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Abstract
This paper gives a bijection between two classes of lattice paths in an 𝑛 × 𝑛 grid. This bijection is crucial for
identifying short cycles in simple bipartite graphs. We also give an algorithm for generating such paths with the
complexity of 𝒪 ( 4𝑛

𝑛1/2
). The proposed work lays the groundwork for counting cycles of length from 𝑔 to 2𝑔 − 2 in

bipartite graphs, where 𝑔 is the girth of the graph. which has broader implications on Error correcting codes,
cryptography etc.
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1. Introduction

The computational challenge of counting cycles in graph structures represents a persistent research fron-
tier, particularly given its #P-complete problem. This complexity has driven specialized investigations
into graph classes with practical applications. Among these, bipartite graphs hold significant importance
due to their role in communication systems, where they form Tanner graphs for error-correcting codes
like LDPC codes [1, 2]. There are works in counting short cycles in a bipartite graph [3, 4, 5, 6].

Recently, in 2020, Dehghan and Banihashem [3] proposed an algorithm to calculate the multiplicity
of short cycles of lengths 𝑔, 𝑔 + 2, and 𝑔 + 4, where 𝑔 denotes the girth of an undirected bipartite
graph. They used a combinatorial approach to design an algorithm for enumerating short cycles. In
this approach, they identified specific patterns within a modified BFS tree, as illustrated in Figure 1 and
Figure 2, corresponding to cycles of lengths 𝑔 + 2 and 𝑔 + 4, respectively. Building on this, our work
extends the idea of pattern generation in bipartite graphs, aiming to develop a more general algorithm
to count cycles of lengths 𝑔, 𝑔 + 2, up to 2𝑔 − 2 in bipartite graphs. These patterns can be represented
as paths in an 𝑛 × 𝑛 grid, from (0, 0) to (𝑛, 𝑛), as shown in Figure 3.
We map these patterns as lattice paths in the 𝑛 × 𝑛 grid. The set of all integer vectors in the 𝑑-

dimensional space can be written as: ℤ𝑑 = {(𝑥1, 𝑥2, … , 𝑥𝑑) | 𝑥𝑖 ∈ ℤ}. A lattice path 𝐾 in ℤ𝑑 of length 𝑘 is
a sequence (𝑣0, 𝑣1, … , 𝑣𝑘), where 𝑣𝑖 ∈ ℤ𝑑, such that each consecutive difference 𝑣𝑖 − 𝑣𝑖−1 lies in 𝕊, where
𝕊 is the set of step vectors [7]. 𝐿𝑚(𝑎 → 𝑒; 𝕊|𝑅) represents the set of all lattice paths from point 𝑎 to 𝑒 that
follows a defined restriction 𝑅 while taking steps that belong to 𝕊 [8].

In this paper, we focus on counting and enumerating grid paths (2-dimensional lattice paths) of length
2𝑛 that start at 𝑎 = (0, 0) and end at 𝑒 = (𝑛, 𝑛), using the set of steps 𝕊 = {(0, 1), (1, 0)}. For simplicity,
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Figure 1: The BFS tree and the corresponding patterns for cycles of length 𝑔 + 2, as presented in [3].

Figure 2: The BFS tree and the corresponding patterns for cycles of length 𝑔 + 4, as presented in [3].

we omit 𝕊 from the notation of 𝐿. The set of such paths subject to given restrictions 𝑅 is denoted by
𝐿2𝑛(𝑎 → 𝑒 ∣ 𝑅).

2. Defining the Special Constrained Path

In this section, we define special lattice paths motivated by the patterns described in [3]. The motivation
for such patterns is that some are impossible in the modified BFS tree. We denote the 𝑖𝑡ℎ level of this
modified BFS tree by 𝑙𝑖. For example, in Figure 5, the two vertices 𝑣0 and 𝑣1 at level 𝑙 𝑔

2−3
have a length

path 𝑔
2 − 3 from the source 𝑣. Thus, the cycle 𝑣 − 𝑣0 − 𝑣1 − 𝑣 has length 2(𝑔2 − 3) + 2 = 𝑔 − 4 < 𝑔, which

contradicts the girth condition. Therefore, the path is invalid.
This translates to a restriction we call Right-Then-Up: a path cannot go down and then up above the

line 𝑙 𝑔
2
(see Figure 5). Since our work rotates this grid (see Figure 3), our path cannot go “Right-Then-Up”

above the line 𝑦 = 𝑥. We will define this formally in Definition 3.

