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Abstract
For an undirected graph 𝐺, a dominating broadcast on 𝐺 is a function 𝑓 : 𝑉 (𝐺) → N such that for any vertex
𝑢 ∈ 𝑉 (𝐺), there exists a vertex 𝑣 ∈ 𝑉 (𝐺) with 𝑓(𝑣) ⩾ 1 and 𝑑(𝑢, 𝑣) ⩽ 𝑓(𝑣). The cost of 𝑓 is

∑︀
𝑣∈𝑉 𝑓(𝑣). The

minimum cost over all the dominating broadcasts on 𝐺 is defined as the broadcast domination number 𝛾𝑏(𝐺) of
𝐺. A multipacking in 𝐺 is a subset 𝑀 ⊆ 𝑉 (𝐺) such that, for every vertex 𝑣 ∈ 𝑉 (𝐺) and every positive integer
𝑟, the number of vertices in 𝑀 within distance 𝑟 of 𝑣 is at most 𝑟. The multipacking number of 𝐺, denoted
mp(𝐺), is the maximum cardinality of a multipacking in 𝐺. These two optimisation problems are duals of each
other, and it easily follows that mp(𝐺) ⩽ 𝛾𝑏(𝐺). It is known that 𝛾𝑏(𝐺) ⩽ 2mp(𝐺) + 3 and conjectured that
𝛾𝑏(𝐺) ⩽ 2mp(𝐺).

In this paper, we show that for the 𝑛-dimensional hypercube 𝑄𝑛⌊︁𝑛
2

⌋︁
⩽ mp(𝑄𝑛) ⩽

𝑛

2
+ 6

√
2𝑛.

Since 𝛾𝑏(𝑄𝑛) = 𝑛− 1 for all 𝑛 ⩾ 3, this verifies the above conjecture on hypercubes and, more interestingly,
gives a sequence of connected graphs for which the ratio 𝛾𝑏(𝐺)

mp(𝐺)
approaches 2, a search for which was initiated

by Beaudou, Brewster and Foucaud in 2019. It follows that, for connected graphs 𝐺

lim sup
mp(𝐺)→∞

{︂
𝛾𝑏(𝐺)

mp(𝐺)

}︂
= 2.

The lower bound on mp(𝑄𝑛) is established by a recursive construction, and the upper bound is established
using a classic result from discrepancy theory.
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1. Introduction

A dominating set in an undirected graph 𝐺 is a set 𝑆 ⊆ 𝑉 (𝐺) such that every node in 𝐺 is either in
𝑆 or adjacent to a node in 𝑆. One of the many motivations to study dominating sets and its variants
comes from optimising the placement of facilities on the nodes of a network so that services can be
easily distributed to every node in the network. In particular, if placing a facility at a node serves that
node and all its neighbours, and the cost of establishing a facility is the same across all the nodes, then
the best strategy is to identify a smallest dominating set of the graph and place one facility on each
node of this set. Suppose we can set up facilities that can serve a larger range, even at a larger cost,
then we might be able to do a better distribution than the above strategy. In particular, if the cost of
setting up a facility is proportional to the distance up to which it can serve, then the task becomes that
of finding a dominating broadcast of minimum cost as defined next.

Definition 1.1. A broadcast on a graph 𝐺 = (𝑉,𝐸) is a function 𝑓 : 𝑉 → N. The cost of a broadcast
𝑓 is

