
Watching Systems with Bounded Probes
Gennaro Cordasco

1
, Luisa Gargano

1
and Adele A. Rescigno

1

1

Dipartimento di Informatica, Università degli Studi di Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (SA)

{gcordasco,lgargano,arescigno}@unisa.it

Abstract
Graph identification problems have been widely studied for their applications, ranging from fault diagnosis to

network monitoring. A central issue in this domain is the identifying code, which seeks a subset of vertices whose

neighborhoods uniquely identify every vertex in the graph. In this paper, we explore a generalization of this

concept through watching systems, a more flexible identification framework that allows each vertex (watcher) to

probe arbitrary subsets of its closed neighborhoods. We focus on a constrained variant called the 𝛽-Watching

System problem, where each vertex can probe at most 𝛽 subsets. This restriction models practical limitations in

monitoring capacity and introduces new computational challenges. We formally define the 𝛽-Watching System

problem, establish its relationship to classical identifying codes, and investigate its structural and algorithmic

properties. Our main contributions include: new computational complexity for finding optimal 𝛽-watching

systems; a (2 log𝑛+ 1)-approximation algorithm for general graphs; an exact polynomial-time algorithm for

computing optimal 𝛽-watching systems on trees.

Keywords
Identifying System, Identifying Code, Watching System, Approximation Algorithms

1. Introduction

In a wide range of network applications, including fault diagnosis, network verification, and surveillance,

it is essential to uniquely determine the status or location of entities using limited resources. This need

motivates the study of identifying codes, which aim to select a subset of vertices that can uniquely

distinguish vertices in a graph based on their proximity to the probes.

The identifying code problem is a well-established topic within the broader domain of identification

problems in graphs. The objective is to select a set of nodes 𝐼 in a graph 𝐺 such that the closed

neighborhoods of all vertices have distinct and nonempty intersections with 𝐼 . This ensures that every

vertex in 𝐺 can be uniquely identified based on its intersection with 𝐼 . Such a set 𝐼 , which is both

dominating and identifying, is typically referred to as a code in the literature [13].

Let 𝐺 = (𝑉,𝐸) be an undirected graph. We denote by 𝑛 = |𝑉 | and 𝑚 = |𝐸| the number of vertices

and of edges of 𝐺, respectively. For each 𝑣 ∈ 𝑉 , we denote by 𝑁𝐺(𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} the

open neighborhood and by 𝑁𝐺[𝑣] = 𝑁𝐺(𝑣)∪ {𝑣} the closed neighborhood of 𝑣. We omit the subscript

𝐺 whenever the graph is clear from the context.

Definition 1 (Identifying System). Given a finite set 𝑋 and a family 𝒮 of subsets of 𝑋 , the 𝒮-identifying

set (or 𝒮-code) of an element 𝑥 ∈ 𝑋 is defined as:

𝐶𝒮(𝑥) = {𝑆 ∈ 𝒮 | 𝑥 ∈ 𝑆}.

The family 𝒮 is called an identifying system of 𝑋 if all 𝒮-codes are non-empty and distinct.

First introduced by Karpovsky, Chakrabarty, and Levitin in 1998 [13], identifying codes are Identifying

Systems in which 𝑋 is the set of vertices of an undirected graph and 𝒮 is the set of all the closed

neighbourhoods of the vertices of the graph.

Definition 2 (Identifying Code). An Identifying Code (IC) of a graph 𝐺 = (𝑉,𝐸) is a subset 𝒞 ⊆ 𝑉
such that the family {𝑁 [𝑣] | 𝑣 ∈ 𝒞} forms an identifying system of 𝑉 . Equivalently, 𝒞 must satisfy:

ICTCS 2025: Italian Conference on Theoretical Computer Science, September 10–12, 2025, Pescara, Italy

$ gcordasco@unisa.it (G. Cordasco); lgargano@unisa.it (L. Gargano); arescigno@unisa.it (A. A. Rescigno)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:gcordasco@unisa.it
mailto:lgargano@unisa.it
mailto:arescigno@unisa.it
https://creativecommons.org/licenses/by/4.0/deed.en

• Domination: ∀𝑣 ∈ 𝑉 , 𝑁 [𝑣] ∩ 𝒞 ̸= ∅

• Separation: ∀𝑢, 𝑣 ∈ 𝑉 with 𝑢 ̸= 𝑣, 𝑁 [𝑢] ∩ 𝒞 ̸= 𝑁 [𝑣] ∩ 𝒞

Identifying codes have been extensively studied in a variety of settings. Depending on the type of

domination considered, the identification criteria applied, and the structural properties of the underlying

graphs, several variations of the identifying code problem have been proposed and investigated under

different names [7, 8, 9, 12, 14, 16, 17]. These variations enhance the applicability of the concept across

a wide range of graph classes and practical scenarios.

1.1. Watching systems

Watching systems have recently been introduced in [1] as a more flexible framework with respect to

identifying codes. In a watching system, a subset of neighbor vertices (watching zone) can be selected

instead of the whole closed neighborhood of a vertex. It is also possible to place several watchers at the

same location, with distinct watching zones.

Definition 3 (Watching System). A watching set in 𝐺 = (𝑉,𝐸) is a collection 𝑊 = {(𝑧𝑖, 𝑍𝑖)}𝑘𝑖=1

where each 𝑧𝑖 ∈ 𝑉 is a location and 𝑍𝑖 ⊆ 𝑁 [𝑧𝑖]. 𝑊 is a watching system if {𝑍1, . . . , 𝑍𝑘} forms an

identifying system of 𝑉 .

