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Abstract
This paper is the first step towards a new mechanization of modal logics strongly oriented to constructive
mathematics. We introduce ES4.2, a sequent calculus for the logic S4.2, that extends S4with the axiom♦□𝜙 → □♦𝜙
and emerges as the underlying logic in different fields. We build on previous investigations where formulas are
equipped with a position, i.e. set of uninterpreted tokens used to manage modal information. The calculus is
designed to enjoy strong proof-theoretical properties, such as a direct syntactical proof of cut-elimination, which
in turn yields the consistency of the system and the subformula property. We implement in Agda the system and
we present the implementation of the proof of the Cut-Elimination Theorem as a work in progress.
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1. Introduction

The modal logic S4.2 holds a significant position in the landscape of non-classical logics. It is axiomati-
cally defined by extending the well-known system S4 (which includes axioms K, T, and 4) with the Geach
axiom G (also denoted as .2): ♦□𝜙 → □♦𝜙. Semantically, S4.2 is characterized by reflexive and transi-
tive Kripke frames that satisfy a confluence (or directedness) property, such as being weakly directed.
The interest in S4.2 stems from its role as the underlying logic in a variety of distinct mathematical and
philosophical domains. In a seminal work by Goldblatt [1], the Diodorean interpretation of modality
allows for modeling time using four-dimensional Minkowski spacetime, and modal sentences valid in
this structure are shown to be exactly the theorems of S4.2. A suitable interpretation of the box (□) and
diamond (♦) modalities demonstrates that S4.2 is the logic of the forcing technique in axiomatic set
theory ZFC [2] and also applies to abstract algebra as the modal logic of abelian groups [3]. Moreover,
within the context of potential infinity, S4.2 offers an interesting perspective on convergent expansions
of infinite collections [4, 5].

Last but not least, S4.2 has been advocated by many philosophers and epistemologists as the correct
logic of knowledge [6, 7, 8, 9]. This suggests that S4.2 is a promising formal system for integration
into the emerging field connecting knowledge representation and Explainable Artificial Intelligence,
especially in contexts involving non-monotonic cognitive agents.
The versatility of S4.2 highlights the importance of developing robust and well-behaved proof

systems, which can facilitate more effective reasoning within these contexts. In terms of proof theory,
this corresponds to developing deductive systems that are as simple as possible and enjoy strong
structural properties such as analyticity and cut-elimination [10].
This paper studies the theory and presents the implementation in the Agda proof assistant [11]

of ES4.2, a sequent calculus for S4.2 designed with the aforementioned proof-theoretic desiderata in
mind. Our approach builds upon the general framework of extended sequent calculi, which have been
successfully developed for classical modal logics (such as K, D, T, and S4) to provide modular systems
and direct syntactical proofs of cut-elimination [12]. We list the main features of our system: i) formulas
are marked by a position, i.e., a set of uninterpreted tokens (in [12], positions are modeled as lists); ii)
the right rule for □, and its dual left rule for ♦, are formulated using constraints on positions, drawing
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a strong analogy with the eigenvariable conditions of the right ∀ rule (and ∃ left rule, respectively) in
first-order logic; iii) the accessibility relation is not formalized directly; iv) only modal operators can
change the positions of formulas.

Developing ES4.2 as a position-based sequent calculus is motivated by the goal of a full formalization
of the system and its meta-properties in the Agda proof assistant. The use of positions makes proofs
more manageable, as the representation of the underlying Kripke semantics is transparent. Leveraging
[12], we exploit the fact that the proof-theoretical distance between classical logic and the system under
consideration is very small. The choice of Agda over other powerful assistants such as Coq, Lean, or
Isabelle is based on its specific advantages for our approach. While these systems are highly capable,
they primarily rely on an imperative “proof script” style. In contrast, Agda’s functional “proof term”
approach, combined with its clean, Unicode-based syntax, allows formalized definitions and proofs
to remain remarkably close to their on-paper mathematical counterparts. This closeness, supported
by Agda’s interactive development features, is particularly valuable for a system like ours, where the
manipulation of positions is central. Furthermore, Agda’s foundation in constructive type theory aligns
naturally with the proof-theoretic focus of our work and facilitates future extensions, such as developing
an intuitionistic version of S4.2. This represents an alternative approach to systems like Lean, which
have a stronger focus on classical mathematics.
The main contribution of this work is the presentation of the ES4.2 calculus and its ongoing formal-

