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Abstract
We report on ongoing research efforts aimed at algebraic symbolic analysis of running time in probabilistic

programs. We represent (sub-)probability distributions via generating functions and interpret loops as fixed-points

in metric spaces.
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1. Introduction

Probabilistic Programming (PP) [24, 4] is concerned with formal tools to define and analyze proba-

bilistic models programmatically. Applications of PP include the modeling of randomized algorithms,

probabilistic graphical models such as Bayesian networks, cognitive and decision-making models, and

security protocols [26, 30, 35, 1, 32, 27]. Analyzing probabilistic programs is intrinsically challenging:

even in the restricted setting where only a coin-flipping primitive is available, computing the expected

value of a variable at program termination is as hard as solving the universal halting problem, while

computing higher moments (such as variances) is provably harder; see [28] and references therein.

In this communication, we report on ongoing research efforts aimed at symbolic or exact, as opposed

to simulation-based [37, 16], analysis of probabilistic programs, in the spirit of works such as [4, 28, 6,

38, 29, 5]. Our focus is on termination and running time analysis [28, 6, 38]. We adopt a denotational

perspective in the spirit of Kozen [31]: we interpret programs as transformers of functionals — maps from

initial states to (sub)-probability distributions on running time, represented via generating functions

[8, 28, 29] (Section 2.1).

Our approach departs from previous work in a few key respects. In particular, we work in a metric-

space setting (over generating functions and functionals), where fixed points needed to interpret loops

are shown to exist and be unique leveraging the Banach fixed-point theorem [2] (Section 2.2). Compared

to a traditional order-theoretic framework, based on the Knaster–Tarski or Kleene fixed-point theorems

[40], our approach appears to be more streamlined. In particular, the uniqueness and convergence rate

guaranteed by Banach theorem suggest novel promising approximation and algebraic techniques for

symbolic analysis, which we will illustrate through a simple example (Section 3).

Related and Further Work The semantics of probabilistic programs, starting with the seminal work

of Kozen [31] and the monograph by McIver and Morgan [33], is by now a well-established topic. Other

semantics for discrete probabilistic while-programs are discussed in the aforementioned references;

see also [33, 21, 25, 7, 5, 39, 22, 36]. A generating function approach has been considered in [28], and

analysis techniques have been put forward for a class of programs with rational generating functions.

Here we target a broader class of programs, with possibly non-rational (algebraic) generating functions.

A different approach based on invariants and theorem proving is discussed in [20, 6]. The investigations

discussed here are part of a broader research agenda, aimed at developing flexible, compositional

formal methods applicable across diverse, probability-related domains, including dynamical systems

with safety-related aspects [10, 9, 11, 12, 13, 15], information leakage and security [19, 18], distributed

systems with notions of failure and recovery [14], randomized model counting and testing [17, 34].
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2. Semantics of Probabilistic Programs

2.1. Preliminaries

Let sD denote the set of sub-probability generating functions (gf) in the variable 𝑧. These are functions of

the complex variable 𝑧 of the form 𝑓(𝑧) =
∑︀∞

𝑛=0 𝑎𝑛𝑧
𝑛

such that 𝑎𝑛 ∈ [0, 1] and 𝑓(1) =
∑︀∞

𝑛=0 𝑎𝑛 ≤ 1.

If equality holds, we say 𝑓 is a probability generating function, i.e. a distribution on N. For 𝑛 ≥ 0, we

let [𝑧𝑛]𝑓(𝑧) := 𝑎𝑛, the 𝑛-th coefficient of 𝑓 . Note that 𝑓(1) =
∑︀

𝑗≥0 𝑎𝑗 is the total probability mass

of the (sub-)probability distribution; 𝑓 ′(1) = d
d𝑧𝑓(𝑧)|𝑧=1 =

∑︀
𝑗≥1 𝑗 · 𝑎𝑗 is the expected value of the

(sub-)distribution. Higher-order moments can be computed similarly; see [41]. sD can be made into a

complete metric space by introducing the following (ultra-metric) distance. Given 𝑓(𝑧) =
∑︀∞

𝑛=0 𝑎𝑛𝑧
𝑛

and 𝑔(𝑧) =
∑︀∞

𝑛=0 𝑏𝑛𝑧
𝑛

, define the distance:

𝑑sD(𝑓, 𝑔) := 2−min{𝑖≥0:𝑎𝑖 ̸=𝑏𝑖}
(1)

with the convention that min ∅ = +∞ and 2−∞ = 0. Note that, for any integer 𝑘 ≥ 0, 𝑑sD(𝑓, 𝑔) ≤ 2−𝑘

iff 𝑓(𝑧) − 𝑔(𝑧) = 𝑂(𝑧𝑘), convening that 𝑂(𝑧∞) = 0. It is a standard fact that (sD, 𝑑sD) forms a

complete1
metric space. Fix an integer 𝑚 ≥ 1 — representing the number of program variables. We

let F𝑚 := {𝐺 : Z𝑚 → sD} be the set of functionals from Z𝑚
to sD. In what follows, we will let

𝑥 = (𝑥1, ..., 𝑥𝑚) range over Z𝑚
. We lift the complete metric space structure of sD to F𝑚 by defining

the following distance for 𝐺1, 𝐺2 ∈ F:

𝑑F(𝐺1, 𝐺2) := sup
𝑥∈Z𝑚

𝑑sD(𝐺1(𝑥), 𝐺2(𝑥)). (2)

With this notion of distance, (F𝑚, 𝑑F) is in turn a complete metric space. We shall denote by 0 (resp.

1) the functional that assigns the constant gf 𝑓(𝑧) = 0 (resp. constant 𝑓(𝑧) = 1) to any 𝑥 ∈ Z𝑚
.

The convex combination of two or more functionals, say (for 𝑝 ∈ [0, 1]), 𝑝𝐺1 + (1 − 𝑝)𝐺2 :=
𝜆𝑥. ( 𝑝𝐺1(𝑥) + (1− 𝑝)𝐺2(𝑥) ), is still a functional in F𝑚. Likewise, for any predicate 𝜑 : Z𝑚 → {0, 1},

the linear combination, (¬𝜑) ·𝐺1+𝜑 ·𝐺2 := 𝜆𝑥. ( (1− 𝜑(𝑥)) ·𝐺1(𝑥) + 𝜑(𝑥) ·𝐺2(𝑥) ), is still in F𝑚.

In what follows, we shall omit the index 𝑚 and write just F whenever 𝑚 is understood from the context.

2.2. Syntax and Fixed Point Semantics

Probabilistic programs [4, 24] extend ordinary programs in the sense that they allow probabilistic choice

between blocks of instructions. We consider here the probabilistic Guarded Command Language pGCL
of [33], which focuses on discrete probability distributions, represented by guarded choices. We do not

consider nondeterminism at this stage. We also do not consider observe() statements, which can be

encoded using fail variables like in [38]. Programs are built from integer variables 𝑥1, ..., 𝑥𝑚, for a fixed

𝑚 ≥ 1. We let 𝜑 range over predicates, that is functions Z𝑚 → {0, 1}, and ℎ over functions Z𝑚 → Z.

We let 𝑃 range over the set of programs.

𝑃 ::=skip | 𝑥𝑖:=ℎ | 𝑝1 : 𝑃1 □ · · ·□ 𝑝𝑛 : 𝑃𝑛 | if 𝜑 𝑃1 else 𝑃2 | 𝑃1;𝑃2 | while 𝜑 𝑃

Here, 𝑝1, . . . , 𝑝𝑛 represents a probability distribution, hence we require

∑︀𝑛
𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 ≥ 0 ∀𝑖 ∈

{1, . . . , 𝑛}. In the sequel, we will let 𝑥 = (𝑥1, . . . , 𝑥𝑚) denote the entire variables tuple and sometimes,

slightly abusing notation, also a tuple in Z𝑚
.

Our intent can be summarized as: given a probabilistic while-loop 𝑃 , gather information about its

runtime through iteration counting. Intuitively, we can think of a hidden counter in our program that

gets incremented each time an iteration of a while-loop is executed. We are interested in the final value
of this counter, say 𝐶 . Since 𝑃 is probabilistic, and may or may not terminate, for each given input, 𝐶
represents a sub-probability distribution on the set of naturals 0, 1, 2,... Natural questions about 𝐶 are:

What is the probability of termination? What are the expected value of 𝐶 and its standard deviation,

1

Every Cauchy sequence in the space has a limit.



given termination? Or even: what is the probability that 𝐶 deviates from its expected value by more

than a given amount?

