𝑥1, ..., 𝑥𝑛), (1)

approximation can take place either in space, like when linearizing the system’s equations around a
point 𝑥 = 𝑥0; or in time, like when Taylor expanding the ode’s solution around a time 𝑡 = 𝑡0. With
traditional methods, the resulting description will typically exhibit only a limited, local accuracy.

We describe recent work [16] studying approximations of nonlinear systems that can be accurate also
non-locally, in the following sense: differently from classical linearization, our approximate model’s
equations do not depend on a specific expansion point 𝑥0; differently from 𝑡-Taylor expansions, the
temporal interval in which our approximation is good is not directly linked to the convergence of the
solution’s Taylor series around 𝑡0, and is wider in concrete cases. In our method, a crucial step in
achieving these goals is the computation of a ‘small’, hence computationally tractable, linear ode system
that approximates (1) (Section 2). Under suitable stability assumptions, this approximation admits useful
and concrete error bounds. This is leveraged in a reachability analysis algorithm that works in the
general, not necessarily stable case: ckr (Carleman-Krylov Reachability, Section 3). The basic idea
of ckr is to perform propagation of an initial convex set, relying on the reduced, linearized system
rather than on (1). Similarly to other proposals [24, 32, 38], compensation of errors resulting from
nonlinearities is reduced to an optimization problem. We show that this scheme is particularly effective
when the reachsets are represented as zonotopes [27]. Experiments conducted with a proof-of-concept
implementation have shown promising results (Section 4).

Related and Further Work There exists a vast literature on the linearization of nonlinear systems. In
particular, techniques based on Carleman embedding [6, 29] have recently received a renewed attention.
Most related to our work and motivations, Jungers and Tabuada [28] have recently proposed a technique
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for global approximation of nonlinear odes by linear odes, based on polyflows. These are systems that
are exactly linearizable via a change of variables. The technique in [28] is based on building polyflows
that approximate the original system, using as a basis the Lie derivatives up to some order 𝑁 and as
𝑁 → +∞ the approximation of [28] becomes exact. Note that this is an asymptotic result that does
not easily yield concrete bounds for a fixed 𝑁 . Systems that are exactly linearizable via polynomial
changes of variables are the subject of [35, 36, 8]; see also [9, 7, 11].

In [8] we have considered Carleman embedding and Krylov-based approximations, essentially from a
local point of view. Here, we provide novel analyses of both local and global errors, and leverage them
in ckr, a new reachability algorithm. General error bounds for the truncated Carleman linearization
have been recently considered in [4, 25]. The time interval of validity of these bounds is quite small,
and they appear to be in practice more conservative, contrary to ours. In [26], efficient reachability for
weakly nonlinear, dissipative systems relying on Carleman linearization is presented. In the conference
version [13] an earlier, less stable version of CKR, based on polytopes, is considered.

In the field of reachability for continuous and hybrid systems, state-of-the-art tools like Flow* [23]
and cora [2] employ a mix of approximations techniques [30, 22, 23, 2, 1, 3]. In particular, Flow* [22, 23]
is based on Taylor models, while cora mainly relies on linearization of the ode equations [1, 3].

The investigation reported here is part of a broader research agenda, aimed at integrating formal
methods for dynamical and safety-related systems [8, 7, 9, 10, 11] with aspects concerning, in perspective,
quantitative security [19, 20, 18], distributed execution with notions of failure and recovery [12],
probabilistic programming, testing and verification [17, 31, 14, 15].

2. Carleman Linearization and Reduction via Krylov Projection

We introduce a linearization method for system (1) that is strongly related to Carleman embedding [29]
and then discuss an approach to reduce the dimension of the linearized system. For 𝑥 = (𝑥1, ..., 𝑥𝑛)

𝑇 a
vector of state variables, we consider a system of odes

𝑥̇ = 𝑓(𝑥) (2)

where 𝑓 = (𝑓1, ..., 𝑓𝑛)
𝑇 is a vector field of locally Lipschitz analytic functions defined on some open

subset Ω ⊆ R𝑛. For 𝑥0 ∈ Ω, we let 𝑥(𝑡;𝑥0) be the unique solution of the ode system with the initial
condition 𝑥(0) = 𝑥0: the unique solution exists and is real analytic (Picard-Lindelöf theorem).