∑︀
𝑣∈𝑉 𝑓(𝑣). A broadcast is said to be dominating if every vertex of 𝐺 lies within a distance 𝑓(𝑣) of

some vertex 𝑣 ∈ 𝑉 with 𝑓(𝑣) ⩾ 1. The broadcast domination number, denoted 𝛾𝑏(𝐺), is the minimum
cost over all dominating broadcasts on 𝐺.
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Trees of radius 2 give an example of a family of graphs where 𝛾(𝐺) (the size of a smallest dominating
set in 𝐺) is unbounded but 𝛾𝑏(𝐺) is at most 2. The notion of broadcast domination was introduced by
Erwin [1] in 2001 under the name of cost domination. It is easy to see that the broadcast domination
number 𝛾𝑏(𝐺) is bounded above by both the radius of 𝐺 and 𝛾(𝐺). Erwin showed that 𝛾𝑏(𝐺) is bounded
below by (diam(𝐺) + 1)/3. Heggernes and Lokshtanov [2] in 2006 showed, quite contrary to the usual
case for domination problems, that the broadcast domination number of a graph can be determined
in polynomial time. In 2013, Brewster et al. [3] modelled broadcast domination as an Integer Linear
Program (ILP), relaxed it to a Linear Program (LP), and used the ILP strengthening of the dual LP to
find lower bounds on broadcast domination number for some graphs. This ILP strengthening gave the
cute combinatorial problem of multipacking that we define next. Here 𝑁𝑘[𝑣] denotes the set of vertices
which are at a distance at most 𝑘 from 𝑣.

Definition 1.2. For a graph 𝐺 = (𝑉,𝐸), a set 𝑀 ⊆ 𝑉 is a multipacking in 𝐺 if for every vertex 𝑣 ∈ 𝑉 ,
|𝑁𝑘[𝑣] ∩ 𝑀 | ⩽ 𝑘 for all 𝑘 ⩾ 1. The multipacking number mp(𝐺) is the maximum cardinality of a
multipacking in 𝐺.

From the LP duality, we get that mp(𝐺) ⩽ 𝛾𝑏(𝐺) for every graph 𝐺. On the other hand, Hartnell and
Mynhardt [4] in 2014 proved that 𝛾𝑏(𝐺) ⩽ 3mp(𝐺)− 2 for any graph 𝐺 with mp(𝐺) ⩾ 2. Beaudou
et al. [5] in 2019 improved this to 𝛾𝑏(𝐺) ⩽ 2mp(𝐺) + 3 and conjectured that the additive factor of 3
can be removed from this bound.

Conjecture 1.3. [5] For any graph 𝐺, 𝛾𝑏(𝐺) ⩽ 2mp(𝐺).

The reason for the multiplier of 2 in the above conjecture is that there are a few small graphs
(including 𝐶4 and 𝐶5, cycles on 4 and 5 vertices) where mp(𝐺) = 1 and 𝛾𝑏(𝐺) = 2 and a few others
where mp(𝐺) = 2 and 𝛾𝑏(𝐺) = 4. By taking disjoint copies of these examples, one can construct, for
any 𝑘 ⩾ 1, a graph with mp(𝐺) = 𝑘 and 𝛾𝑏(𝐺) = 2𝑘. Hence, the above conjecture, if true, is tight.
While noting this, Beaudou et al. [5] lamented that we do not have an infinite family of connected
graphs where the ratio 𝛾𝑏(𝐺)

mp(𝐺) approaches 2. The best construction known so far is by Hartnell and

Mynhardt [4] who constructed an infinite family of connected graphs where 𝛾𝑏(𝐺)
mp(𝐺) =

4
3 .

1.1. Results

The main contribution of this note is to show that hypercubes form an infinite family of connected
graphs where 𝛾𝑏(𝐺)

mp(𝐺) approaches 2. An 𝑛-dimensional hypercube 𝑄𝑛 is the Cartesian product of 𝑛
copies of the complete graph 𝐾2. Alternatively, it can be visualized as a graph whose vertex set is
{0, 1}𝑛 and two vertices are adjacent if exactly one coordinate is different. Our main result is

Theorem 1.4. For any positive integer 𝑛,⌊︁𝑛
2

⌋︁
⩽ mp(𝑄𝑛) ⩽

𝑛

2
+ 6

√
2𝑛.