ization in Agda, including the syntax and a proof of the Cut-Elimination Theorem. As a corollary, we
obtain the subformula property and a syntactical proof of the consistency of the system. We also discuss
our ongoing work and future research directions.
Related work The proof theory of S4.2 has been previously investigated in several papers, which

differ methodologically from the approach we propose. In [13, 14], S4.2 is analysed through labelled
natural deduction systems. Sequent calculi for S4.2 have also been explored in [15], where, within a
labelled framework S4.2 is characterized as the modal companion of Jan-De Morgan logic, and in [16],
where a restricted form of the cut rule is introduced in order to obtain a subformula property that
enables significant corollaries, such as the interpolation property.

On the implementation side, in [17, 18], the authors present a mechanization of GL in [18]. Building
upon these contributions, the approach has been generalized in the HOLMS framework to encompass
a broader class of normal modal logics [19]. This project constitutes a closely related reference, as
our proposed implementation is part of an ongoing effort to develop a modular implementation of all
normal extensions of K up to S5 (see Section 4).

Outline of the paper. The paper is structured as follows: in Section 2 we present syntax and rules
of ES4.2; Section 3 is dedicated to the Cut-Elimination Theorem and part of the Agda implementation is
shown; Section 4 discusses our work in progress and future directions of the investigation.

2. The sequent calculus ES4.2
The languageℒ consists of a countably infinite set of propositional symbols 𝑝0, 𝑝1, … , propositional
connectives ∧, ∨,→, ¬, ⊥, modal operators □,♦, and auxiliary symbols (, ).
Our main syntactical objects are position-formulas (p-formulas), expressions of the form 𝐴𝑠, where

𝐴 is a modal formula and 𝑠 is a position – a finite set of uninterpreted syntactic objects called tokens,
denoted by meta-variables 𝑥, 𝑦 , 𝑧, possibly indexed. We use 𝒯 to denote a denumerable set of tokens.
Meta-variables 𝑠, 𝑡 , 𝑢 range over positions. The use of sets of tokens for positions is a key feature of
ES4.2, distinguishing it from earlier extended sequent calculi that typically employed lists of tokens [12].
This choice is motivated by recent developments in natural deduction for S4.2 [20] and aligns naturally
with its semantics based on semilattices with a minimum. The set-based nature allows positions to
represent collections of modal constraints or ”worlds” without an artificial order, which is crucial for
capturing the confluence property inherent in S4.2. The union operation (𝑠 ∪ 𝑡 or 𝑠 ∪ {𝑥}) on positions
reflects the “merging” of modal information.

A token is implemented in the proof assistant as a term of type Fin n. In Agda’s standard library [21],



Fin n represents the finite set of natural numbers {0, 1, ..., 𝑛 − 1}, where the parameter 𝑛 ∶ ℕ determines
the size of the set. This choice provides a concrete, finite, and enumerable set of syntactic objects used
to decorate formulas. Decidable equality on Fin n is crucial for implementing the ”freshness” constraints
in the modal rules, which require introducing a token not previously used in a specific context. A
position is implemented as Subset n, representing a subset of Fin n.
An extended sequent (e-sequent) is an expression Γ ⊢ Δ, where Γ and Δ are finite sequences of

p-formulas.
We present the rules of ES4.2. The propositional rules are standard, adapted to operate on p-formulas

defined at the same position. The structural rules (Weakening, Contraction, Exchange) are also naturally
extended to p-formulas. The core of the calculus lies in the modal rules, which manipulate the positions
associated with modal formulas. In analogy with first-order logic, the rules ⊢ □ and ♦ ⊢ introduce a
fresh token 𝑥 (where 𝑥 ∉ 𝑠 and 𝑥 is new to the rest of the sequent) that we refer to as an eigentoken.