For a real analytic function 𝑔 defined on some open subset of R𝑛 that includes the trajectories 𝑥(𝑡;𝑥0)
for 𝑥0 ∈ Ω, we will be interested in studying the observable of the system (2) via 𝑔, that is the function
𝑔 ∘𝑥(𝑡;𝑥0) = 𝑔(𝑥(𝑡;𝑥0)). Recall that ℒ𝑓 (𝑔) := ⟨∇𝑔, 𝑓⟩ =

∑︀𝑛
𝑗=1

𝜕𝑔
𝜕𝑥𝑗

·𝑓𝑗 is the Lie derivative of 𝑔 (w.r.t.

𝑓 ), and ℒ(𝑘)
𝑓 (𝑔) is the 𝑘-th Lie derivative, defined inductively by ℒ(𝑘+1)

𝑓 (𝑔) := ℒ𝑓 (ℒ
(𝑘)
𝑓 (𝑔)). We shall

omit the subscript 𝑓 whenever it is understood from the context.
Let us fix a set𝒜 = {𝛼1, 𝛼2, ...} of functions𝛼𝑖 : R𝑛 → R. For instance𝒜might be all monomial func-

tions. We assume that there are unique 𝑣 = (𝜆1, ..., 𝜆𝑀 )𝑇 ∈ R𝑀 and basis vector 𝛼 := (𝛼1, ..., 𝛼𝑀 )𝑇

such that
𝑔 =

𝑀∑︁
𝑖=1

𝜆𝑖𝛼𝑖 = 𝑣𝑇𝛼 (3)

where 𝑔 is any observable function. Otherwise, all we require from the functions in 𝒜 is that they are
analytic1, and that the Lie derivative of each 𝛼𝑖 can in turn be expressed as a unique linear combination
of elements from 𝒜: ℒ(𝛼𝑖) =

∑︀
𝑗≥1 𝑎𝑖𝑗𝛼𝑗 . We let 𝐴 denote the 𝑀 ×𝑀 matrix of the coefficients 𝑎𝑖𝑗

for 1 ≤ 𝑖, 𝑗 ≤ 𝑀 , and 𝐵 be the 𝑀 × 𝑘 matrix of possibly nonzero elements 𝑏𝑖,𝑗 = 𝑎𝑖,𝑀+𝑗 ; that is, 𝑘
is chosen large enough to ensure that, for 1 ≤ 𝑖 ≤ 𝑀 , we have 𝑎𝑖𝑗 = 0 for each 𝑗 > 𝑀 + 𝑘. We let

𝜓
△
= (𝛼𝑀+1, ..., 𝛼𝑀+𝑘)

𝑇 . The Carleman linearization (or embedding) of (2) is given by the following
linear system in the variables 𝑧 = (𝑧1, ..., 𝑧𝑀 )𝑇 and initial condition

𝑧̇ = 𝐴𝑧 +𝐵𝜓(𝑥(𝑡;𝑥0)) (4)

1This can be weakened to analyticity in some open set containing all the trajectories 𝑥(𝑡;𝑥0) for 𝑥0 ∈ Ω.



𝑧(0) = 𝛼(𝑥0) =: 𝑧0 . (5)
The following result is an almost immediate consequence of the existence and uniqueness of the solution
of odes (Picard-Lindelöf). For a detailed proof, see [8, Th.3].

Theorem 1 (Carleman linearization). Let 𝑥0 ∈ Ω. Then 𝛼(𝑥(𝑡;𝑥0)) is the unique solution of the system
(4) with 𝑧(0) as in (5).

Note that we cannot explicitly build the system (4), as the function 𝜓(𝑥(𝑡;𝑥0)) is in general not available.
This leads us to consider an approximation where we neglect the “remainder” 𝜓(𝑥(𝑡;𝑥0)), the truncated
Carleman linearization of dimension 𝑀

𝑧̇ = 𝐴𝑧 𝑧(0) = 𝑧0(= 𝛼(𝑥0)) . (6)
Now, we discuss a method to reduce the dimension of (6), while keeping certain, still local, accuracy

guarantees. Fix 𝑔 = ⟨𝑣, 𝛼⟩ (𝑣 ∈ R𝑀 ), an observable of interest, as in (3). We consider the𝑚-dimensional
Krylov space2 generated by 𝑣 and 𝐴𝑇 , that is the subspace of R𝑀

𝒦𝑚 := span{𝑣,𝐴𝑇 𝑣, (𝐴𝑇 )2𝑣, ..., (𝐴𝑇 )𝑚−1𝑣} .
Let 𝑉 = [𝑣1| · · · |𝑣𝑚] be an orthonormal basis of 𝒦𝑚, represented as a 𝑀 ×𝑚 matrix. Consider the
projection of 𝐴𝑇 onto 𝒦𝑚 and represent it w.r.t. the basis 𝑉 , that is the 𝑚×𝑚 matrix