Brešar and Špacapan [6] showed in 2019 that 𝛾𝑏(𝑄𝑛) = 𝑛−1 for𝑛 ⩾ 3 and 𝛾𝑏(𝑄𝑛) = 𝑛 for𝑛 ∈ {1, 2}.
Since 𝑛 − 1 ⩽ 2

⌊︀
𝑛
2

⌋︀
, the lower bound in Theorem 1.4 proves Conjecture 1.3 on hypercubes. More

interestingly, we see that lim
𝑛→∞

𝛾𝑏(𝑄𝑛)
mp(𝑄𝑛)

= 2. This, together with the upper bound 𝛾𝑏(𝐺) ⩽ 2mp(𝐺)+3

[5] lets us conclude

Corollary 1.5. For all connected graphs 𝐺,

lim sup
mp(𝐺)→∞

{︂
𝛾𝑏(𝐺)

mp(𝐺)

}︂
= 2.



1.2. Proof Techniques

The lower bound in Theorem 1.4 is proved by introducing a recursive technique that systematically
generates multipacking of higher-dimensional hypercubes by combining multipackings from lower
dimensions. For the proof of the upper bound, we bank on a classic result by Spencer [7] from
combinatorial discrepancy theory.

1.3. Related Results

The first inequality in mp(𝐺) ⩽ 𝛾𝑏(𝐺) ⩽ 2mp(𝐺) + 3 was shown to be tight in some graph families
like trees [8], grid graphs 𝑃𝑚□𝑃𝑛 (except (𝑚,𝑛) ̸= (4, 6)) [9] and strongly chordal graphs [10]. A
graph is strongly chordal if it is chordal and every even cycle of length at least 6 has a chord that
connects two vertices which are at an odd distance apart on the cycle.

Hartnell and Mynhardt [4] shown that the difference between mp(𝐺) and 𝛾𝑏(𝐺) can be arbitrarily
large by constructing an infinite family of connected graphs 𝐺 such that 𝛾𝑏(𝐺)

mp(𝐺) =
4
3 . This construction

and the upper bound 𝛾𝑏(𝐺) ⩽ 2𝑚𝑝(𝐺) + 3 meant that for connected graphs 𝐺

4

3
⩽ lim sup

mp(𝐺)→∞

{︂
𝛾𝑏(𝐺)

mp(𝐺)

}︂
⩽ 2.

While our Corollary 1.5 improves the above, optimal bounds for this ratio were studied for special graph
classes. For connected chordal graphs 𝐺, Das et al. [11] showed that

10

9
⩽ lim sup

mp(𝐺)→∞

{︂
𝛾𝑏(𝐺)

mp(𝐺)

}︂
⩽

3

2
.

A cactus is a connected graph in which any two cycles share at most one vertex. A graph 𝐺 is
a 𝛿-hyperbolic graph, if for any four vertices 𝑢, 𝑣, 𝑤, 𝑥 of 𝐺, among the three sumations 𝑑(𝑢, 𝑣) +
𝑑(𝑤, 𝑥), 𝑑(𝑢,𝑤) + 𝑑(𝑣, 𝑥) and 𝑑(𝑢, 𝑥) + 𝑑(𝑣, 𝑤), the difference between the two of the largest sums is
at most 2𝛿. A graph class is said to be hyperbolic if there exists a constant 𝛿 such that every graph in
that class is 𝛿-hyperbolic. Das and Islam [12] proved that for cactus graphs and 1

2 -hyperbolic graphs 𝐺,

4

3
⩽ lim sup

mp(𝐺)→∞

{︂
𝛾𝑏(𝐺)

mp(𝐺)

}︂
⩽

3

2
.

1.4. Terminology

Every graph discussed in this note is finite, simple, and undirected. N denotes the set of natural numbers
(including 0). For any positive integer 𝑛, we denote the set {1, 2, . . . , 𝑛} as [𝑛]. Any undefined terms
and notations are in accordance with Chartrand et al. [13].