Definition 1 (Lattice Paths). We use the notation 𝐿𝑚(𝑎 → 𝑒 ∣ 𝑅) to denote all lattice paths from point 𝑎 to
point 𝑒 with restrictions 𝑅. If the starting point 𝑎, the ending point 𝑒, and the length 𝑚 are not explicitly
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Figure 3: Equivalent representation of the Type 3 pattern shown in Figure 2 in a 2 × 2 grid.

𝑎(0, 0)

𝑒(4, 4)

Figure 4: Lattice path in 4 × 4 grid

provided, they are assumed to be (0, 0), (𝑛, 𝑛), and 𝑚 = 2𝑛, respectively.

𝐿(𝑅) = 𝐿2𝑛((0, 0) → (𝑛, 𝑛) ∣ 𝑅)

Definition 2 (𝑥 + 2 Constrained Paths). An 𝑥 + 2 constrained path, as illustrated in Figure 6, is a lattice
path such that 𝑥𝑖 + 2 ≥ 𝑦𝑖 for all points 𝑣𝑖 = (𝑥𝑖, 𝑦𝑖) along the path. This constraint ensures that the path
stays on or below the line 𝑦 = 𝑥 + 2 throughout its traversal. The set of all such paths is denoted by:

ℙ = 𝐿( 𝑥𝑖 + 2 ≥ 𝑦𝑖 ∀𝑖 ∈ {0, 1, … , 2𝑛})

Definition 3 (Right-Then-Up Constrained Paths). For every consecutive pair of steps, if the step from
𝑣𝑖−1 to 𝑣𝑖 is a right step (1, 0), and 𝑣𝑖 = (𝑥𝑖, 𝑦𝑖) satisfies 𝑦𝑖 ≥ 𝑥𝑖 + 1, then the next step from 𝑣𝑖 to 𝑣𝑖+1 must
also be a right step (1, 0). The set of Right-Then-Up Constrained Paths is denoted by:

ℍ = 𝐿 ( 𝑣𝑖 − 𝑣𝑖−1 = (1, 0) and 𝑦𝑖 ≥ 𝑥𝑖 + 1 ⇒ 𝑣𝑖+1 − 𝑣𝑖 = (1, 0), ∀𝑖 ∈ {1, 2, … , 2𝑛 − 1}) (1)

It can be observed that these paths form a specific “inverted L-shaped” structure above the line 𝑦 = 𝑥,
as illustrated in Figure 7a.

3. Bijection between Paths

In this section, we show that there exists a bijection between the 𝑥 + 2 constrained paths (ℙ) and the
Right-Then-Up constrained paths (ℍ). Before this, we first define a few notations and a supporting
lemma.
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Figure 5: This pattern represents a possible cycle of length 𝑔 + 8 in the modified BFS tree. However, such
a cycle is invalid or does not exist because there is a vertex located above level 𝑙𝑔/2 that has two connected
vertices, which could form a cycle shorter than the girth 𝑔. This contradiction renders the pattern invalid, refer
[3]. Consequently, this condition is used as a constraint for Right-Then-Up Constrained paths.
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Figure 6: Examples of 𝑥 + 2 constrained paths

Definition 4. A subpath of a lattice path 𝐾 = (𝑣0, 𝑣1, … , 𝑣2𝑛) is a contiguous subset of points in 𝐾, denoted
by 𝑆𝑃𝐾(𝑎, 𝑏), where 𝑎 and 𝑏 are the indices of the endpoints:

𝑆𝑃𝐾(𝑎, 𝑏) = (𝑣𝑎, 𝑣𝑎+1, … , 𝑣𝑏).

Definition 5. We define a function 𝑇 ∶ ℍ → ℙ such that, for each lattice point in the path 𝐾 =
(𝑣0, 𝑣1, … , 𝑣2𝑛) ∈ ℍ, we apply a function 𝑓:

𝑇 (𝐾) = (𝑓 (𝑣0), 𝑓 (𝑣1), … , 𝑓 (𝑣2𝑛)),

where 𝑓 ∶ ℤ2 → ℤ2 is defined for a point 𝑣 = (𝑥, 𝑦) as

𝑓 (𝑣) = {
𝑣 if 𝑥 + 2 > 𝑦,
(⌊𝑥+𝑦−12 ⌋ , ⌊𝑥+𝑦+22 ⌋) if 𝑥 + 2 ≤ 𝑦.

Alternatively, this function 𝑓 can be defined in terms of the index of the point. Since 𝐾 starts at (0, 0)
and consists of only single steps in either direction, we can observe that for any point 𝑣𝑖 = (𝑥𝑖, 𝑦𝑖) in 𝐾,
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Figure 7: Comparison of valid and invalid Right-Then-Up constrained paths.

we have 𝑖 = 𝑥𝑖 + 𝑦𝑖. Thus, we can rewrite 𝑓 as follows:

𝑓 (𝑣𝑖) = {
𝑣𝑖 if 𝑥𝑖 + 2 > 𝑦𝑖,
(⌊ 𝑖−12 ⌋ , ⌊ 𝑖+22 ⌋) if 𝑥𝑖 + 2 ≤ 𝑦𝑖.