A vertex 𝑣 ∈ 𝑉 is covered by a watcher 𝑤 = (𝑧, 𝑍) ∈ 𝑊 if 𝑣 ∈ 𝑍 ; the code 𝐶𝑊 (𝑣) of 𝑣 is the set of

watchers covering 𝑣. The identifying condition requires that

𝐶𝑊 (𝑣) ̸= ∅ and 𝐶𝑊 (𝑣) ̸= 𝐶𝑊 (𝑢) for all 𝑢 ̸= 𝑣.

We notice that an Identifying Code 𝒞 = {𝑣1, 𝑣2, . . . , 𝑣ℓ} is a watching system with ℓ watchers

(𝑣𝑖, 𝑁 [𝑣𝑖]) for each 𝑣𝑖 ∈ 𝒞. However, while it is well known that only twin-free graphs admit an

Identifying Code
1
, any graph 𝐺 admits a watching system. Indeed, since 𝑣𝑖 ∈ 𝑁 [𝑣𝑖], one can always

consider the trivial solution 𝑊𝑡 = {(𝑣1, {𝑣1}), . . . , (𝑣𝑛, {𝑣𝑛})}.

Moreover, as noticed in [1], the size of a watching system can be dramatically smaller than that of an

optimal identifying code. In particular, watching systems give much better bounds than identifying

codes in graphs with a large degree, the simplest example being a star graph, where any identifying

code has size 𝑛− 1 while a set of ⌈log 𝑛⌉ watchers located in the center vertex of the star suffice.

The first detailed analysis of watching systems was presented in [1], where fundamental properties

were established and the concept of the watching number, defined as the minimum number of watchers

needed to construct a watching system for a given graph, was introduced. Subsequent research has

investigated various properties of watching systems, including structural characteristics and bounds on

the watching number across different graph classes [2, 3, 10, 11, 15].

1.2. The 𝛽-Watching System problem

We are interested in a constrained version of watching systems, where locations cannot be overloaded:

a single vertex cannot be used as the location of a watcher for an indefinite number of times.

Definition 4 (𝛽-Watching System). For a watching system 𝑊 , define 𝜎𝑊 (𝑣) = |{𝑤 ∈ 𝑊 |
𝑣 is 𝑤’s location}|. A 𝛽-Watching System satisfies 𝜎𝑊 = max𝑣∈𝑉 𝜎𝑊 (𝑣) ≤ 𝛽.

Of particular interest is the case 𝛽 = 1, called a single-location watching system (1-Watching System),

where each vertex serves as a watcher location at most once. Given a 1-Watching System 𝑊 , to simplify

the notation, the code of any vertex 𝑣 will be 𝐶𝑊 (𝑣) = {𝑧 | 𝑣 ∈ 𝑍, (𝑧, 𝑍) ∈ 𝑊}.

We study the following computational problem:

𝛽-Watching System (𝛽-WS)

1

A vertex 𝑣 is a twin of another vertex 𝑢 if 𝑁 [𝑣] = 𝑁 [𝑢]. A graph 𝐺 is called twin-free if no vertex has a twin.

Input: A graph 𝐺 = (𝑉,𝐸) and an integer 𝑘.

Question: Does 𝐺 admit a 𝛽-Watching System 𝑊 of size |𝑊 | ≤ 𝑘?

The corresponding optimization problem, Min 𝛽-WS, seeks to find a 𝛽-Watching System of minimum

size.

1.3. Our Contributions

This paper provides the first systematic study of the 𝛽-Watching System problem. Our main contribu-

tions are threefold:

• Strong complexity bounds for 1-Watching System: NP-hardness on bounded-degree graphs,

exclusion of subexponential-time algorithms, and parameterized intractability (Section 2).

• An (2 log 𝑛+ 1)-approximation algorithm for general 𝛽-Watching System (Section 3).

• An exact polynomial-time algorithm for 𝛽-Watching System on trees (Section 4).

2. Lower Bounds

Auger et al. have shown that the Watching System problem is NP-hard [1]. In this section, we present

stronger hardness results for the 𝛽-Watching System problem.

2.1. The 𝐴-hierarchy

Parameterized complexity is a refinement to classical complexity theory in which one takes into account

not only the input size, but also other aspects of the problem given by a parameter 𝑝. A problem 𝑄
with input size 𝑛 and parameter 𝑝 is called fixed parameter tractable (FPT) with respect to parameter 𝑝,

if it can be solved in time 𝑓(𝑝) · 𝑛𝑐
, where 𝑓 is a computable function only depending on 𝑝 and 𝑐 is a

constant. The inherent computational difficulty of solving many parameterized problems with even

small parameter values has suggested that certain parameterized problems are not fixed-parameter

tractable, which has motivated the theory of fixed-parameter intractability. The 𝑊 -hierarchy

⋃︀
𝑡≥0𝑊 [𝑡]

has been introduced to characterize the inherent level of intractability for parameterized problems

𝐹𝑃𝑇 = 𝑊 [0] ⊆ 𝑊 [1] ⊆ 𝑊 [2] ⊆ · · · . However, a large number of parameterized problems have been

proved to be hard or complete for various levels in the 𝑊 -hierarchy. Hence, a W[1]-hard problem

is not fixed-parameter tractable (unless FPT=W[1]) and one can prove W[1]-hardness by means of a

parameterized reduction from a W[1]-hard problem.