2. Proof of Theorem 1.4

We use exponential notation to indicate repeated sequences in the vertex so that a vertex 110001 in 𝑄6

will be written as 12031. The hamming weight wt(𝑢) of a vertex 𝑢 is the distance of 𝑢 from 0𝑛 in 𝑄𝑛. As
a warm-up, first we determine mp(𝑄𝑛) for 𝑛 ⩽ 6. It is easy to observe that mp(𝑄1) = 1,mp(𝑄2) =
1,mp(𝑄3) = 2,mp(𝑄4) = 2 and mp(𝑄5) = 2.

Proposition 2.1. mp(𝑄6) = 4.

Proof. One can observe that, since the set {06, 0313, 1303, 16} is a multipacking in 𝑄6, mp(𝑄6) ⩾ 4.
Now, we show that no set of order 5 can be a multipacking in 𝑄6. On the contrary, let 𝑃 be a
multipacking in 𝑄𝑛 of 5 vertices. As 𝑄𝑛 is vertex-transitive, without loss of generality, suppose 06 ∈ 𝑃 .
Then 𝑃 cannot contain any vertex of hamming weight 1 or 2. Then 𝑃 ∖ {06} ⊆ 𝑁3[1

6]. Hence,
|𝑁3[1

6]∩𝑃 | = 4 > 3, a contradiction to the fact that 𝑃 is a multipacking. Therefore, mp(𝑄6) = 4.



Since 𝑄𝑛+1 contains a copy of 𝑄𝑛 as a distance preserving subgraph, it is easy to observe that the
multipacking number of 𝑄𝑛 is monotonic in 𝑛.

Observation 2.2. For any positive integer 𝑛, mp(𝑄𝑛) ⩽ mp(𝑄𝑛+1).

2.1. Lower bound

We begin with a couple of lemmas needed for the recursive construction. Given a vertex 𝑥 ∈ 𝑄𝑛, and
an integer 𝑚 ⩾ 1, we define 𝑖𝑚 · 𝑥 as the binary string obtained by concatenating 𝑖𝑚 to 𝑥, where
𝑖 ∈ {0, 1}. For any set of vertices 𝑆,

𝑖𝑚 · 𝑆 = {𝑖𝑚 · 𝑥 : 𝑥 ∈ 𝑆}.

Lemma 2.3. Let 𝑛0 ⩾ 𝑛1 be two positive integers, and 𝑄𝑛0 and 𝑄𝑛1 be two hypercubes equipped with
multipackings 𝑃0 and 𝑃1, respectively. Further, let

𝑛 = 𝑛0 +max(|𝑃0|, 2) + max(|𝑃1|, 2)− 1,

and 𝑃 be the set
(0𝑛−𝑛0 · 𝑃0) ∪ (1𝑛−𝑛1 · 𝑃1).

Then 𝑃 is a multipacking in 𝑄𝑛.

Proof. Let 𝑝 = |𝑃 | = |𝑃0| + |𝑃1|. Pick any 𝑥 ∈ 𝑉 (𝑄𝑛) and any 𝑘 ∈ [𝑝 − 1]. We will show that the
number of vertices of 𝑃 in 𝑁𝑘[𝑥] is at most 𝑘 by counting separately the number of vertices of 0𝑛−𝑛0 ·𝑃0

and 1𝑛−𝑛1 · 𝑃1 in 𝑁𝑘[𝑥].
Let 𝑥0 denote the 𝑛0-length suffix of 𝑥 (the last 𝑛0 bits) and 𝑥1 denote the 𝑛1-length suffix of 𝑥. Let

𝑞0 and 𝑞1 respectively denote the number of zeros and ones in the first (𝑛 − 𝑛0) bits of 𝑥. For any
vertex 𝑦 ∈ 𝑃0, 𝑑𝑄𝑛(𝑥, 0