We can easily verify that 𝑓 (𝑣𝑖) lies on or below the line 𝑦 = 𝑥 + 2, thus 𝑇 (𝐾) ∈ ℙ. From this point
onward, we denote 𝑣𝑖 as the 𝑖th point in 𝐾 ∈ ℍ.

Lemma 1. If 𝑣𝑖 lies on or above the line 𝑦 = 𝑥 + 2 (i.e., 𝑦𝑖 ≥ 𝑥𝑖 + 2), then 𝑓 (𝑣𝑖) will lie either on the line
𝑦 = 𝑥 + 1 or 𝑦 = 𝑥 + 2.

Proof. If 𝑖 is odd, let 𝑖 = 2𝑚 + 1. Then 𝑓 (𝑣𝑖) = (𝑚, 𝑚 + 1), which lies on the line 𝑦 = 𝑥 + 1. If 𝑖 is even, let
𝑖 = 2𝑚. Then 𝑓 (𝑣𝑖) = (𝑚 − 1, 𝑚 + 1), which lies on the line 𝑦 = 𝑥 + 2. Hence, in both cases, 𝑓 (𝑣𝑖) lies
either on 𝑦 = 𝑥 + 1 or 𝑦 = 𝑥 + 2.

Lemma 2. If 𝑓 (𝑣𝑖) lies on or below the line 𝑦 = 𝑥, then 𝑓 (𝑣𝑖) = 𝑣𝑖

Proof. This follows from Definition 5

Theorem 1. A bijection exists between ℍ and ℙ, given by 𝑇.

Proof. First, let us prove the injectivity of the function 𝑇. Let 𝐾1, 𝐾2 ∈ ℍ such that 𝑇 (𝐾1) = 𝑇 (𝐾2). Let
𝑣1𝑖 and 𝑣2𝑖 denote the 𝑖th points in 𝐾1 and 𝐾2, respectively.

Consider any point 𝑣1𝑗 ∈ 𝐾1 such that it lies on the line 𝑦 = 𝑥 + 1. If both 𝑣1𝑗−1 and 𝑣1𝑗+1 lie on the line
𝑦 = 𝑥 + 2, then we have 𝑣1𝑗 − 𝑣1𝑗−1 = (1, 0) (i.e., the path moved to the right), and 𝑣1𝑗+1 − 𝑣1𝑗 = (0, 1) (i.e.,
the path moved up). Since 𝑦𝑗 = 𝑥𝑗 + 1, this contradicts the restrictions of ℍ. This implies that at least
one of 𝑣1𝑗−1 or 𝑣1𝑗+1 must lie on the line 𝑦 = 𝑥. Denote such a point by 𝑣1𝑘 .
As 𝑣1𝑘 lies below the line 𝑦 = 𝑥 + 2, we know that 𝑓 (𝑣1𝑘 ) = 𝑣1𝑘 . Since 𝑓 (𝑣

1
𝑘 ) = 𝑓 (𝑣2𝑘 ), it follows that

𝑣1𝑘 = 𝑓 (𝑣2𝑘 ), which means 𝑓 (𝑣2𝑘 ) lies on the line 𝑦 = 𝑥. From Lemma 2, we conclude that 𝑓 (𝑣2𝑘 ) = 𝑣2𝑘 .
The last two equations imply that 𝑣1𝑘 = 𝑣2𝑘 . Therefore, 𝑣

2
𝑘 also lies on the line 𝑦 = 𝑥. Now, since 𝑣2𝑗 is

adjacent to 𝑣2𝑘 , it must lie below the line 𝑦 = 𝑥 + 2. This implies 𝑓 (𝑣2𝑗 ) = 𝑣2𝑗 . Given that 𝑓 (𝑣1𝑗 ) = 𝑓 (𝑣2𝑗 ),
and 𝑣1𝑗 lies on the line 𝑦 = 𝑥 + 1, it follows that 𝑓 (𝑣1𝑗 ) = 𝑣1𝑗 , hence 𝑣1𝑗 = 𝑣2𝑗 . Thus, we have shown that
the points on the line 𝑦 = 𝑥 + 1 are the same for both 𝐾1 and 𝐾2.
Let the indices of points that lie on the line 𝑦 = 𝑥 + 1 be 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑠. Consider the subpaths

𝑆𝑃𝐾1(𝑎𝑖, 𝑎𝑖+1) and 𝑆𝑃𝐾2(𝑎𝑖, 𝑎𝑖+1). To show that 𝐾1 = 𝐾2, it is sufficient to prove that

∀𝑖 ∈ {0, 1, … , 𝑠 − 1}, 𝑆𝑃𝐾1(𝑎𝑖, 𝑎𝑖+1) = 𝑆𝑃𝐾2(𝑎𝑖, 𝑎𝑖+1),



along with
𝑆𝑃𝐾1(0, 𝑎0) = 𝑆𝑃𝐾2(0, 𝑎0) and 𝑆𝑃𝐾1(𝑎𝑠, 2𝑛) = 𝑆𝑃𝐾2(𝑎𝑠, 2𝑛).