Identity rules
𝐴𝑥

𝐴𝑠 ⊢ 𝐴𝑠
Γ1 ⊢ 𝐴𝑠, Δ1 Γ2, 𝐴𝑠 ⊢ Δ2 𝐶𝑢𝑡Γ1, Γ2 ⊢ Δ1, Δ2

Structural rules
Γ ⊢ Δ 𝑊 ⊢

Γ,𝐴𝑠 ⊢ Δ
Γ ⊢ Δ ⊢ 𝑊

Γ ⊢ 𝐴𝑠, Δ
Γ, 𝐴𝑠, 𝐴𝑠 ⊢ Δ

𝐶 ⊢
Γ, 𝐴𝑠 ⊢ Δ

Γ ⊢ 𝐴𝑠, 𝐴𝑠, Δ
⊢ 𝐶

Γ ⊢ 𝐴𝑠, Δ
Γ1, 𝐴𝑠, 𝐵𝑡, Γ2 ⊢ Δ

𝐸𝑥𝑐 ⊢
Γ1, 𝐵𝑡, 𝐴𝑠, Γ2 ⊢ Δ

Γ ⊢ Δ1, 𝐴𝑠, 𝐵𝑡, Δ2 ⊢ 𝐸𝑥𝑐
Γ ⊢ Δ1, 𝐵𝑡, 𝐴𝑠, Δ2

Propositional rules
Γ, 𝐴𝑠 ⊢ Δ ∧1 ⊢

Γ, 𝐴 ∧ 𝐵𝑠 ⊢ Δ
Γ, 𝐵𝑠 ⊢ Δ ∧2 ⊢

Γ, 𝐴 ∧ 𝐵𝑠 ⊢ Δ
Γ1 ⊢ 𝐴𝑠, Δ1 Γ2 ⊢ 𝐵𝑠, Δ2 ⊢ ∧

Γ1, Γ2 ⊢ 𝐴 ∧ 𝐵𝑠, Δ1, Δ2

Γ1, 𝐴𝑠 ⊢ Δ1 Γ2, 𝐵𝑠 ⊢ Δ2 ∨ ⊢
Γ1, Γ2, 𝐴 ∨ 𝐵𝑠 ⊢ Δ1, Δ2

Γ ⊢ 𝐴𝑠, Δ ⊢ ∨1
Γ ⊢ 𝐴 ∨ 𝐵𝑠, Δ

Γ ⊢ 𝐵𝑠, Δ ⊢ ∨2
Γ ⊢ 𝐴 ∨ 𝐵𝑠, Δ

Γ1 ⊢ 𝐴𝑠, Δ1 Γ2, 𝐵𝑠 ⊢ Δ2 →⊢
Γ1, Γ2, 𝐴 → 𝐵𝑠 ⊢ Δ1, Δ2

Γ, 𝐴𝑠 ⊢ 𝐵𝑠, Δ
⊢→

Γ ⊢ 𝐴 → 𝐵𝑠, Δ

Modal rules
Γ, 𝐴𝑠,𝑡 ⊢ Δ

□ ⊢
Γ,□𝐴𝑠 ⊢ Δ

Γ ⊢ 𝐴𝑠,𝑥, Δ
⊢ □

Γ ⊢ □𝐴𝑠, Δ
Γ, 𝐴𝑠,𝑥 ⊢ Δ

♦ ⊢
Γ,♦𝐴𝑠 ⊢ Δ

Γ ⊢ 𝐴𝑠,𝑡, Δ
⊢ ♦

Γ ⊢ ♦𝐴𝑠, Δ

with the constraints: 𝑥 ∉ 𝑠 and 𝑥 fresh for Γ, Δ for ⊢ □ and ♦ ⊢.
We show here the Agda implementation of the □ introduction rule.

⊢□ : ∀ {n A} {x : token {n}} {s : position {n}} {Γ Δ : List (pf {n})}
→ x ∉ s
→ fresh x Γ
→ fresh x Δ
→ Proof (Γ ⊢ [(A ^ s ∪ ⁅ x ⁆)] , Δ)
→ Proof (Γ ⊢ [(□ A ^ s)] , Δ)

As a work in progress, we are implementing in Agda the weak completeness theorem for S4.2: if
⊢HS4.2 𝐴 then ⊢ES4.2 𝐴