𝑛−𝑛0 · 𝑦) = 𝑞1 + 𝑑𝑄𝑛0
(𝑥0, 𝑦). For any vertex 𝑦 ∈ 𝑃1, 𝑑𝑄𝑛(𝑥, 1

𝑛−𝑛1 · 𝑦) ⩾
𝑞0 + 𝑑𝑄𝑛1

(𝑥1, 𝑦). Hence we have

|𝑁𝑘[𝑥] ∩ 𝑃 | = |𝑁𝑘[𝑥] ∩ 0𝑛−𝑛0 · 𝑃0|+ |𝑁𝑘[𝑥] ∩ 1𝑛−𝑛1 · 𝑃1|
⩽ |𝑁𝑘−𝑞1 [𝑥0] ∩ 𝑃0|+ |𝑁𝑘−𝑞0 [𝑥1] ∩ 𝑃1|. (1)

If both (𝑘 − 𝑞1) and (𝑘 − 𝑞0) are positive, then the right hand side of (1) is bounded above by
(𝑘− 𝑞1)+ (𝑘− 𝑞0), since 𝑃𝑖 is a multipacking in 𝑄𝑛𝑖 for each 𝑖 ∈ {0, 1}. Since (𝑞0+ 𝑞1) = (𝑛−𝑛0) ⩾
(𝑝− 1) ⩾ 𝑘, this bound is at most 𝑘 and we are done. If (𝑘 − 𝑞1) < 0, then the right hand side of (1) is
bounded above by 0 + (𝑘− 𝑞0) ⩽ 𝑘. The case when (𝑘− 𝑞0) < 0 is similar. If (𝑘− 𝑞1) = 0 but 𝑞0 > 0,
then the right hand side of (1) is bounded above by 1 + (𝑘 − 𝑞0) ⩽ 𝑘. The case when (𝑘 − 𝑞0) = 0 but
𝑞1 > 0 is also similar.

We are only left with two boundary cases, viz., 𝑘 − 𝑞1 = 0 = 𝑞0 and 𝑘 − 𝑞0 = 0 = 𝑞1. Here we use
the fact that 𝑛− 𝑛0 = max(|𝑃0|, 2) + max(|𝑃1|, 2)− 1 ⩾ max{|𝑃0|, |𝑃1|}+ 1. In the first boundary
case, since 𝑞0 = 0, we have 𝑞1 = (𝑛− 𝑛0) ⩾ |𝑃1|+ 1. Further since 𝑘 − 𝑞1 = 0 in this case, we have
𝑘 = 𝑞1 ⩾ |𝑃1|+ 1. Hence, the right-hand side of (1), which is at most 1 + |𝑃1|, is bounded above by 𝑘.
The second boundary case (𝑘 − 𝑞0 = 0 = 𝑞1) is similar.

It should be noted that if 𝑛 = 𝑛0+ |𝑃0|+ |𝑃1|−1 (rather than 𝑛0+max(|𝑃0|, 2)+max(|𝑃1|, 2)−1),
then for small values of 𝑛0 (particularly 𝑛0 = 1 or 2), the resulting set 𝑃 does not form a valid
multipacking.

Corollary 2.4. Let 𝑛0 ⩾ 𝑛1 be two positive integers. Let mp(𝑄𝑛0) ⩾ 𝑝0 and mp(𝑄𝑛1) ⩾ 𝑝1. Then
mp(𝑄𝑛) ⩾ 𝑝0 + 𝑝1, where

𝑛 = 𝑛0 +max(𝑝0, 2) + max(𝑝1, 2)− 1.



This recursive approach leads to a general lower bound of the multipacking number on hypercubes,
which we formalize in the subsequent results.

Lemma 2.5. For any positive integer 𝑘, mp(𝑄2𝑘) ⩾ 𝑘.