This would complete the proof of the injectivity of 𝑇.
We note that the subpaths mentioned above cannot cross or touch the line 𝑦 = 𝑥 + 1; they must lie

entirely either above or below this line, except at the endpoints. Let us denote one such pair of subpaths
as 𝑆𝑃𝐾1(𝑎, 𝑏) and 𝑆𝑃𝐾2(𝑎, 𝑏). We first prove that these subpaths lie on the same side of the line 𝑦 = 𝑥 + 1.
Assume, for the sake of contradiction, that 𝑆𝑃𝐾1(𝑎, 𝑏) and 𝑆𝑃𝐾2(𝑎, 𝑏) lie on opposite sides of the

line 𝑦 = 𝑥 + 1, and without loss of generality, suppose 𝑆𝑃𝐾1(𝑎, 𝑏) lies above the line. Then, for all
𝑗 ∈ {𝑎, 𝑎 + 1, … , 𝑏}, we have 𝑦1𝑗 > 𝑥1𝑗 + 1 and 𝑦2𝑗 < 𝑥2𝑗 + 1. Since 𝑦1𝑗 ≥ 𝑥1𝑗 + 2, we use the definition:

𝑓 (𝑣1𝑗 ) = (⌊
𝑗 − 1
2

⌋ , ⌊
𝑗 + 2
2

⌋) .

This means 𝑓 (𝑣1𝑗 ) lies above the line 𝑦 = 𝑥 + 1. On the other hand, 𝑓 (𝑣2𝑗 ) = 𝑣2𝑗 lies below the line
𝑦 = 𝑥 + 1, which contradicts the assumption that 𝑇 (𝐾1) = 𝑇 (𝐾2). Hence, both subpaths must lie on the
same side of the line 𝑦 = 𝑥 + 1. Next, we show that all the points in the corresponding subpaths of 𝐾1
and 𝐾2 coincide.

• First case: Both subpaths lie above the line 𝑦 = 𝑥 + 1. There exists only one unique inverted
L-shaped path1 from 𝑣𝑎 to 𝑣𝑏 that satisfies the constraints of ℍ. Hence,

𝑆𝑃𝐾1(𝑎, 𝑏) = 𝑆𝑃𝐾2(𝑎, 𝑏).

• Second case: Both subpaths lie below the line 𝑦 = 𝑥 + 1. Since 𝑓 (𝑣) = 𝑣 for points below the line
𝑦 = 𝑥 + 2, we have:

𝑇 (𝑆𝑃𝐾1(𝑎, 𝑏)) = 𝑆𝑃𝐾1(𝑎, 𝑏) and 𝑇 (𝑆𝑃𝐾2(𝑎, 𝑏)) = 𝑆𝑃𝐾2(𝑎, 𝑏).

Given that 𝑇 (𝐾1) = 𝑇 (𝐾2), it follows that:

𝑇 (𝑆𝑃𝐾1(𝑎, 𝑏)) = 𝑇 (𝑆𝑃𝐾2(𝑎, 𝑏)) ⟹ 𝑆𝑃𝐾1(𝑎, 𝑏) = 𝑆𝑃𝐾2(𝑎, 𝑏).

Therefore, 𝑇 is injective.
Now, let us prove the surjectivity of the function 𝑇. We aim to show that for any path 𝐾1 ∈ ℙ (a path

constrained below the line 𝑦 = 𝑥 + 2), there exists a path 𝐾2 ∈ ℍ (a Right-Then-Up constrained path)
such that 𝑇 (𝐾2) = 𝐾1. We will prove this by explicitly constructing 𝐾2 from 𝐾1.
Let 𝐾1 be a lattice path in ℙ. Suppose 𝑐1, 𝑐2, … , 𝑐𝑠 are the indices of the points on 𝐾1 that lie on the

line 𝑦 = 𝑥 + 1, where the point immediately before lies on 𝑦 = 𝑥. Similarly, let 𝑑1, 𝑑2, … , 𝑑𝑠 be the indices
of the points on 𝐾1 that lie on 𝑦 = 𝑥 + 1, where the point immediately after lies on 𝑦 = 𝑥. In Figure 8a,
the first set of indices (the 𝑐-values) indicates “entry” into the region 𝑦 ≥ 𝑥 + 1 (blue lines), while the
second set (the 𝑑-values) indicates “exit” from this region (orange lines).
As the path starts from (0, 0), which lies outside the region 𝑦 ≥ 𝑥 + 1, it must first enter the region

before it can exit. Therefore, the following inequality holds:

0 < 𝑐1 ≤ 𝑑1 < 𝑐2 ≤ 𝑑2 < ⋯ < 𝑐𝑠 ≤ 𝑑𝑠 < 2𝑛. (2)

We will refer to the set of corresponding subpaths determined by the indices in the above equation as
the zig-zag partition, denoted by 𝑍𝑃, because one can observe zig-zag paths between the lines 𝑦 = 𝑥 + 1
and 𝑦 = 𝑥 + 2, as illustrated in Figure 8a.

1For any subpath 𝑆𝑃𝐾(𝑎, 𝑏) lying above 𝑦 = 𝑥 +1, it must make 𝑅 = 𝑥𝑏−𝑥𝑎 right steps and 𝑈 = 𝑦𝑎−𝑦𝑏 up steps. The restrictions
of ℍ do not allow an up step after a right step. Therefore, the subpath must make all 𝑈 up steps first, followed by all 𝑅 right
steps, forming a unique inverted L-shaped path.



For each subpath of 𝐾1 corresponding to the “zig-zag partition,” we construct the corresponding
subpath of 𝐾2. After the construction, to prove that 𝑇 (𝐾2) = 𝐾1, it will be sufficient to show that for all
subpaths 𝑆𝑃𝐾1(𝑎, 𝑏) ∈ 𝑍𝑃, we have

𝑇 (𝑆𝑃𝐾2(𝑎, 𝑏)) = 𝑆𝑃𝐾1(𝑎, 𝑏).

This will establish that 𝑇 is surjective. We observe that, due to the way we defined the partition, each
subpath is either entirely on or above the line 𝑦 = 𝑥 + 1 (i.e., inside the region 𝑦 ≥ 𝑥 + 1), or entirely on
or below the line 𝑦 = 𝑥 + 1 (i.e., outside the region 𝑦 ≥ 𝑥 + 1).
We will construct the subpaths of 𝐾2 using the following two cases.

• First case: For subpaths below the line 𝑦 = 𝑥 +1 in the “zig-zag partition,” we retain these subpaths
in 𝐾2 as they are. That is, for all 𝑆𝑃𝐾1(𝑎, 𝑏) ∈ 𝑍𝑃 that lie below 𝑦 = 𝑥 + 1, we set

𝑆𝑃𝐾2(𝑎, 𝑏) = 𝑆𝑃𝐾1(𝑎, 𝑏).

Since the subpath 𝑆𝑃𝐾2(𝑎, 𝑏) lies entirely below 𝑦 = 𝑥 + 1, it follows from the definition of 𝑓 that

𝑇 (𝑆𝑃𝐾2(𝑎, 𝑏)) = 𝑆𝑃𝐾2(𝑎, 𝑏) = 𝑆𝑃𝐾1(𝑎, 𝑏).

• Second case: For each subpath 𝑆𝑃𝐾1(𝑎, 𝑏) ∈ 𝑍𝑃 that lies on or above the line 𝑦 = 𝑥+1, the endpoints
will always be on the line 𝑦 = 𝑥 + 1. In this case, we construct a “reverse L-shaped” subpath in
𝐾2, as shown in Figure 8b in teal. Specifically, 𝑆𝑃𝐾2(𝑎, 𝑏) is given by:

𝑆𝑃𝐾2(𝑎, 𝑏) = (𝑎 + 1
2

, 𝑎 − 1
2

) , (𝑎 + 1
2

, 𝑎 − 1
2

+ 1) ,… , (𝑎 + 1
2

, 𝑏 − 1
2

) , (𝑎 + 1
2

+ 1, 𝑏 − 1
2

) , … , (𝑏 + 1
2

, 𝑏 − 1
2

) .