𝐻𝑚 := 𝑉 𝑇𝐴𝑇𝑉 .
Given a vector of 𝑚 distinct state variables 𝑦 = (𝑦1, ..., 𝑦𝑚)𝑇 , we let the reduced linear system derived
from (4) and the corresponding initial condition, derived from (5), be defined as:

𝑦̇ = 𝐻𝑇
𝑚𝑦 (7)

𝑦(0) = 𝑉 𝑇 𝑧0 =: 𝑦0 .
Note that the reduced equations (7) do not depend on 𝑥0 ∈ Ω. Informally speaking, the solution 𝑦(𝑡; 𝑦0)
of the reduced system describes the evolution of the vector 𝛼(𝑥(𝑡;𝑥0)), projected onto the subspace
𝒦𝑚, in the coordinates of the basis 𝑉 . We note that there exists a well-known algorithm for the efficient,
“on the fly” construction of the matrices 𝑉,𝐻𝑚, the Arnoldi iteration [34]. Recalling that 𝑔 = ⟨𝑣, 𝛼⟩ it
is natural to consider the following approximation of 𝑔(𝑥(𝑡;𝑥0)).

Definition 1 (reduced observable dynamics). For each 𝑥0 ∈ Ω and 𝑦0 = 𝑉 𝑇𝑥0, we define the function:

𝑔̂︀(𝑡;𝑥0) := 𝑣𝑇𝑉 𝑦(𝑡; 𝑦0) . (8)

In fact, we will see that 𝑣1 = 𝑣/||𝑣||2, while 𝑣 is orthogonal to 𝑣𝑗 for 𝑗 > 1. Hence (8) can be simplified
to 𝑔̂︀(𝑡;𝑥0) = ||𝑣||2 𝑦1(𝑡; 𝑦0) . (9)

In order to study the quality of this approximation, we introduce the error function relative to 𝑔

𝜖𝑔(𝑡;𝑥0) := 𝑔(𝑥(𝑡;𝑥0))− 𝑔̂︀(𝑡;𝑥0) .
The following result confirms that this error is small near 𝑡 = 0. Indeed, the Taylor expansions of
𝑔̂︀(𝑡;𝑥0) and 𝑔(𝑥(𝑡;𝑥0)) up to order 𝑚− 1 coincide:

Theorem 2. For each 𝑥0 ∈ Ω, the function 𝜖𝑔(𝑡;𝑥0) is 𝑂(𝑡𝑚) around 𝑡 = 0.

Explicit local bounds of the error function can be obtained from the Taylor theorem with remainder
in Lagrange form, assuming we can construct validated enclosures 𝑆 and 𝐸 of 𝑥(𝜏 ; 𝜉) and d𝑚

d𝑡𝑚 𝑔̂︀(𝜏 ; 𝜉),
respectively, for (𝜏, 𝜉) ranging in a small set — which is possible by standard techniques, see e.g. [33]
and references therein. Under suitable, stability conditions, also a global bound of the error function 𝜖𝑔
can be given. Let 𝑟𝑚 denote the projection of 𝐴𝑇 𝑣𝑚 onto 𝒦⊥

𝑚, the orthogonal complement of 𝒦𝑚, and
define the remainder function as ℎ(𝑥) := 𝑣𝑇𝑚𝐵𝜓(𝑥) + 𝑟𝑇𝑚𝛼(𝑥). Then, for any 𝑡 > 0 such that 𝑥(𝜏 ;𝑥0)
is defined for 𝜏 ∈ [0, 𝑡] and assuming additionally 𝐻𝑚 is stable, we can prove

|𝜖𝑔(𝑡;𝑥0)| ≤ ||𝑣||2𝐷
∫︁ 𝑡

0
|ℎ(𝑥(𝜏 ;𝑥0))|d𝜏 (10)

where 𝐷 > 0 is a constant independent of 𝑡. Qualitatively speaking, (10) says that, for a stable 𝐻𝑚, the
behaviour of the global error is determined by |ℎ(𝑥(𝜏 ;𝑥0))|: if this function decays fast enough to be
integrable over [0,+∞), then 𝜖𝑔(𝑡;𝑥0) will be globally bounded.
2For an introduction to Krylov spaces, see e.g. [34].
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Figure 1: Propagation and inflation of a zonotope. The dashed arrows represent the function 𝜉 ↦→ 𝑥̂︀(Δ𝑘; 𝜉).