∅, where HS4.2 is the Hilbert-style axiomatization of S4.2 (see e.g. [20]). In the
following the derivation of the characteristic axiom:

geachAxiom : ∀ {n A}
→ (Proof {suc (suc n)} ([] ⊢ [((♦ (□ A)) ⇒ (□ (♦ A)) ^ ⊥)]))

geachAxiom {A = A} =
⊢⇒
(♦⊢ {x = x} {Γ = []} ∉⊥ (𝜆 ()) (𝜆 ())
(⊢□ {x = y} ∉⊥ (y-fresh-helper {A = A}) ∉⊥
(⊢♦ {s = ⊥ ∪ ⁅ y ⁆} {t = ⁅ x ⁆}
(□⊢ {A = A} {s = ⊥ ∪ ⁅ x ⁆} {t = ⁅ y ⁆} {Γ = []}
Ax))))



3. The cut-elimination theorem in Agda

We present the ongoing implementation in the Agda proof assistant of the Cut-Elimination Theorem for
ES4.2. The theoretical result is complete and proven on paper in [12] using standard Gentzen techniques
adapted for modal position-based sequent calculi. The proof establishes termination through a careful
induction on the complexity of proofs, as measured by the 𝛿 function. This approach mirrors classical
cut-elimination proofs but requires handling of position information throughout the elimination process.
The Agda implementation proceeds by structural induction on proof terms, following the same

logical structure as the theoretical proof. The cutElimination function is fully defined for all inference
rules, implementing the complete elimination strategy with proper case analysis for each logical
connective and modal operator. However, three crucial auxiliary lemmas (mixLemma, removeOneMore,
and weakeningRemove) are currently postulated—their types are declared, but their proofs are not yet
complete. Additionally, we have not yet resolved how to convince Agda’s termination checker using
the 𝛿 complexity measure, as the recursive calls operate on transformed rather than structurally smaller
proof terms.

Theorem 3.1 (Cut-Elimination). If Π is a proof of Γ ⊢ Δ, then there exists a cut-free proof Π∗ of Γ ⊢ Δ.

Proof. Below we present the code for the proof.
cutElimination : ∀ {n Γ Δ} → (Π : Proof {n} (Γ ⊢ Δ)) → CutFreeProof (Γ ⊢ Δ)
cutElimination Ax = Ax
cutElimination (Cut {A = A} {Γ1 = Γ1} {Γ2 = Γ2} {Δ1 = Δ1} {s = s} Π1 Π2)

with 𝛿 (Cut Π1 Π2) | 𝛿-cut-≢-zero Π1 Π2
... | zero | p = ⊥-elim (p refl)
... | suc m | _ =

weakeningRemove {Γ1 = Γ1} {Δ1 = Δ1} (A ^ s) (
cutElimination (

removeOneMore {Γ1 = Γ1} {Γ2 = Γ2} (A ^ s)
(proj1 (

mixLemma A s refl
(cutFreeToStandard (cutElimination Π1))
(cutFreeToStandard (cutElimination Π2))
(rankCutFreeIsZero (cutElimination Π1))
(rankCutFreeIsZero (cutElimination Π2))
))))

cutElimination (W⊢ Π) = W⊢ (cutElimination Π)
cutElimination (⊢W Π) = ⊢W (cutElimination Π)
cutElimination (C⊢ Π) = C⊢ (cutElimination Π)
cutElimination (⊢C Π) = ⊢C (cutElimination Π)
cutElimination (Exc⊢ {Γ1 = Γ1} Π) = Exc⊢ {Γ1 = Γ1} (cutElimination Π)
cutElimination (⊢Exc {Δ1 = Δ1} Π) = ⊢Exc {Δ1 = Δ1} (cutElimination Π)
cutElimination (¬⊢ Π) = ¬⊢ (cutElimination Π)
cutElimination (⊢¬ Π) = ⊢¬ (cutElimination Π)
cutElimination (∧1 Π) = ∧1 (cutElimination Π)
cutElimination (∧2 Π) = ∧2 (cutElimination Π)
cutElimination (⊢∧ Π1 Π2) = ⊢∧ (cutElimination Π1) (cutElimination Π2)
cutElimination (∨⊢ Π1 Π2) = ∨⊢ (cutElimination Π1) (cutElimination Π2)
cutElimination (⊢∨1 Π) = ⊢∨1 (cutElimination Π)
cutElimination (⊢∨2 Π) = ⊢∨2 (cutElimination Π)
cutElimination (⇒⊢ Π1 Π2) = ⇒⊢ (cutElimination Π1) (cutElimination Π2)
cutElimination (⊢⇒ Π) = ⊢⇒ (cutElimination Π)
cutElimination (□⊢ Π) = □⊢ (cutElimination Π)
cutElimination (⊢□ x x1 x2 Π) = ⊢□ x x1 x2 (cutElimination Π)
cutElimination (♦⊢ x x1 x2 Π) = ♦⊢ x x1 x2 (cutElimination Π)
cutElimination (⊢♦ Π) = ⊢♦ (cutElimination Π)