This subpath lies entirely above the line 𝑦 = 𝑥 + 1 and forms a valid Right-Then-Up path, as
required by the constraints of ℍ.
We now verify that 𝑇 (𝑆𝑃𝐾2(𝑎, 𝑏)) = 𝑆𝑃𝐾1(𝑎, 𝑏) for such subpaths. Note that for any point 𝑣 on
or above the line 𝑦 = 𝑥 + 1, the image 𝑓 (𝑣) also lies on or above the line 𝑦 = 𝑥 + 1. Thus, both
𝑇 (𝑆𝑃𝐾2(𝑎, 𝑏)) and 𝑆𝑃𝐾1(𝑎, 𝑏) lie entirely above 𝑦 = 𝑥 + 1.
However, since both must also lie below or on the line 𝑦 = 𝑥 + 2, and because there is a unique
subpath between two endpoints 𝑣𝑎 and 𝑣𝑏 such that all intermediate points satisfy 𝑥+1 ≤ 𝑦 ≤ 𝑥+22,
we conclude that

𝑇 (𝑆𝑃𝐾2(𝑎, 𝑏)) = 𝑆𝑃𝐾1(𝑎, 𝑏).

For any path 𝐾1 ∈ ℙ, we have explicitly constructed a path 𝐾2 ∈ ℍ such that 𝑇 (𝐾2) = 𝐾1. Thus, 𝑇 is
surjective.

4. Cardinality of Right-Then-Up Constrained Paths

In the previous section, we established a bijection between 𝑥 + 2 constrained paths and Right-Then-Up
constrained paths. Thus, to compute the cardinality of Right-Then-Up constrained paths, it suffices to
determine the cardinality of 𝑥 + 2 constrained paths.
We apply a coordinate transformation from (𝑥, 𝑦) to a new coordinate system (𝑥′, 𝑦 ′) such that:

𝑥′ = 𝑥 + 2 and 𝑦 ′ = 𝑦.

Under this transformation, the number of paths

|𝐿2𝑛((0, 0) → (𝑛, 𝑛) | 𝑥𝑖 + 2 ≥ 𝑦𝑖, ∀𝑖 ∈ {0, 1, … , 2𝑛})|

is equivalent to
|𝐿2𝑛((2, 0) → (𝑛 + 2, 𝑛) | 𝑥′𝑖 ≥ 𝑦 ′𝑖 , ∀𝑖 ∈ {0, 1, … , 2𝑛})| .

We will use the following theorem for counting such paths:
2If a point lies on 𝑦 = 𝑥 + 1, then the next step must be an up-step; if a point lies on 𝑦 = 𝑥 + 2, then the next step must be a
right-step. This enforces a unique “zig-zag” structure.
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Figure 8: (a) Illustration of Partition points (b) Construction of 𝐾2

Theorem 2 ([8]). Let 𝑟 ≥ 𝑝 and 𝑠 ≥ 𝑞. The number of all lattice paths from (𝑝, 𝑞) to (𝑟 , 𝑠) that stay weakly
below the line 𝑦 = 𝑥 is given by:

|𝐿((𝑝, 𝑞) → (𝑟 , 𝑠) ∣ 𝑥 ≥ 𝑦)| = (
𝑟 + 𝑠 − 𝑝 − 𝑞

𝑟 − 𝑝
) − (

𝑟 + 𝑠 − 𝑝 − 𝑞
𝑟 − 𝑞 + 1

).

Applying this theorem to

|𝐿2𝑛(𝑣0 → 𝑣2𝑛 | 𝑥𝑖 ≥ 𝑦𝑖, ∀𝑖 ∈ {0, 1, … , 2𝑛})| ,

with 𝑣0 = (2, 0) and 𝑣2𝑛 = (𝑛 + 2, 𝑛), we obtain:

|ℙ| = |ℍ| = |𝐿((2, 0) → (𝑛 + 2, 𝑛) ∣ 𝑥 ≥ 𝑦)| = (
2𝑛
𝑛
) − (

2𝑛
𝑛 − 3

). (3)

5. Algorithm for Generating Right-Then-Up Constrained Paths

In this section we will propose an algorithm to generate Right-Then-Up constrained path in an 𝑛 × 𝑛 grid.
The core idea of the algorithm is to generate paths that are entirely below 𝑦 = 𝑥 + 2 and then apply the
construction mentioned in the surjuctive proof above. Theorem 1 will ensure that we will generate all
paths with one-to-one correspondence. Algorithm 4 generates paths that are below 𝑦 = 𝑥 + 2. While
Algorithm 3 using Algorithm 1,2 transform those paths to Right-Then-Up constrained paths.