A fpt-reduction from a parameterized problem 𝑄 to a parameterized problem 𝑄′
is an algorithm 𝐴

that transforms each instance ⟨𝑥, 𝑝⟩ of 𝑄 into an instance ⟨𝑥′, 𝑔(𝑝)⟩ in time 𝑓(𝑝)|𝑥|𝑂(1)
, where 𝑓 and 𝑔

are computable functions, such that ⟨𝑥, 𝑝⟩ ∈ 𝑄 if and only if ⟨𝑥′, 𝑔(𝑝)⟩ ∈ 𝑄′
.

Flum, Grohe, and Weyer [6] introduced the ept-reduction. An fpt-reduction is an ept-reduction from

a parameterized problem 𝑄 to a parameterized problem 𝑄′
if it transforms an instance ⟨𝑥, 𝑝⟩ of 𝑄 to an

instance ⟨𝑥′, 𝑝′⟩ of 𝑄′
in time 2𝑂(𝑝)|𝑥|𝑂(1)

with 𝑝′ = 𝑂(𝑝+ log |𝑥|) such that ⟨𝑥, 𝑝⟩ ∈ 𝑄 if and only if

⟨𝑥′, 𝑝′⟩ ∈ 𝑄′
.

According to the ept-reduction, in [5] it was introduced the 𝐴-hierarchy

⋃︀
𝑡≥1𝐴[𝑡], where 𝐴[1] =

𝑊 [1] (the class of problems FPT solved in time 2𝑂(𝑝)𝑛𝑐
) and 𝐴[𝑡] ⊆ 𝑊 [𝑡]. Many completeness results

for the 𝑊 -hierarchy can be transferred to the 𝐴-hierarchy. For example, Hitting Set and Dominating

Set are 𝐴[2]-complete under ept-reductions [6].

2.2. An EPT-reduction

We prove that 1-WS cannot be solved in time 2𝑂(𝑘)𝑛𝑐
, unless FPT= 𝐴[2] ⊆ 𝑊 [2].

Theorem 1. 1-WS is 𝐴[2]-complete under ept-reductions.

Proof. The proof is based on an ept-reduction from Dominating Set (DS). We recall that, given graph

𝐺 = (𝑉,𝐸) and an integer 𝑘, DS asks if there exists 𝐷 ⊆ 𝑉 such that |𝐷| ≤ 𝑘 and 𝐷 ∩𝑁(𝑣) ̸= ∅ for

each 𝑣 ∈ 𝑉 ∖𝐷.

Starting from an instance ⟨𝐺, 𝑘⟩ of DS, the ept-reduction described below gives an instance ⟨𝐺′, 𝑘′⟩
of 1-WS in linear time and 𝑘′ = 𝑘 + ⌊log2Δ⌋+ 1, where Δ is the maximum degree of any vertex in 𝐺.

Since DS is 𝐴[2]-complete under ept-reductions, the theorem will follow.

We describe and analyze the desired ept-reduction. Let ⟨𝐺 = (𝑉,𝐸), 𝑘⟩ be an instance of DS. Let Δ
be the maximum degree of any vertex of 𝐺 and let 2𝑎−1 ≤ Δ < 2𝑎 (i.e., 𝑎 = ⌊log2Δ⌋ + 1). In the

following, we assume that Δ ≥ 3 since when 𝐺 is a path or a cycle (i.e. Δ ≤ 2), the dominating set of

𝐺 can be immediately obtained. We construct a graph 𝐺′ = (𝑉 ′, 𝐸′) with |𝑉 ′| = |𝑉 | + 𝑎 + 2𝑎 − 1.

Namely, 𝑉 ′ = 𝑉 ∪𝐴∪𝐵 where 𝐴 is a set of 𝑎 independent vertices and 𝐵 contains 2𝑎−1 independent

vertices. The graph 𝐺′ = (𝑉 ′, 𝐸′) is then obtained starting from 𝐺 and connecting each vertex in the

independent set 𝐴 with each vertex in the independent set 𝐵, and connecting each vertex in 𝑉 to each

vertex in 𝐴. Formally,

𝑉 ′ = 𝑉 ∪𝐴 ∪𝐵, 𝐸′ = 𝐸 ∪ {(𝑢, 𝑣) | 𝑢 ∈ 𝑉, 𝑣 ∈ 𝐴} ∪ {(𝑣, 𝑤) | 𝑣 ∈ 𝐴,𝑤 ∈ 𝐵}.

We show now that for any 𝑘

⟨𝐺, 𝑘⟩ is a YES-instance of DS iff ⟨𝐺′, 𝑘′ = 𝑘 + 𝑎⟩ is a YES-instance of 1-WS. (1)

Assume first that 𝐷 is a dominating set of 𝐺 of size at most 𝑘. W.l.o.g. we assume |𝐷| ≥ 2. For any

vertex 𝑣 ∈ 𝑉 ∖𝐷 choose any neighbor of 𝑣 in 𝐷 and denote it with 𝑑𝑣 . For each vertex 𝑢 ∈ 𝐷, let

𝐿(𝑢) = {𝑣 ∈ 𝑁𝐺(𝑢) ∖𝐷 | 𝑢 = 𝑑𝑣}. Now, we define the desired watching system for 𝐺′
.