Proof. We use induction on 𝑘. The statement is easy to verify for 𝑘 ⩽ 2 and holds for 𝑘 = 3 by
Proposition 2.1. Suppose 𝑘 ⩾ 4 and that the statement holds for all natural numbers less than 𝑘. Due to
the induction hypothesis, we have

mp
(︁
𝑄2⌈ 𝑘

2⌉
)︁
⩾

⌈︂
𝑘

2

⌉︂
, andmp

(︁
𝑄2⌊ 𝑘

2⌋
)︁
⩾

⌊︂
𝑘

2

⌋︂
.

Since
⌊︀
𝑘
2

⌋︀
⩾ 2, by Corollary 2.4, we have

mp(𝑄𝑛) ⩾

⌈︂
𝑘

2

⌉︂
+

⌊︂
𝑘

2

⌋︂
= 𝑘,

where

𝑛 = 2

⌈︂
𝑘

2

⌉︂
+

⌈︂
𝑘

2

⌉︂
+

⌊︂
𝑘

2

⌋︂
− 1 ⩽ 2𝑘.

Hence by Observation 2.2, we have mp(𝑄2𝑘) ⩾ 𝑘.

Proof of the lower bound of Theorem 1.4. If 𝑛 = 1, then mp(𝑄1) > 0. When 𝑛 is an even positive integer,
the proof follows from Lemma 2.5. When 𝑛 = 2𝑘 + 1 is odd for some positive integer 𝑘, by Lemma 2.5
and Observation 2.2 we have,

mp(𝑄𝑛) = mp(𝑄2𝑘+1) ⩾ mp(𝑄2𝑘) ⩾ 𝑘 =
⌊︁𝑛
2

⌋︁
.

Though we cannot improve the lower bound of
⌊︀
𝑛
2

⌋︀
in general, we show that mp(𝑄𝑛)−

⌊︀
𝑛
2

⌋︀
can be

arbitrarily large.

Proposition 2.6. For every positive integer 𝑖, mp(𝑄𝑛𝑖) ⩾
𝑛𝑖
2 + log2 𝑛𝑖−1

2 , where 𝑛𝑖 = 2𝑖+1 − 𝑖.

Proof. We construct a specific sequence of hypercubes {𝑄𝑛𝑖} by repeatedly applying Corollary 2.4
starting from 𝑄3, for which the multipacking number is 2. Hence, we consider 𝑛1 = 3 and 𝑝1 = 2. At
each step, we consider two identical copies multipacking of the hypercube 𝑄𝑛𝑖−1 , and using Lemma
2.3, we obtain a multipacking of 𝑄𝑛𝑖 . Therefore, using mp(𝑄𝑛𝑖−1) ⩾ 𝑝𝑖−1 as an inductive hypothesis
for 𝑖 ⩾ 2, we have mp(𝑄𝑛𝑖) ⩾ 𝑝𝑖, due to Corollary 2.4., where

𝑛𝑖 = 𝑛𝑖−1 + 2𝑝𝑖−1 − 1, 𝑝𝑖 = 2𝑝𝑖−1.

On solving these recurrence relations with initial conditions 𝑛1 = 3 and 𝑝1 = 2, we obtain

𝑛𝑖 = 2𝑖+1 − 𝑖, 𝑝𝑖 = 2𝑖 for all 𝑖 ⩾ 1.

From 𝑛𝑖 = 2𝑖+1 − 𝑖, we get 𝑝𝑖 = 𝑛𝑖
2 + 𝑖

2 , and using 𝑛𝑖 ⩽ 2𝑖+1, it follows that 𝑖 ⩾ log2 𝑛𝑖 − 1. As
mp(𝑄𝑛𝑖) ⩾ 𝑝𝑖, we have

mp(𝑄𝑛𝑖) ⩾
𝑛𝑖

2
+

log2 𝑛𝑖 − 1

2
.



2.2. Upper bound

Suppose we have a finite family of sets with finite elements, and we intend to color the underlying set
with two colors such that each subset has roughly half of each color. The discrepancy quantifies how
unbalanced any set in the family can be under the best possible two-coloring of the underlying set.
Formally, let 𝒜 be a family of subsets of Ω, and consider the coloring as a mapping

𝜒 : Ω → {−1,+1}.