Algorithm 1 computes the zigzag partition of a given path by identifying specific points within the
input path that satisfy the condition mentioned for indices in Equation 2. If a point satisfies these criteria,
its index 𝑖 is added to an array partitionPoints, which contains the indices of all partition points. These
points divide the path into distinct segments represented by indices 𝑐1 ≤ 𝑑1 < 𝑐2 ≤ 𝑑2 < ⋯ < 𝑐𝑠 ≤ 𝑑𝑠,
where [𝑐𝑖, 𝑑𝑖] denotes the boundaries of the partitions. The path within each alternate interval exhibits
a zigzag structure, hence the term zigzag partitions. Algorithm 2 transforms each “zigzag partition“ into
an inverted 𝐿-shape, as shown in Figure 8b

Algorithm 4 is an recursive algorithm that takes three inputs: currPath, the path traversed so far;
Paths, a collection of all generated paths; and 𝑛, the grid size. It checks the position of last point



Algorithm 1 Computing Zigzag-Partition of a Path
in: A path 𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ is an array of coordinates, where 𝑣𝑖(𝑥𝑖, 𝑦𝑖) is an 𝑖𝑡ℎ coordinate
out: An array 𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠 containing points of partitioning
1: function Zigzag-Partition(𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ)
2: Initialize 𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠 ← []
3: for 𝑖 ← 2 to size(𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ) − 1 do
4: if Point 𝑣𝑖(𝑥𝑖, 𝑦𝑖) lies on the line 𝑦 = 𝑥 + 1 then
5: if 𝑣𝑖−1 −→ 𝑣𝑖 is an 𝑈𝑝 step then
6: Append 𝑖 to 𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠
7: if 𝑣𝑖 −→ 𝑣𝑖+1 is an 𝑅𝑖𝑔ℎ𝑡 step then
8: Append 𝑖 to 𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠
9: return 𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠

Algorithm 2 Transform Partition of a Zigzag Path
in: A path 𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ is an array of coordinates, where 𝑣𝑖(𝑥𝑖, 𝑦𝑖) is an 𝑖𝑡ℎ coordinate.
in: 𝑙 and 𝑟 are indices of the start and end points of the portion to be transformed.
out: The transformed 𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ.
1: function Transform-Partition(𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ, 𝑙, 𝑟)
2: for 𝑖 ← 𝑙 + 1 to ⌊(𝑙 + 𝑟)/2⌋ − 1 do
3: 𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ[𝑖] ← 𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ[𝑖 − 1] + (0, 1)
4: for 𝑖 ← ⌊(𝑙 + 𝑟)/2⌋ to 𝑟 − 1 do
5: 𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ[𝑖] ← 𝑧𝑖𝑔𝑧𝑎𝑔𝑃𝑎𝑡ℎ[𝑖 − 1] + (1, 0)

Algorithm 3 Apply Transformation to a 𝑥 + 2 Constrained Path
in: A path 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑃𝑎𝑡ℎ is an array of coordinates.
out: The transformed 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑃𝑎𝑡ℎ pattern.
1: function Apply-Transformation(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑃𝑎𝑡ℎ)
2: 𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠 ← Zigzag-Partition(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑃𝑎𝑡ℎ)
3: for 𝑖 ← 0 to |𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠| − 1, step 𝑖 = 𝑖 + 2 do
4: Transform-Partition(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑃𝑎𝑡ℎ, 𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠[𝑖], 𝑝𝑎𝑟 𝑡𝑖𝑡 𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠[𝑖 + 1])

Algorithm 4 Generate 𝑥 + 2 Constrained Paths for an 𝑛 × 𝑛 grid
in: 𝐶𝑢𝑟𝑟𝑃𝑎𝑡ℎ refers to the path that has been traversed until now, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 contains 𝑥 + 2 constrained
paths from (0, 0) to (𝑛, 𝑛), 𝑛 is the dimension of our square grid.
1: function GeneratePaths(𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝑃𝑎𝑡ℎ𝑠, 𝑛)
2: 𝑙𝑒𝑛𝑔𝑡ℎ ← |𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ|
3: [𝑎, 𝑏] ← 𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ[𝑙𝑒𝑛𝑔𝑡ℎ]
4: if 𝑎 > 𝑛 or 𝑏 > 𝑛 then
5: return
6: if 𝑎 = 𝑛 and 𝑏 = 𝑛 then
7: Append 𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ to 𝑃𝑎𝑡ℎ𝑠
8: if (𝑎 + 1, 𝑏) lies on or below the line 𝑦 = 𝑥 + 2 then
9: 𝑁𝑒𝑤𝑃𝑎𝑡ℎ ← copy𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ
10: Append (𝑎 + 1, 𝑏) to 𝑁𝑒𝑤𝑃𝑎𝑡ℎ
11: GeneratePaths(𝑁𝑒𝑤𝑃𝑎𝑡ℎ,𝑃𝑎𝑡ℎ𝑠,𝑛)
12: if (𝑎, 𝑏 + 1) lies on or below the line 𝑦 = 𝑥 + 2 then
13: 𝑁𝑒𝑤𝑃𝑎𝑡ℎ ← copy𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ
14: Append (𝑎, 𝑏 + 1) to 𝑁𝑒𝑤𝑃𝑎𝑡ℎ
15: GeneratePaths(𝑁𝑒𝑤𝑃𝑎𝑡ℎ,𝑃𝑎𝑡ℎ𝑠,𝑛)



