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Abstract

We study homomorphisms between ordered graphs, defined as graphs equipped with a total order on the ver-
tices, and demonstrate that, in contrast to unordered graphs, many of their core structural properties simplify
considerably. We prove that ordered graphs admit a unique singleton homomorphism duality and introduce the
corresponding notion of x <-boundedness based on ordered chromatic number. We show that all ordered graphs
are Y <-bounded and establish and prove an ordered graph analogue of the Gyarfs-Sumner conjecture, determin-
ing all the forbidden ordered graph classes. Further, we prove a version of the Sparse Incomparability Lemma for
ordered graphs and use it to explore the structure of order density and gaps in the ordered homomorphism order.
This work identifies monotone matchings as key elements underlying duality, chi-boundedness, order density,
and its gaps in this framework.

Keywords
Ordered Graph, Homomorphism, Singleton Duality, chi-Boundedness, Order Density

Introduction

An ordered graph is an undirected graph equipped with a total order on its vertex set. Formally, an
ordered graph G = (V, E, <) comprises a set of vertices V, an edge set F, and a total order < on
the vertices (see Figure 1). Ordered graphs arise naturally in extremal combinatorics, model theory,
and Ramsey theory, offering a rich structural framework (see [1]).
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Figure 1: Ordered Homomorphism f and Independent Intervals.

Ordered homomorphisms are then structure-preserving maps that maintain both the edges and the
vertex order. Formally, f : G — H is an ordered homomorphism if it maps adjacent vertices to adjacent
vertices and preserves the order: if u <¢ v then f(u) <g f(v) (See Figure 1). For ordered graphs
G, H, we denote G /~ H if there does not exist an ordered homomorphism from G to H.

The ordered chromatic number x<(G) is the smallest number k, such that for the ordered graph G
there exists an ordered homomorphism f : G — Kj, where K}, is a complete ordered graph on k
vertices. We show that this parameter can be computed in polynomial time using a greedy algorithm.

An ordered core of an ordered graph G is the smallest ordered subgraph H of GG such that there exists
an ordered homomorphism G — H. We show in [2] that this is equivalent to the smallest ordered
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retract of G and that every ordered graph maps to a unique ordered core (up to isomorphism). The
structure of ordered cores will help us streamline reasoning about dualities and order density.

A singleton homomorphism duality is a pair (F, D) such that ' - G if and only if G — D for all
ordered graphs G. We show that for each ordered graph G, there exists only one such pair for ordered
graphs.

We then define subgraphs that are unavoidable in large chromatic number ordered graphs (see Figure

2).

« Monotone matching M, is an ordered graph with 2n vertices a;, b;,¢ = 1, ..., n, with ordering
a1 < by <az<by <...<ay<b,andedges {a;,b;},i =1,...,n. a; are left vertices, b; are
right vertices.

« MERis M, together with all edges {a;,b;},i < j.
« MELis M,, together with all edges {b;,a;},i < j.
« M} isjust MR U MEE,

We show that these serve as canonical obstructions and key elements (in case of monotone matchings)
in the y<-boundedness and duality results for ordered graphs, respectively.

Lastly, let G < H if G — H and H - G. For ordered graphs G, G2, we say that (G1, G2) is a gap
if G1 < G5 and there is no F', such that G1 < F' < Gs.

This communication states the results; detailed proofs will appear in a forthcoming full version. The
partial version with proofs of duality and y <-boundedness results can be found in [3].

2. Motivation

The study of graph homomorphisms has a long tradition in structural combinatorics and theoretical
computer science, starting from early work on graph colorings and constraint satisfaction problems.
The concept of homomorphism duality was developed as a way to characterize the solvability of such
problems via minimal obstructions (see [4], [5]). Ordered graphs, in particular, gained prominence
in the context of structural Ramsey theory [6], ordered Ramsey numbers [7], and stability theory in
model theory [8]. More recently, the interaction between order and combinatorial parameters such as
treewidth and twinwidth has spurred renewed interest in the area (see [9]).

A central motivation for our study of ordered graphs lies in the rich categorical and algorithmic
behavior of ordered homomorphisms. Ordered homomorphisms are naturally related to concepts such
as ordered chromatic number, which in turn naturally relates to extremal results; see, e.g. [10].

Our results attempt to address foundational questions related to homomorphism dualities, chromatic
bounds, and order density in the category of ordered graphs. Leveraging the additional order structure,
our results provide cleaner and more straightforward characterizations compared to their unordered
counterparts. In particular, the unique singleton duality, explicit greedy algorithms for computing
chromatic number, x<-boundedness, a solution to the Gyarfas-Sumner conjecture in the ordered graphs
setting, and exploring the density and gaps in the homomorphism order show that ordered graphs are a
promising domain for both theoretical and computational exploration.

3. Core Theorems and Contributions

We separated the results into 4 main sections:
1. Duality of Ordered Graphs
2. x<-boundedness of Ordered Graphs
3. Sparse Incomparability Lemma for Ordered Homomorphisms

4. Order Density of Ordered Homomorphisms
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Figure 2: M,,, MFE MEL and M+

3.1. Duality of Ordered Graphs

In this section, we prove that the only singleton duality for ordered graphs is (M, Ki), k € N, where
Mj, is a ordered monotone matching and K, is the ordered complete graph. That is,

Theorem 3.1. My, and K}, is the only pair of ordered cores satisfying My, / G if and only if G — K,
for any ordered graph G.