In what follows, we define a semantics of programs, in which [[𝑃 ]] is represented by a functional

transformer. Formally, for each probabilistic program 𝑃 , [[𝑃 ]] takes each 𝐺 ∈ F into a 𝐺′ ∈ F, that is

[[𝑃 ]] : F → F. In what follows, we shall make use of the operations over F introduced in the previous

section, as well as of the following abbreviations, where ℎ : Z𝑚 → Z.

𝐺[ℎ(𝑥)/𝑥𝑖] := 𝜆𝑥.𝐺(𝑥1, ..., 𝑥𝑖−1, ℎ(𝑥), 𝑥𝑖+1, ...𝑥𝑚) 𝑧 ·𝐺 := 𝜆𝑥. 𝑧 · (𝐺(𝑥)).

In the semantic clauses one should think of 𝐺 as the ‘continuation’ of 𝑃 — what is executed after 𝑃
terminates. In the clause for the while loop, the formal variable 𝑧 ‘marks’, in the parlance of generating

functions, the number of loop iterations; fix(·) denotes the fixed-point operator.

• Skip: [[skip]](𝐺) = 𝐺.

• Assignment: [[𝑥𝑖 := ℎ]](𝐺) = 𝐺[ℎ(𝑥)/𝑥𝑖].

• Probabilistic Choice: [[𝑝1 : 𝑃1 □ · · ·□ 𝑝𝑛 : 𝑃𝑛]](𝐺) =
∑︀𝑛

𝑖=1 𝑝𝑖 · [[𝑃𝑖]](𝐺).

• Conditional: [[if 𝜑 𝑃1 else 𝑃2]](𝐺) = 𝜑 · [[𝑃1]](𝐺) + (¬𝜑) · [[𝑃2]](𝐺).

• Composition: [[𝑃1;𝑃2]](𝐺) = [[𝑃1]]([[𝑃2]](𝐺)).

• While Loop: [[while𝜑𝑃 ]](𝐺) = fix(Ψ𝜑,𝑃,𝐺), where Ψ𝜑,𝑃,𝐺 : F → F is the transformer defined

as follows: for each 𝐹 ∈ F

Ψ𝜑,𝑃,𝐺(𝐹 ) := (¬𝜑) ·𝐺+ 𝜑 · 𝑧 · [[𝑃 ]](𝐹 ) . (3)

The last clause of the above definition is justified by the following theorem. Recall that, given a metric

space (𝑌, 𝑑), a function 𝛾 : 𝑌 → 𝑌 is a contraction on 𝑌 if there is a constant 𝑐 ∈ [0, 1) s.t. for all

𝑦1, 𝑦2 ∈ 𝑌 we have 𝑑(𝛾(𝑦1), 𝛾(𝑦2)) ≤ 𝑐 · 𝑑(𝑦1, 𝑦2). The Banach fixed point theorem states that if (𝑌, 𝑑)
is a nonempty, complete metric space and 𝛾 is a contraction on 𝑌 , then there is a unique 𝑦* ∈ 𝑌 s.t.

𝛾(𝑦*) = 𝑦*. The unique 𝑦* is denoted by fix(𝛾).

Theorem 1 (fixed-points). For each program 𝑃 , predicate 𝜑 and 𝐺 ∈ F, the functional Ψ𝜑,𝑃,𝐺 defined
in (3) is a contraction in the complete metric space (F, 𝑑F) with constant 𝑐 ≤ 1

2 . As a consequence of the
Banach fixed point theorem, Ψ𝜑,𝑃,𝐺 has a unique fixed point fix(Ψ𝜑,𝑃,𝐺) ∈ F.