3. Application to Reachability Analysis

We will apply the outlined linearization scheme to compute an approximation 𝑥̂︀(𝑡;𝑥0) of the flow
𝑥(𝑡;𝑥0), and then use it to compute an overapproximation of the reachable set of the nonlinear system
(1) at fixed times: 𝑡1, 𝑡2, .... This goal will be achieved by applying the scheme of Section 2 to each
of the observable functions 𝑔 = 𝑥𝑖, for 𝑖 = 1, ..., 𝑛 in turn. Using the notation in that section, for
each 𝑖 = 1, ..., 𝑛, let 𝑣(𝑖) the coefficient vector of 𝑥𝑖 in the chosen basis 𝛼, that is 𝑥𝑖 = 𝑣(𝑖)𝑇𝛼, and
𝑉 (𝑖), 𝐻

(𝑖)
𝑚 the corresponding basis and reduced matrix. We define the approximate flow by 𝑥̂︀(𝑡;𝑥0) :=

(𝑥̂︀1(𝑡;𝑥0), ..., 𝑥̂︀𝑛(𝑡;𝑥0))𝑇 where, as an instance of (9), we have

𝑥̂︀𝑖(𝑡;𝑥0) := ||𝑣(𝑖)||2 𝑦(𝑖)1 (𝑡; 𝑦0) (𝑖 = 1, ..., 𝑛) (11)

with 𝑦(𝑖)(𝑡; 𝑦0) the solution of the linear initial value problem (7) for 𝑔 = 𝑥𝑖. As the solu-
tion of a linear system of odes, each component in (11) can be written explicitly as 𝑥̂︀𝑖(𝑡;𝑥0) =

||𝑣(𝑖)||2
(︀
e𝑡𝐻

(𝑖)𝑇
𝑚

)︀
1
𝑉 (𝑖)𝑇𝛼(𝑥0) for 𝑖 = 1, ..., 𝑛, where (e(··· ))1 denotes the first row of the exponential ma-

trix. Note that, as a function of 𝑥0, for a fixed 𝑡, 𝑥̂︀𝑖(𝑡;𝑥0) is a linear combination of the components of the
basis 𝛼(𝑥0). It is also convenient to introduce the following error vector : 𝜖(𝑡;𝑥0) := 𝑥(𝑡;𝑥0)− 𝑥̂︀(𝑡;𝑥0).

In what follows, we will consider the case where an initial set 𝑋0 is given, rather than an individual
initial state 𝑥0. The general idea of the algorithm is to use 𝑥̂︀(Δ; ·) to propagate a reachset from one time
point to the next, by a time-step of Δ. The propagated set needs then to be ‘inflated’ to compensate
for approximation errors. The concrete way in which propagation and inflation are carried out will
depend on the representation that will be adopted for sets of reachable states. We will give a generic
description of the method, independent of the type of representation. Then we will instantiate it to a
concrete method by considering a specific set representations, zonotopes [27].

Let 𝑋0 be a compact set of initial states and 𝑡 > 0 be such that 𝑥(𝜏 ;𝑥0) is well-defined for each
𝑥0 ∈ 𝑋0 and 𝜏 ∈ [0, 𝑡]. In the interval [0, 𝑡], choose 𝑁 time points 0 = 𝑡0, 𝑡1, · · · , 𝑡𝑁 = 𝑡, with
Δ𝑘 := 𝑡𝑘 − 𝑡𝑘−1 > 0 for 1 ≤ 𝑘 ≤ 𝑁 . The algorithm, which we christen ckr for Carleman-Krylov
Reachability, builds a sequence of compact sets 𝑅0, 𝑅1, ..., 𝑅𝑁 ⊆ R𝑛, the reachsets, s.t.

(a) 𝑅𝑘 is an overapproximation of the set of reachable states at time 𝑡𝑘: 𝑅𝑘 ⊇ 𝑥(𝑡𝑘;𝑋0) = {𝑥(𝑡𝑘, 𝜉) :
𝜉 ∈ 𝑋0}, in particular 𝑅0 = 𝑋0;

(b) 𝑅𝑘 belongs to a pre-specified class of compact subsets of R𝑛, say 𝒞 (e.g. polytopes, zonotopes,...).
The method essentially applies three set operations on R𝑛 to build 𝑅𝑘 given 𝑅𝑘−1:

• propagation: propagates linearly a reachset 𝑅𝑘−1 from 𝑡𝑘−1 to 𝑡𝑘, thus obtaining 𝑅̃︀𝑘;
• enclosure computation: generates a compact set 𝐸𝑘 that includes the error vector 𝜖 at 𝑡𝑘;
• inflation: computes a bloated version 𝑅𝑘 of the propagated reachset 𝑅̃︀𝑘 that includes 𝑅̃︀𝑘 + 𝐸𝑘,

where + denotes here Minkowski sum3.