For each vertex 𝑢 ∈ 𝐷, let 𝑆𝑢 = 𝐴 ∪ {𝑢} ∪ 𝐿(𝑢).
Let 𝐴 = {𝑣1, 𝑣2, · · · , 𝑣𝑎} and let 𝐵 = {𝑤1, 𝑤2, · · · , 𝑤2𝑎−1}.

For each 𝑣𝑖 ∈ 𝐴,

– let 𝐵(𝑣𝑖) be the subset of 𝐵 consisting of all the vertices 𝑤𝑗 ∈ 𝐵 such that the value of bit 𝑖 in the

binary representation of 𝑗 is 1;

– for each 𝑢 ∈ 𝐷, let 𝐿(𝑢) = {𝑥1, · · · , 𝑥𝑛𝑢}. Define 𝐿(𝑣𝑖, 𝑢), the subset of 𝐿(𝑢) consisting of all the

vertices 𝑥𝑗 such that the value of bit 𝑖 in the binary representation of 𝑗 is 1 (recall 𝑛𝑢 ≤ Δ < 2𝑎).

We set 𝑆𝑣𝑖 = {𝑣𝑖}∪𝐵(𝑣𝑖)∪
⋃︀

𝑢∈𝐷 𝐿(𝑣𝑖, 𝑢). We claim that 𝑊 = {(𝑢, 𝑆𝑢) | 𝑢 ∈ 𝐷}∪{(𝑣𝑖, 𝑆𝑣𝑖) | 𝑣𝑖 ∈ 𝐴}
is a 1-Watching System for 𝐺. First of all, notice that |𝑊 | = |𝐷|+ |𝐴| ≤ 𝑘 + 𝑎. By construction, each

vertex 𝑣 in 𝐺′
has code 𝐶𝑊 (𝑣) ̸= ∅. Indeed,

𝐶𝑊 (𝑣) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{𝑣} if 𝑣 ∈ 𝐷,

{𝑣} ∪𝐷 if 𝑣 ∈ 𝐴,

{𝑣𝑖 ∈ 𝐴| the value of bit 𝑖 in the binary

representation of 𝑗 is 1} if 𝑣 = 𝑤𝑗 ∈ 𝐵,

{𝑑𝑣} ∪ {𝑣𝑖 ∈ 𝐴| if 𝑣 = 𝑥𝑗 ∈ 𝐿(𝑑𝑣), the value of bit 𝑖

in the binary representation of 𝑗 is 1} if 𝑣 ∈ 𝑉 ∖𝐷.

(2)

Now we prove that for each pair of vertices 𝑣, 𝑣′ in 𝐺′
, it holds 𝐶𝑊 (𝑣) ̸= 𝐶𝑊 (𝑣′).

– 𝑣, 𝑣′ ∈ 𝐵. Let 𝑣 = 𝑤𝑗 and 𝑣′ = 𝑤𝑗′ . Since the binary representation of 𝑗 and 𝑗′ are different, we have

𝐶𝑊 (𝑣) ̸= 𝐶𝑊 (𝑣′).
– 𝑣 ∈ 𝐴 and 𝑣′ ∈ 𝐵. Since 𝐷 ⊆ 𝐶𝑊 (𝑣) and 𝐷 ∩ 𝐶𝑊 (𝑣′) = ∅, we have 𝐶𝑊 (𝑣) ̸= 𝐶𝑊 (𝑣′).
– 𝑣, 𝑣′ ∈ 𝐴. We have 𝐶𝑊 (𝑣) ∖𝐷 = {𝑣} ≠ {𝑣′} = 𝐶𝑊 (𝑣′) ∖𝐷.

– 𝑣 ∈ 𝐴 and 𝑣′ ∈ 𝐷. We have 𝑣 ∈ 𝐶𝑊 (𝑣) and 𝑣 /∈ 𝐶𝑊 (𝑣′).
– 𝑣 ∈ 𝐴 and 𝑣′ ∈ 𝑉 ∖𝐷. Since |𝐷| ≥ 2, |𝐶𝑊 (𝑣) ∩𝐷| ≥ 2 and |𝐶𝑊 (𝑣′) ∩𝐷| = |{𝑑𝑣′}| = 1.

– 𝑣, 𝑣′ ∈ 𝐷. 𝐶𝑊 (𝑣) = {𝑣} ≠ {𝑣′} = 𝐶𝑊 (𝑣′).
– 𝑣 ∈ 𝑉 and 𝑣′ ∈ 𝐵. 𝐶𝑊 (𝑣) ∩𝐷 ̸= ∅ and 𝐶𝑊 (𝑣) ∩𝐷 = ∅ (recall 𝐶𝑊 (𝑣′) ⊂ 𝐴).

– 𝑣 ∈ 𝐷 and 𝑣′ ∈ 𝑉 ∖𝐷. 𝐶𝑊 (𝑣′) ∩𝐴 ̸= ∅ and 𝐶𝑊 (𝑣) ∩𝐴 = ∅.