in currPath and terminates the branch if it is outside the grid, if the point reaches the destination,
currPath is appended to Paths, and then the branch terminates. Otherwise, the algorithm branches
to two potential moves: a right step or an upward step , provided the new point lies on or below the
line 𝑦 = 𝑥 + 2. For each valid move, a copy of currPath is created, the new point is appended, and the
function is called recursively with the updated path. This process ensures that all valid 𝑥 + 2 constrained
paths are generated and stored in Paths. To convert these paths to Right-Then-Up constrained paths, we
call the Algorithm 3 for each path in Paths. The total number of 𝑥 + 2 constrained path, |ℙ|, is given by

|ℙ| = (
2𝑛
𝑛
) − (

2𝑛
𝑛 − 3

).

Using asymptotic approximations,

|ℙ| ∼ 9 ⋅ 4𝑛

√𝜋 𝑛3/2
.

The cost of generating a single path is 𝒪(𝑛). Thus, the overall time complexity for generating all paths
is

𝒪 (|ℙ| ⋅ 𝑛) = 𝒪 ( 4𝑛

𝑛3/2
⋅ 𝑛) = 𝒪 ( 4𝑛

𝑛1/2
) .

Since the transformation of each path (Algorithm 3) also requires 𝒪(𝑛) time, the overall complexity for
generating Right-Then-Up constrained paths remains

𝒪( 4𝑛

𝑛1/2
) .

6. Conclusion

In this paper, we introduced an algorithm to generate a class of special lattice paths within a grid 𝑛 × 𝑛,
which is particularly useful to identify and analyze short cycles in undirected bipartite graphs. A central
contribution of this work is to establish a bijection between 𝑥 + 2 constrained paths and Right-Then-Up
constrained paths. We demonstrated that the generation and transformation processes for these paths
can be accomplished with an overall computational complexity of 𝒪 ( 4𝑛

𝑛1/2 ). These paths are equivalent
to patterns that are used to find cycles in bipartite graphs [3]. This work can be used to extend the
algorithm to find short cycles over a wider range of lengths. This study establishes a solid foundation
for further exploration of lattice path transformations and their utility in solving complex combinatorial
problems.

References

[1] R. Gallager, Low-density parity-check codes, IRE Transactions on Information Theory 8 (1962)
21–28. doi:10.1109/TIT.1962.1057683.

[2] R. Tanner, A recursive approach to low complexity codes, IEEE Transactions on Information
Theory 27 (1981) 533–547. doi:10.1109/TIT.1981.1056404.

[3] A. Dehghan, A. H. Banihashemi, Counting short cycles in bipartite graphs: A fast technique/al-
gorithm and a hardness result, IEEE Transactions on Communications 68 (2020) 1378–1390. URL:
https://doi.org/10.1109/TCOMM.2019.2962397.

[4] M. Karimi, A. H. Banihashemi, Message-passing algorithms for counting short cycles in a graph, IEEE
Transactions on Communications 61 (2013) 485–495. doi:10.1109/TCOMM.2012.100912.120503.

[5] J. Li, S. Lin, K. Abdel-Ghaffar, Improved message-passing algorithm for counting short cycles in
bipartite graphs, in: 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp.
416–420. doi:10.1109/ISIT.2015.7282488.

[6] I. F. Blake, S. Lin, On short cycle enumeration in biregular bipartite graphs, IEEE Transactions on
Information Theory 64 (2018) 6526–6535. doi:10.1109/TIT.2017.2784839.

http://dx.doi.org/10.1109/TIT.1962.1057683
http://dx.doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TCOMM.2019.2962397
http://dx.doi.org/10.1109/TCOMM.2012.100912.120503
http://dx.doi.org/10.1109/ISIT.2015.7282488
http://dx.doi.org/10.1109/TIT.2017.2784839


[7] R. P. Stanley, S. Fomin, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics,
Cambridge University Press, 1999. URL: https://doi.org/10.1017/CBO9780511609589.

[8] C. Krattenthaler, Lattice path enumeration, 2017. URL: https://arxiv.org/abs/1503.05930.
arXiv:1503.05930.

https://doi.org/10.1017/CBO9780511609589
https://arxiv.org/abs/1503.05930
http://arxiv.org/abs/1503.05930

	1 Introduction
	2 Defining the Special Constrained Path
	3 Bijection between Paths
	4 Cardinality of Right-Then-Up Constrained Paths
	5 Algorithm for Generating Right-Then-Up Constrained Paths
	6 Conclusion