A formal description of these operations, as well as a proof of correctness of the general method, can be
found in the journal version [16].

Now, let us consider a specific set representation: zonotopes. Given a column vector 𝑐 ∈ R𝑛 (center)
and a matrix formed by 𝑝 ≥ 1 column vectors 𝐺 = [𝑔1| · · · |𝑔𝑝] ∈ R𝑛×𝑝 (generators), the corresponding

3For 𝐴,𝐵 ⊆ R𝑛, 𝐴+𝐵 := {𝑎+ 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.



zonotope is the set Z(𝑐,𝐺) := {𝑐 + 𝐺 · 𝜆 : 𝜆 ∈ [−1, 1]𝑝} ⊆ R𝑛. We represent the initial set as
well as the successive reachsets 𝑅0, 𝑅1, 𝑅2, ... as zonotopes Z(𝑐,𝐺), such that, for a fixed integer 𝑝
(𝑛 ≤ 𝑝 ≤ 2𝑛), 𝐺 ∈ R𝑛×𝑝 has row rank 𝑛 (i.e. 𝐺 is full rank). Informally speaking, the basic idea is
to use the maps 𝜉 ↦→ 𝑥̂︀(Δ𝑘; 𝜉) (𝑘 = 1, 2, ...) to propagate a zonotope 𝑅𝑘−1 = Z(𝑐,𝐺) from time 𝑡𝑘−1

to time 𝑡𝑘. We first build an auxiliary 𝑅̃︀𝑘 by propagating 𝑅𝑘−1 as if the map 𝑥̂︀(Δ𝑘; ·) were linear. In
more detail, we determine the auxiliary zonotope 𝑅̃︀𝑘 := Z(𝑐̃︀, 𝐺‹) by taking as 𝑐̃︀ the center of mass of
the 2𝑝 vectors obtained by linear propagation, 𝑣±1 := 𝑥̂︀(Δ𝑘; 𝑐± 𝑔1), ..., 𝑣

±
𝑝 := 𝑥̂︀(Δ𝑘; 𝑐± 𝑔𝑝), and then

choosing the generators 𝑔̃︀𝑗 ’s from the ‘direction’ vectors 𝑣±𝑗 − 𝑐̃︀. To obtain𝑅𝑘 , we ‘stretch’ the resulting

𝑅̃︀𝑘, by multiplying the generators 𝑔̃︀𝑗 ’s by suitable factors 𝜆*𝑗 ’s, so as to compensate for approximation
and linearization errors (see Figure 1). Error compensation is based on the fact that, for each vector
𝑧 ∈ 𝑥̂︀(Δ𝑘;𝑅𝑘−1) + 𝐸𝑘, we can compute a solution 𝜆 ∈ R𝑝 of the system 𝐺‹𝜆 + 𝑐̃︀ = 𝑧 using the
pseudoinverse of 𝐺‹, and can then maximize 𝜆 componentwise. See [16] for a detailed description.

4. Reachsets: Comparison with Flow* and cora

Flow* [23] and cora [2] are state-of-the-art tools for reachability analysis; they are quite effective at
building (over-approximations of) reachsets. In [16], we have compared the reachsets 𝑅𝑘 produced by
ckr with those produced by Flow* and cora on different benchmarks drawn from [5, 21]: Jet Engine,
Brusselator, Van Der Pol, Lorenz, Roessler, coupled Van Der Pol and Lotka-Volterra.

We quantify the accuracy of the returned sequence of reachsets using two different measures: (1) the
volume of the final reachset; (2) only for cora and CKR, the average volume of the reachsets at times
𝑡0, ..., 𝑡𝑁 = 𝑇 . ckr is extremely accurate for all the models we have considered. In particular the final
reachsets produced by ckr are tighter than those produced by the other two tools in all cases, often
significantly so. With one exception, ckr is the most accurate algorithm, also when considering average
accuracy across different examples. In terms of execution time, Flow* is the most effective tool on the
considered examples. ckr times are in line with, or at least comparable with, Flow*’s. As an example,
we report in Fig. 2 a graphical comparison of the reachsets produced by the three algorithms when
applied to the Van der Pol system. Numerical values and full details on experiments can be found in
[16].
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Figure 2: Reachsets computed with cora (left), Flow* (center) and ckr (right) for Van der Pol model [16].
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