– 𝑣, 𝑣′ ∈ 𝑉 ∖𝐷. If 𝑑𝑣 ̸= 𝑑𝑣′ , then the claim holds since 𝑑𝑣 ∈ 𝐶𝑊 (𝑣)∖𝐶𝑊 (𝑣′) and 𝑑𝑣′ ∈ 𝐶𝑊 (𝑣′)∖𝐶𝑊 (𝑣).
Otherwise, let 𝑣 and 𝑣′ be dominated by the same vertex 𝑑𝑣 ∈ 𝐷 (that is, 𝑣, 𝑣′ ∈ 𝐿(𝑑𝑣)). Let 𝑣 = 𝑥𝑗
and 𝑣′ = 𝑥𝑗′ with 𝑗 ̸= 𝑗′, and let 𝑖 be a bit in which 𝑗 and 𝑗′ differ. W.l.o.g., assume the value of bit 𝑖 in

the binary representation of 𝑗 is 1. Hence, by (2) 𝑣𝑖 ∈ 𝐶𝑊 (𝑣) ∖ 𝐶𝑊 (𝑣′), and the claim holds.

Let 𝑊 be a 1-Watching System for 𝐺 with |𝑊 | ≤ 𝑘 + 𝑎; that is, 𝑊 locates at most 𝑘 + 𝑎 watchers

each in a different vertex. We first claim that all the 𝑎 vertices in 𝐴 are locations of watchers to allow

that the codes 𝐶𝑊 (𝑤), for 𝑤 ∈ 𝐵, are non-empty and distinct. Assume that at most 𝑎− 𝑥 vertices of

𝐴, for 𝑥 ≥ 1, are locations of watchers. Let 𝑋 be the subset of vertices of 𝐴 that are not the location of

watchers. In this case, at most 2𝑎−𝑥 − 1 vertices in 𝐵 can have non-empty and distinct codes thanks

to the watchers located in 𝐴. Since the vertices in 𝐴 are the only neighbors of vertices in 𝐵, and the

vertices in 𝐵 are independent, we have that at least (2𝑎 − 1)− (2𝑎−𝑥 − 1) ≥ 𝑥 (recall Δ ≥ 3 and then

𝑎 ≥ 2) vertices in 𝐵 need to be locations of watchers.

Hence, if 𝑥 watchers located in the vertices of 𝐵 are substituted with 𝑥 watchers located at the 𝑥
vertices in 𝑋 so that all the remaining vertices in 𝐵 have non-empty and distinct codes, we have that

all the 𝑎 vertices in 𝐴 are locations of watchers. This implies that the 2𝑎 − 1 codes 𝐶𝑊 (𝑤) for 𝑤 ∈ 𝐵
match with all the 2𝑎 − 1 non-empty subsets of the locations of watchers in 𝐴.

By the above, we have that at most 𝑘 locations of watchers are in 𝑉 and that the codes 𝐶𝑊 (𝑣), 𝐶𝑊 (𝑣′)
of any two vertices 𝑣, 𝑣′ ∈ 𝑉 , must contain at least a vertex in 𝑉 that is a location of a watcher.

Therefore, denoted by 𝐷 the set of locations in 𝑉 and considering that 𝐶𝑊 (𝑣) ⊆ 𝑁 [𝑣] for each 𝑣 ∈ 𝑉 ,

we have 𝐶𝑊 (𝑣) ∩𝐷 ̸= ∅ for each 𝑣 ∈ 𝑉 . Hence, 𝐷 is a dominating set of 𝐺.

Corollary 1. 1-WS cannot be solved in time 2𝑂(𝑘)𝑛𝑐
, unless FPT= 𝐴[2] ⊆ 𝑊 [2].

2.3. No subexponential algorithms for 1-WS

In this section, we prove the following result.

Theorem 2. Unless ETH fails, the 1-WS problem does not admit an algorithm working in time

𝑂*(2𝑜(𝑛+𝑚)).

We present a linear reduction from 3-SAT to 1-WS.

Let 𝜑 be a 3-CNF boolean formula with 𝑟 variables 𝑥1, 𝑥2, · · · , 𝑥𝑟 and 𝑠 clauses 𝐶1, 𝐶2, · · · , 𝐶𝑠

where each clause is of length exactly three. We construct an instance ⟨𝐺𝜑, 𝑘 = 3𝑟 + 2𝑠⟩ of 1-WS. The

graph 𝐺𝜑 is constructed as follows.

– For each variable 𝑥𝑖, with 𝑖 ∈ [𝑟], we introduce a variable gadget 𝒳𝑖 that is obtained by first considering

a complete bipartite graph in which each of the two vertices in the independent set 𝐴𝑖 = {𝑎𝑖1, 𝑎𝑖2} is

connected to each of the three vertices in the independent set 𝐵𝑖 = {𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3} and to the vertices

corresponding to 𝑥𝑖 and 𝑥𝑖; and finally adding an edge connecting 𝑥𝑖 and 𝑥𝑖. See Figure 1 on the left.

– For each clause 𝐶𝑞 , with 𝑞 ∈ [𝑠], we introduce a clause gadget 𝒞𝑞 that is a complete bipartite graph

in which each of the two independent vertices in the set 𝐴𝑞 = {𝑎𝑞1, 𝑎𝑞2} is connected to each of the

three independent vertices in the set 𝐵𝑞 = {𝑏𝑞1, 𝑏𝑞2, 𝑏𝑞3} and to the vertex 𝑥𝑖 (resp. 𝑥𝑖) if 𝑥𝑖 (resp. 𝑥𝑖)
appears in the clause 𝐶𝑞 . See Figure 1 on the right.

It is easy to see that the construction of 𝐺𝜑 can be done in linear time.