Suppose for every 𝐴 ⊆ Ω, 𝜒(𝐴) =
∑︀

𝑎∈𝐴 𝜒(𝑎). Then, the discrepancy of 𝒜 with respect to 𝜒 is defined
as

disc(𝒜, 𝜒) = max
𝐴∈𝒜

|𝜒(𝐴)|.

The discrepancy of 𝒜 is defined as

disc(𝒜) = min
𝜒:Ω→{−1,+1}

disc(𝒜, 𝜒).

Let’s recall a classic result due to Spencer [7] from the discrepancy theory.

Theorem 2.7. [7] Let 𝒜 be a family of 𝑛 subsets of an 𝑛-element set Ω. Then

disc(𝒜) ⩽ 6
√
𝑛.

The next lemma establishes an upper bound on mp(𝑄𝑛) using this bound.

Lemma 2.8. For any positive integer 𝑛, we have

mp(𝑄𝑛) ⩽
𝑛

2
+ 6

√︀
2mp(𝑄𝑛)

Proof. Let 𝑃 = {𝑥1, 𝑥2, . . . , 𝑥𝑝} be a maximum multipacking in 𝑄𝑛 of size 𝑝 (⩾ 𝑛
2 ). For each 𝑥𝑖 ∈ 𝑃 ,

we construct a set 𝐴𝑖 ⊆ [𝑛] comprising of the coordinates at which 𝑥𝑖 has 1, and 𝐴𝑖 = [𝑛] ∖ 𝐴𝑖. In
particular, 𝐴𝑖 contains the coordinate values at which 𝑥𝑖 has 0. Now, consider the family of 2𝑝 sets

𝒜 = {𝐴1, 𝐴1, 𝐴2, 𝐴2, . . . , 𝐴𝑝, 𝐴𝑝},

with the underlying set Ω = [2𝑝] ⊇ [𝑛]. Let 𝜒 be a mapping such that disc(𝒜, 𝜒) = disc(𝒜). For each
𝑖 ∈ [𝑛], if 𝜒(𝑖) = −1, then we flip the bit at the 𝑖-th coordinate for all the vertices of 𝑄𝑛. All such
flippings induce an automorphism 𝜙 on the vertex set of 𝑄𝑛. Hence, the set 𝑃 contains new vertices of
𝑄𝑛. Further, a bit-flipping preserves the hamming distance, and therefore 𝑃 is still a multipacking in
𝑄𝑛.

Since, for each 𝑖 ∈ [𝑛], |𝜒(𝐴𝑖)|, |𝜒(𝐴𝑖)| ⩽ disc(𝒜), the number of ones in 𝜙(𝑥𝑖) is at most(︁
|𝐴𝑖|
2 + disc(𝒜)

2

)︁
+

(︁
|𝐴𝑖|
2 + disc(𝒜)

2

)︁
= 𝑛

2 + disc(𝒜). Hence wt(𝑥𝑖) ⩽ 𝑛
2 + disc(𝒜) for every 𝑥𝑖 ∈ 𝑃

after flipping. This means that, after flipping, 𝑃 ⊆ 𝑁𝑛
2
+disc(𝒜)[0

𝑛]. As 𝑃 is still a multipacking, we
have

|𝑃 | ⩽ 𝑛

2
+ disc(𝒜) ⩽

𝑛

2
+ 6

√︀
2𝑝,

where the last inequality is due to Theorem 2.7. As 𝑃 is a maximum multipacking in 𝑄𝑛, we have the
desired upper bound.

Proof of the upper bound of Theorem 1.4. The upper bound mp(𝑄𝑛) ⩽ 𝑛
2 + 6

√
2𝑛 in Theorem 1.4 now

follows from Lemma 2.8 since mp(𝑄𝑛) ⩽ 𝑛.
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