The semantics of 𝑃 is a functional {[𝑃 ]} ∈ F, defined as

{[𝑃 ]} := [[𝑃 ]](1) . (4)

For each 𝑥 ∈ Z𝑚
, {[𝑃 ]}(𝑥) is a sub-probability gf which, for the sake of compact notation, we will

denote by {[𝑃 ]}𝑥; wanting to make the argument 𝑧 of {[𝑃 ]}𝑥 explicit, we will write this as {[𝑃 ]}𝑥(𝑧). So

[𝑧𝑛]{[𝑃 ]}𝑥(𝑧) is the probability that 𝑃 with input 𝑥 terminates in precisely 𝑛 iterations; {[𝑃 ]}𝑥(1) is

the global probability of termination; and
d
d𝑧{[𝑃 ]}𝑥(𝑧)|𝑧=1/{[𝑃 ]}𝑥(1) is the expected number of steps

to termination (running time), given that termination occurs, assuming {[𝑃 ]}𝑥(1) > 0. Higher order

moments of {[𝑃 ]}𝑥(𝑧), involved in e.g. variance, can be computed similarly. Most important, assuming

{[𝑃 ]}𝑥(𝑧) has a radius of convergence 𝑅 > 1, and letting 𝐶 denote the induced random variable (if

{[𝑃 ]}𝑥(𝑧) is a proper distribution), exponential tail bounds of the form Pr(𝐶 > 𝑘) ≤ 𝐷 · (1/𝑅)𝑘,

for 𝐷 a suitable constant, can be easily deduced; we omit the details. How to effectively extract this

information from {[𝑃 ]} is the subject of our current research.

Example 1. Fix 𝑚 = 1 and write 𝑥1 = 𝑑. Consider the program 𝑃

while (𝑑 ≥ 0) {1/3: 𝑑 := 𝑑− 1 □ 2/3: 𝑑 := 𝑑+ 1 }

The fixed-point {[𝑃 ]} of (3) with 𝐺 = 1 satisfies the following equation

{[𝑃 ]} = Ψ𝑑≥0,𝑄,1({[𝑃 ]}) = 𝜆𝑥.

(︂
[𝑥 < 0]1 + [𝑥 ≥ 0]

(︀
𝑧
1

3
{[𝑃 ]}𝑥−1 + 𝑧

2

3
{[𝑃 ]}𝑥+1

)︀)︂
. (5)

For specific values of 𝑥, this equation can be applied repeatedly for computing any number of coefficients

of {[𝑃 ]}𝑥(𝑧). This will be elaborated in the next section.



3. Towards an Algebraic Theory of Probabilistic Programs

The fixed point semantics described in the previous section provides a firm starting point for the

development of new analysis techniques for PP. We outline below two promising approaches that are

the subject of our current investigation.

Approximations Based on Banach Fixed Point Theorem As mentioned in the Introduction, one

appealing feature of Banach fixed-point theorem, compared to order-theoretic ones (Knaster-Tarski,

Kleene,...), is that it immediately implies uniqueness. Moreover, it makes easy it to assess the quality of

approximations given by finite iterations of Ψ. We elaborate on these points below.

Firstly, let us endow sD and F with order structures. On sD, let us consider the following partial order

⊑: for each 𝑓1, 𝑓2 ∈ sD, say 𝑓1 =
∑︀

𝑗≥0 𝑎𝑗𝑧
𝑗

and 𝑓2 =
∑︀

𝑗≥0 𝑏𝑗𝑧
𝑗
, we let 𝑓1 ⊑ 𝑓2 if and only 𝑎𝑗 ≤ 𝑏𝑗

for each 𝑗 ≥ 0. The bottom element of this partial order is 0, the constant zero gf. The partial order

(sD,⊑) is lifted to a partial order (F,⊑) on F point-wise: 𝐺1 ⊑ 𝐺2 if and only if for each 𝑥 ∈ Z𝑚
, we

have 𝐺1(𝑥) ⊑ 𝐺2(𝑥) in sD. Letting again 0 denote the constant zero gf, the least element of this partial

order is 0 := 𝜆𝑥.0. The following result highlights an important property of our semantics.

Theorem 2 (monotonicity). For each 𝜑, 𝑃,𝐺, Ψ𝜑,𝑃,𝐺 : F → F is monotonic w.r.t. (F,⊑).

Let us now fix generic program 𝑃 = while𝜑𝑄, and consider the corresponding transformer Ψ𝜑,𝑄,𝐺.