Claim 1. 𝜑 is satisfiable iff ⟨𝐺𝜑, 𝑘 = 3𝑟 + 2𝑠⟩ is a YES-instance of 1-WS.

Proof. Let {𝑓1, 𝑓2, · · · , 𝑓𝑟} be a satisfying assignment for 𝜑, where 𝑓𝑖 corresponds to the truth value of

the variable 𝑥𝑖. We construct a 1-Watching System 𝑊 for 𝑉 (𝐺𝜑) as follows:

– For each 𝑖 ∈ [𝑟], if 𝑓𝑖 is true, then include the pair (𝑥𝑖, 𝑁𝐺𝜑
[𝑥𝑖]) in 𝑊 , otherwise include (𝑥𝑖, 𝑁𝐺𝜑

[𝑥𝑖]).
– For each 𝑖 ∈ [𝑟], include the pairs (𝑎𝑖1, {𝑎𝑖1, 𝑏𝑖1, 𝑏𝑖2, 𝑥𝑖, 𝑥𝑖}),(𝑎𝑖2, {𝑎𝑖2, 𝑏𝑖2, 𝑏𝑖3}) in 𝑊 .

– For each 𝑞 ∈ [𝑠], include the pairs (𝑎𝑞1, {𝑎𝑞1, 𝑏𝑞1, 𝑏𝑞2}), (𝑎𝑞2, {𝑎𝑞2, 𝑏𝑞2, 𝑏𝑞3}) in 𝑊 .

It is easy to see that the codes of the vertices of 𝐺𝜑 are the following and they are all distinct:

𝐶𝑊 (𝑏𝑖1) = {𝑎𝑖1}, 𝐶𝑊 (𝑏𝑖2) = {𝑎𝑖1, 𝑎𝑖2}, 𝐶𝑊 (𝑏𝑖3) = {𝑎𝑖2},

Xi Cq

xi xi

Ai

Bi

Aq

Bq

xi xj xk

Figure 1: On the left, the variable gadget 𝒳𝑖 for the variable 𝑥𝑖, 𝑖 ∈ [𝑟]. On the right, the clause gadget 𝒞𝑞 for
the clause 𝐶𝑞 = (𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘), 𝑞 ∈ [𝑠].

𝐶𝑊 (𝑎𝑖1) =

{︃
{𝑎𝑖1, 𝑥𝑖} if 𝑓𝑖 is true,

{𝑎𝑖1, 𝑥𝑖} otherwise,
𝐶𝑊 (𝑎𝑖2) =

{︃
{𝑎𝑖2, 𝑥𝑖} if 𝑓𝑖 is true,

{𝑎𝑖2, 𝑥𝑖} otherwise,

𝐶𝑊 (𝑥𝑖) =

{︃
{𝑥𝑖} if 𝑓𝑖 is true,

{𝑥𝑖, 𝑎𝑖1} otherwise

𝐶𝑊 (𝑥𝑖) =

{︃
{𝑥𝑖} if 𝑓𝑖 is false,

{𝑥𝑖, 𝑎𝑖1} otherwise,

𝐶𝑊 (𝑏𝑞1) = {𝑎𝑞1}, 𝐶𝑊 (𝑏𝑞2) = {𝑎𝑞1, 𝑎𝑞2}, 𝐶𝑊 (𝑏𝑞3) = {𝑎𝑞2},
𝐶𝑊 (𝑎𝑞1) = {𝑎𝑞1} ∪ {𝑥𝑖 | 𝑥𝑖 ∈ 𝐶𝑞 and 𝑓𝑖 is true} ∪ {𝑥𝑖 | 𝑥𝑖 ∈ 𝐶𝑞 and 𝑓𝑖 is false},

𝐶𝑊 (𝑎𝑞2) = {𝑎𝑞2} ∪ {𝑥𝑖 | 𝑥𝑖 ∈ 𝐶𝑞 and 𝑓𝑖 is true} ∪ {𝑥𝑖 | 𝑥𝑖 ∈ 𝐶𝑞 and 𝑓𝑖 is false}.

Notice that the set {𝑥𝑖 | 𝑥𝑖 ∈ 𝐶𝑞 and 𝑓𝑖 is true} ∪ {𝑥𝑖 | 𝑥𝑖 ∈ 𝐶𝑞 and 𝑓𝑖 is false} ≠ ∅ since at least one

of the literals in 𝐶𝑞 is true for each 𝑞 ∈ [𝑠].
Assume, now that 𝑊 is a solution for the instance ⟨𝐺𝜑, 𝑘 = 3𝑟 + 2𝑠⟩ of 1-WS.

If two watchers are used to have a different code for each vertex in 𝐵𝑖 (resp. 𝐵𝑞), then they are located

at the two vertices of 𝐴𝑖 (resp. 𝐴𝑞). (Notice that if 𝑊 is such that three or more watchers are used to

cover the vertices in some 𝐵𝑖 (resp. 𝐵𝑞), then we can rearrange such a solution by moving the location

of two watchers to the vertices of 𝐴𝑖 (resp. 𝐴𝑞) and one watcher to one vertex in 𝑁(𝐴𝑖) ∖ 𝐵𝑖 (resp.