This is again in sharp contract with much more intricate dualities for the unordered graph character-

ized in [5].

3.2. x“-boundedness of Ordered Graphs

In this part, we first show that all ordered graphs are x<-bounded.

Theorem 3.2. Let G be an ordered graph. Let M}, be the maximum monotone matching subgraph of G.
Then x<(G) < 2k + 1.



This result shows that the size of the largest monotone matching directly bounds the chromatic
number of the ordered graph. It also justifies the use of monotone matchings as a bounding template
for the following result.

Then we prove a stronger (induced) version of the statement 3.2, again borrowing an idea from
unordered graphs, the famous Gydrfas—Sumner conjecture. The conjecture states that for every tree T
and complete graph K, the graphs with neither 7" nor K as induced subgraphs can be properly colored
using only a constant number of colors.

We shall replace the tree with previously introduced forbidden structures and prove the following
statement.

Theorem 3.3. Let G be an ordered graph that does not contain any of the following graphs as induced
subgraphs:
Km7 M’na Mk{:iLa Ml+7 n7 k Z 27 m7l Z 3

Then there exists f(k,l,m,n) : N* — N such that x<(G) < f(k,l,m,n).

This corresponds to the well-known conjecture for unordered graphs and provides a clean character-
ization in the ordered setting.

3.3. Sparse Incomparability Lemma for Ordered Homomorphisms

In this section, we examine an analogy of the Sparse Incomparability Lemma for ordered graphs. There
are many applications of the Sparse Incomparability Lemma in areas of unordered graphs (see, e.g.,
[4], [11], [12], [13]). We prove its analog for ordered graphs and apply it in order to determine the order
density of ordered homomorphisms in the following section.

Theorem 3.4. For any ordered graph G and k € N, there exists an ordered matching G', such that there
exists an ordered homomorphism f : G' — G and that for any ordered graph H,|H| < k there is an
ordered homomorphism g : G' — H if and only if there is an ordered homomorphism h : G — H.

h
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Figure 3: Sparse Incomparability Lemma Mapping

3.4. Order Density of Ordered homomorphisms

We analyze the partial order induced by ordered homomorphisms on the class of ordered cores.

Asin [4], we will transform the quasiorder of ordered homomorphisms on a class of ordered graphs
G into a partial order, by choosing the ordered cores to be representatives of each equivalence class. We
will denote by C the set of all non-isomorphic ordered cores. We then prove the following two results
on order density and gaps of ordered homomorphisms’ order, respectively.

Theorem 3.5. Let k € N, G; be an ordered graph on at most k vertices and Gy be an ordered core, where
every component of G'o has more than two vertices, and G1 < G'9. Then there exists an ordered graph F’
such that G1 < F < Go.



Theorem 3.6. Let G1,Go €C, Gy = G U e, where e is an isolated edge, and G1 < G4. Then (G1,G3)
is a gap in partial order C under <.

This investigation reveals that while the ordered homomorphism order is often dense, the presence
of vertices ordering (and corresponding restrictions on ordered homomorphisms) introduces gaps not
seen in unordered graphs (again, see [4]).

4. Techniques and Proof Strategies
Our key techniques include the following.

« Greedy Algorithm Analysis: Used to compute x< and to reason about minimal colorings. Its
correctness is proven inductively and the result is used also in the proof of the Singleton Duality
Theorem 3.1 and the y<-boundedness Theorem 3.2.

« Singleton Duality Proof (Theorem 3.1): This result is proved using the monotone invariant
A(G), the number of non-intersecting edges in GG, which ordered homomorphisms must preserve.

« Ramsey-Theoretic Argument: Ramsey’s theorem is a key tool to prove the Gyarfas—Sumner
conjecture analogy Theorem 3.3.

+ Sparse Incomparability Lemma (Theorem 3.4): Analogy of the Sparse Incomparability
Lemma for unordered graphs is established and proved for ordered graphs. This is in turn used
in the construction showing the dense order in Theorem 3.5.

. Singleton Duality Applications: We use this result in proving the y<-boundedness Theorem
3.2, proving the analogue of the Gyarfas—Sumner conjecture for ordered graphs in Theorem 3.3,
as well as investigating order density and its gaps for ordered homomorphisms.

These techniques and results allow us to build minimal obstructions for coloring, simulate coloring
processes, and demonstrate density and gaps in ordered homomorphism order.

5. Conclusion

This work demonstrates that the ordered structure on graphs simplifies many foundational homomor-
phism problems. We show that determining a chromatic number of ordered graphs is feasible using an
easy greedy algorithm, which is in sharp contrast to unordered graphs (see [14]).

We provide complete characterizations of singleton dualities, which is significantly simpler, compared
to the unordered graphs setting (see [5]).

We establish and prove x <-boundedness for unordered graphs and extend the incomparability lemma
and order density to this context. Monotone matchings emerge as central obstructions and building
blocks underlying the duality and coloring properties of ordered graphs. In the submitted article [15],
we focus on exploring the complexities and parameterized complexities of problems associated with
ordered matchings.

We also examine duality and y<-boundedness of ordered relational systems, and show various
complexities and parameterized complexities associated with problems related to the homomorphisms
of ordered graphs and their cores in prepared articles [16], [17], [2], respectively.

Future directions include, e.g., extending the ordered homomorphisms’ order density and gap analysis
and further refine f(k, [, m,n) in the ordered Gyarfas-Sumner context.
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