We focus on 𝐺 = 1, as used in our semantics (4), and abbreviate Ψ := Ψ𝜑,𝑄,1. A corollary of the

Banach’s theorem is that the unique fixed point is the limit of the iterates Ψ(𝑘)(𝐼), starting from any
𝐼 ∈ F. That is, defining Ψ(0)(𝐼) = 𝐼 and Ψ(𝑘+1)(𝐼) := Ψ(Ψ(𝑘)(𝐼)), we have:

{[𝑃 ]} = fix(Ψ) = lim
𝑘→+∞

Ψ(𝑘)(𝐼)

where the lim is taken in the metric space (F, 𝑑F). Starting in particular from 𝐼 = 0, which is the least

element in F, and applying the monotonicity of Ψ (Th. 2), we have
2

0 ⊑ Ψ(0) ⊑ Ψ(Ψ(0)) ⊑ · · · ⊑ Ψ(𝑘)(0) ⊑ · · · ⊑ fix(Ψ) = {[𝑃 ]} .

Ψ(𝑘)(0) are successive under-approximations of {[𝑃 ]}: what is the nature and quality of such approxi-

mations? Another corollary of Banach’s theorem is that the distance between the fixed point and the

iterates decreases exponentially. More precisely, for every 𝑘 > 0:

𝑑F

(︁
Ψ(𝑘)(0),fix(Ψ)

)︁
≤ 𝑐𝑘

1− 𝑐
· 𝑑F(0,Ψ(0))

where 𝑐 is the contraction constant. In our case 𝑐 ≤ 1
2 , hence

𝑐𝑘

1−𝑐 ≤ 2−(𝑘−1)
. Assuming 𝑑F(0,Ψ(0)) ≤

2−1
, in the light of the definition of 𝑑F, cf. (1) and (2), this means for each 𝑥 ∈ Z𝑚

: (Ψ(𝑘)(0))(𝑥) −
(fix(Ψ))(𝑥) = 𝑂(𝑧𝑘). So every application of Ψ gains us at least one coefficient in the expansions of all
the gf’s encoded by {[𝑃 ]} = fix(Ψ), one for each initial state 𝑥 ∈ Z𝑚

.

Example 2. Consider the program in Example 1. After Ψ(0)(0) = 0, the first few iterates of Ψ(𝑘)(0) are
the following:

Ψ(1)(0) = 𝜆𝑥.

{︂
1 if 𝑥 < 0
0 otherwise. Ψ(2)(0) = 𝜆𝑥.

⎧⎨⎩
1 if 𝑥 < 0
𝑧
3

if 𝑥 = 0
0 otherwise.

Ψ(3)(0) = 𝜆𝑥.

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑥 < 0
𝑧
3

if 𝑥 = 0
𝑧2

9
if 𝑥 = 1

0 otherwise.

Continuing this way, one can see that, say for 𝑥 = 0:

{[𝑃 ]}0(𝑧) =
1

3
𝑧 +

2

27
𝑧3 +

8

243
𝑧5 +

40

2187
𝑧7 +

224

19683
𝑧9 +𝑂(𝑧11) . (6)

2

In the limit, we also use the fact that for each 𝑥 ∈ Z𝑚, 𝑘 ≥ 0: (Ψ(𝑘)(0))(𝑥)− (fix(Ψ))(𝑥) = 𝑂(𝑧𝑘). In passing, this is not

directly related to the rate of convergence of {[𝑃 ]}𝑥(𝑧) and does not entail a decision procedure for a.s. termination of 𝑃 .



Concerning approximation from above, a similar reasoning shows that, whenever we start from any

𝐼 such that 𝐼 ⊒ fix(Ψ), or even s.t. Ψ(𝐼) ⊑ 𝐼 , then the iterates form a descending chain
3
:

𝐼 ⊒ Ψ(𝐼) ⊒ · · ·Ψ(𝑘)(𝐼) ⊒ · · · ⊒ fix(Ψ) = {[𝑃 ]}.