𝑁(𝐴𝑞) ∖ 𝐵𝑞)). However, the two watchers in 𝐴𝑖 (resp. the two watchers in 𝐴𝑞) are able to generate

at most three non-empty codes - one for each vertex in 𝐵𝑖 (resp. one for each vertex in 𝐵𝑞)). Hence,

at least a vertex in 𝑁(𝐴𝑖) ∖ 𝐵𝑖 and at least a vertex in 𝑁(𝐴𝑞) ∖ 𝐵𝑞 must be a location of a watcher

(to be sure that each of the vertices in 𝐴𝑖 has a distinct code, and each of the vertices in 𝐴𝑞 has a

distinct code). Since the total number of watchers in 𝑊 is 3𝑟 + 2𝑠, then there are 𝑟 watchers located in(︀⋃︀
𝑖∈[𝑟]𝑁(𝐴𝑖)∖𝐵𝑖

)︀⋃︀ (︀⋃︀
𝑞∈[𝑠]𝑁(𝐴𝑞)∖𝐵𝑞

)︀
. If there are at least 2 watchers located in 𝑁(𝐴𝑖)∖𝐵𝑖, then

there are at least an 𝑖′ ∈ [𝑟] with 𝑖′ ̸= 𝑖 such that no watcher is in 𝑁(𝐴𝑖′) ∖𝐵𝑖′ , and this is not possible.

Hence, there is exactly 1 watcher located in 𝑁(𝐴𝑖) ∖ 𝐵𝑖 for each 𝑖 ∈ [𝑟]; moreover, among these 𝑟
watchers at least one is also in 𝑁(𝐴𝑞) ∖𝐵𝑞 , for each 𝑞 ∈ [𝑠]. This means that there is at least a literal,

w.l.o.g. let say 𝑥𝑖, in each clause 𝐶𝑞 , locating a watcher, i.e. 𝑥𝑖 ∈ 𝑁(𝐴𝑞) ∖𝐵𝑞 . Since 𝑥𝑖 ∈ 𝑁(𝐴𝑖) ∖𝐵𝑖

and at most one watcher is located in 𝑁(𝐴𝑖) ∖𝐵𝑖, we have 𝑥𝑖 does not locate a watcher. Hence, giving

value true to the literals whose vertices locate a watcher, we have a satisfying assignment for 𝜑.

Since the reduction from 3-SAT is linear (that is, the output instance has size bounded by 𝑂(𝑟 + 𝑠)),
if 1-WS admits an algorithm with running time 2𝑜(|𝐼|), where 𝐼 is the size of the input instance, then

composing the reduction with such an algorithm would yield an algorithm for 3-SAT running in time

2𝑜(𝑟+𝑠)
, which contradicts ETH, so completing the proof of Theorem 2.

It is easy to see that the lower bound given in Theorem 2 is tight. Indeed, given an instance

⟨𝐺, 𝑘⟩ of 1-WS, we could try each subset 𝐴 of 𝑉 (𝐺), with |𝐴| ≤ 𝑘, to locate watchers and then,

removing all the edges in 𝐸(𝐺) that are not incident on 𝐴, so obtaining a set of edges 𝐸𝐴, we could

try each subset 𝐵 of edges in 𝐸𝐴 to identify the subset of neighbors 𝑆𝑢 for each vertex 𝑢 ∈ 𝐴, i.e.,

𝑆𝑢 = {𝑣 | 𝑣 ∈ 𝑁𝐺[𝑢], (𝑢, 𝑣) ∈ 𝐵}. Finally, we check if 𝑊 = {(𝑢, 𝑆𝑢) | 𝑢 ∈ 𝐴} is a watching system

of 𝐺.

2.4. Graphs of bounded degree

We prove now that 1-WS remains NP-hard even when the degree of the input graph is bounded. We

establish the hardness by a reduction from the variant of 3-SAT in which each clause is of length exactly

3 and each variable occurs exactly twice unnegated and twice negated. This variant was shown to be

NP-complete by Darmann and Döcker in [4].

Consider any 3-CNF boolean formula 𝜑 with 𝑟 variables 𝑥1, 𝑥2, · · · , 𝑥𝑟 and 𝑠 clauses 𝐶1, 𝐶2, · · · , 𝐶𝑠

such that each clause is of length exactly three, and each variable appears twice unnegated and twice

negated, and use the same construction given in Theorem 3. The vertices in the sets 𝐴𝑖, 𝐵𝑖 in gadget

𝒳𝑖 for all 𝑖 ∈ [𝑟] have degree at most five and the vertices in the sets 𝐴𝑞, 𝐵𝑞 in gadget 𝒞𝑞 , for 𝑞 ∈ [𝑠],
have degree at most six. Furthermore, since each literal appears in exactly 2 clauses, it is easy to see

that the maximum degree of 𝐺𝜑 is seven. Also, the construction of 𝐺𝜑 can be done in linear time.

Following the proof of Theorem 3, we can prove that 𝜑 is satisfiable iff ⟨𝐺𝜑, 𝑘 = 3𝑟 + 2𝑠⟩ is a

YES-instance of 1-WS. Hence, we have the theorem.

Theorem 3. 1-WS is NP-hard even on graphs with maximum degree seven.

3. An 𝑂(log 𝑛)-approximation algorithm the 𝛽-Watching System

problem

Before describing the algorithm, we make the following observation: Given a watching set 𝑊 for a

graph 𝐺, if all vertex codes are distinct but a vertex 𝑣 has the empty code (𝐶𝑊 (𝑣) = ∅), we can easily

construct a watching system by adding an extra watcher 𝑤 = (𝑣, {𝑣}). For the sake of simplicity, in

this section, we allow the presence of empty codes, as resolving them requires adding at most one

additional watcher, thus increasing the size of the watching system by at most one.