where
removeOneMore : ∀ {n} {Γ1 Γ2 Δ1 Δ2 : List (pf {n})} (P : pf {n}) →

Proof (Γ1 , ((Γ2 , [(P)]) - P) ⊢ (([(P)] , Δ1) - P) , Δ2) →
Proof (Γ1 , Γ2 - P ⊢ Δ1 - P , Δ2)

and
weakeningRemove : ∀ {n} {Γ1 Γ2 Δ1 Δ2 : List (pf {n})} (P : pf {n}) →

CutFreeProof (Γ1 , (Γ2 - P) ⊢ (Δ1 - P) , Δ2) →
CutFreeProof (Γ1 , Γ2 ⊢ Δ1 , Δ2)



The auxiliary procedures deserve some explanations. The removeOneMore function addresses a tech-
nical challenge during mix operations: when combining cut-free proofs, redundant occurrences of the
cut formula may appear in intermediate contexts and require careful removal. The weakeningRemove
function performs the complementary operation, systematically restoring formulas that were temporar-
ily filtered out and ensuring the final proof maintains proper sequent structure.
The correctness of this process rests on other key lemmas: cutFreeToStandard expresses that a

cut-free proof is a proof of the statement, rankCutFreeIsZero states that a cut-free proof has rank
zero, and the 𝛿-cut-≢-zero lemma ensures that no Cut rule can have zero rank, preventing infinite
recursion while maintaining the rank bounds essential for termination.

The subformula property follows as a corollary of the Cut-Elimination Theorem,.

Corollary 1 (Subformula Property). Any formula occurring in a cut-free proof Π of Γ ⊢ Δ is a subformula
of some formula in the end-sequent Γ ⊢ Δ.

Moreover, we also obtain a purely syntactical proof of the consistency of the system:

Corollary 2 (Consistency). The empty sequent ⊢ is not provable in ES4.2.

4. Conclusions and future work

In this paper, we introduced ES4.2, an extended sequent calculus for the modal logic S4.2 which utilizes
positions, i.e., sets of uninterpreted tokens, to annotate formulas and manage modal information. We
implemented the system in the Agda proof assistant and are working on providing a formal syntactic
proof of the Cut-Elimination Theorem, from which the consistency of the system and the subformula
property follow. We presented the main structure of the proof, and as a work in progress, we are
implementing the auxiliary lemmata. Following [20], we are defining semantics based on semilattices
with a minimum, which allow for a sound interpretation of position-formulas.
As part of our ongoing work, we are formalizing in Agda the soundness theorem and the weak complete-
ness theorem with respect to the Hilbert-style axiomatization. Moreover, motivated by applications to
mathematics, we are mechanizing the semantics and proofs presented in [3], where S4.2 is interpreted
as the modal logic of abelian groups.
Finally, this work represents the first step toward the development of a unified framework, NAMOR
(New Agda MOdal Realization) [22], which builds upon the theory of 2-sequents and extended se-
quents [12] and aims to encompass the entire range of normal modal logics from K to S5. Following
the underlying theoretical systems, NAMOR is designed to be highly parametric, as all normal modal
systems share the same set of rules.
Beyond its implementation aspects, S4.2 also raises several open theoretical questions, such as the
correct Hilbert-style axiomatization of the intuitionistic counterpart of the system: although the trans-
formation from classical to intuitionistic proof systems is well-known at the proof-theoretic level, the
axiomatization of the intuitionistic version of S4.2 remains unclear.
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