Ideally, 𝐼 and the subsequent iterates, should provide tighter and tighter upper bounds on such quantities

as: {[𝑃 ]}𝑥(1) (termination probability) and the (reciprocal of the) radius of convergence 𝑅 of {[𝑃 ]}𝑥
(exponential rate of decrease), for each 𝑥 ∈ Z𝑚

. In practice, finding such an 𝐼 in specific cases has proven

a major difficulty. One could consider adding a top element T to F, like T = 𝜆𝑥.
∑︀

𝑗≥0 𝑧
𝑗 = 𝜆𝑥. 1

1−𝑧 ;

but, while determining a descending chain of iterates, choosing 𝐼 = T yields no useful information on

{[𝑃 ]} in the above sense. How to effectively find an informative 𝐼 is a subject of our ongoing research;

techniques based on templates [6] seem promising.

A Connection With Directed Lattice Paths A rather different approach to the analysis of proba-

bilistic programs is expressing the behaviour of a loop, whenever possible, in terms of directed lattice
paths [3]. Basically, these are random walks in the Z line, starting from an arbitrary position 𝑥 ∈ Z, with

left and right jumps of fixed magnitude and probability. In the cases that interest us, a walk terminates

as soon as it reaches a negative value. Indeed, given a loop program 𝑃 = while 𝑑 ≥ 0𝑄, a sequence

of values taken on by the iteration variable 𝑑 can be seen as such a path. For our running example, a

terminating execution corresponds to either a zero length path from 𝑥 < 0, or to path starting from

𝑑 = 𝑥 ≥ 0, ending at 𝑑 = 0 without ever going below 0 — this is called an excursion in [3] — followed

by a final step, corresponding to an execution of the body’s loop where the branch 𝑥 := 𝑥− 1 is taken,

with probability 1/3. More precisely, let 𝐸𝑥(𝑧) denote the generating function of excursions starting at

𝑥, with jumps in {−1,+1} and associated weights {1/3, 2/3} (note that 𝐸𝑥(𝑧) = 0 for 𝑥 < 0). Then

for all 𝑥 ∈ Z:

{[𝑃 ]}𝑥(𝑧) = [𝑥 < 0]1 + [𝑥 ≥ 0]

(︂
1

3
𝑧 · 𝐸𝑥(𝑧)

)︂
(7)

where the factor
1
3𝑧 accounts for the final step (iteration), in which the first branch of the probabilistic

choice is taken, causing the program to terminate. Importantly, in the actual proof of (7), one makes use

of the uniqueness of the fixed point granted by Banach theorem: in fact, for (7) to hold it is sufficient

that the functional 𝐺 defined by the rhs of (7) satisfies 𝐺 = Ψ(𝐺): this can be shown by combinatorial

arguments.

There exist consolidated techniques to work out algebraic characterizations of generating functions

for directed lattice paths. For the case in question, applying the techniques of [3], one easily obtains,

for excursions with 𝑥 ≥ 0

𝐸𝑥(𝑧) =
3

𝑧

(︃
1

4
· 3−

√
9− 8𝑧2

𝑧

)︃𝑥+1

which leads to: {[𝑃 ]}𝑥(𝑧) =

(︃
1

4
· 3−

√
9− 8𝑧2

𝑧

)︃𝑥+1

. (8)

For instance, for 𝑥 ≥ 0, we have {[𝑃 ]}𝑥(1) = 2−𝑥−1
(probability of termination), while

d
d𝑧{[𝑃 ]}𝑥(𝑧)|𝑧=1/{[𝑃 ]}𝑥(1) = 3(𝑥 + 1) (expected running time, given termination). Moreover, the

radius of convergence of {[𝑃 ]}𝑥(𝑧) coincides with its singularity nearest to the origin on the positive

semiaxis, 𝑅 = 3
4

√
2 ≈ 1.060660.... For 𝑥 = 0, the Taylor series from 𝑧 = 0 of {[𝑃 ]}𝑥(𝑧) in (8) coincides

with (6).

While the directed lattice approach promises very precise results, it is certainly less general than the

approximation approach discussed in the previous paragraph. In fact, we conjecture that the directed

lattice approach applies to a class of programs that generalizes the Constant Probability programs

considered in [23].

Acknowledgments Work partially supported by the project SERICS (PE00000014), EU funded NRRP

MUR program - NextGenerationEU.

3

The analogue principle in a framework based on Kleene fixed-point theorem would be Park’s induction [6].
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