For a graph 𝐺 = (𝑉,𝐸), let 𝒲 the set of all the possible 𝛽-Watching System, we define a function

𝑓 : 𝒲 → N, as follow:

Consider a watching set 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑘} ∈ 𝒲 where each 𝑤𝑖 is a couple 𝑤𝑖 = (𝑣𝑖, 𝑍𝑖), 𝑣𝑖 is

a vertex and 𝑍𝑖 ⊆ 𝑁 [𝑣𝑖]. We denote by 𝑀𝑣(𝑊) = {𝑢 ∈ 𝑉 | 𝐶𝑊 (𝑣) = 𝐶𝑊 (𝑢)} the set that comprises

all the vertices having the same code of 𝑣 according to the watching set 𝑊.
We denote by 𝑚𝑣(𝑊) = |𝑀𝑣(𝑊)| the cardinality of 𝑀𝑣(𝑊), that is, the number of times the code

associated with vertex 𝑣 is repeated across all vertices in the graph. Analogously, for each code ℓ ∈ 2𝑊

we denote by 𝑛ℓ(𝑊) = |{𝑢 ∈ 𝑉 | 𝐶𝑊 (𝑢) = ℓ}| the number of times the code ℓ is repeated across all

vertices in the graph.

For any possible set of watchers 𝑊 let

𝑓(𝑊) = 𝑛2 −
∑︁
𝑣∈𝑉

𝑚𝑣(𝑊) (3)

We notice that

∑︁
𝑣∈𝑉

𝑚𝑣(𝑊) =
∑︁
ℓ∈2𝑊

𝑛ℓ(𝑊)2, that is, the sum of the squares of the multiplicities of

each code.

Lemma 1. The following properties of 𝑓 hold:

(i) 𝑓 is integer valued;

(ii) 𝑓(∅) = 0;

(iii) 𝑓 is non-decreasing;

(iv) For every watching set 𝑊 ∈ 𝒲 , 𝑓(𝑊) ≤ 𝑛2 − 𝑛. Moreover, 𝑓(𝑊) = 𝑛2 − 𝑛 if and only if all codes

are distinct.

Proof. (i) trivially hold by definition of 𝑓 .

To prove (ii), we notice that if 𝑊 = ∅, then the same code (the empty one) is shared by all the 𝑛
vertices and, consequently, 𝑓(∅) = 𝑛2 − 𝑛2 = 0.

To prove (iii), it suffices to show that for each 𝑣 ∈ 𝑉 and for each watching set 𝑊 and each watcher

𝑤 /∈ 𝑊, we have 𝑀𝑣(𝑊 ∩ {𝑤}) ⊆ 𝑀𝑣(𝑊) and consequently the function 𝑚𝑣() is non-increasing.

Indeed, each time we add a new watcher 𝑤 = (𝑧, 𝑍) /∈ 𝑊, we have that if ∅ ≠ 𝑍 ∩𝑀𝑣(𝑊) ⊂ 𝑀𝑣(𝑊)
then 𝑀𝑣(𝑊 ∪ {𝑤}) ⊂ 𝑀𝑣(𝑊). Otherwise 𝑀𝑣(𝑊 ∪ {𝑤}) = 𝑀𝑣(𝑊).

Consider now (iv). Let 𝑊 be a watching set. Since every vertex receives a code, we have∑︀
𝑣∈𝑉 𝑚𝑣(𝑊) ≥ 𝑛 and thus 𝑛2 − 𝑛 is the maximum value of the function 𝑓.
The maximum value 𝑓(𝑊) = 𝑛2 − 𝑛 is achieved if and only if each vertex has a unique code—i.e.,

all codes are distinct. For example, the trivial watching set 𝑊𝑡 = {(𝑣1, {𝑣1}), . . . , (𝑣𝑛, {𝑣𝑛})} ∈ 𝒲
assigns a distinct code to each vertex, achieving 𝑓(𝑊𝑡) = 𝑛2 − 𝑛.

Conversely, if at least one code is repeated, then there exist at least two vertices sharing the same

code. In that case,

∑︀
𝑣∈𝑉 𝑚𝑣(𝑊) ≥ (𝑛− 2) + 2 + 2 and consequently 𝑓(𝑊) < 𝑛2 − 𝑛.

Lemma 2. The function 𝑓, given in (3), is submodular.

Proof. Recall that a function 𝑓 : 𝒲 → 𝑁 is submodular if for all 𝑊1,𝑊2 ∈ 𝒲 with 𝑊1 ⊆ 𝑊2 and for

all 𝑤 /∈ 𝑊2, the inequality 𝑓(𝑊2 ∪ {𝑤})− 𝑓(𝑊2) ≤ 𝑓(𝑊1 ∪ {𝑤})− 𝑓(𝑊1) holds.

Recalling that the class of submodular functions is closed under non-negative linear combinations, it

suffices to show that, for each 𝑣 ∈ 𝑉 , the function −𝑚𝑣(𝑊) is submodular, that is. That is, we need to

verify the inequality:

𝑚𝑣(𝑊2)−𝑚𝑣(𝑊2 ∪ {𝑤}) ≤ 𝑚𝑣(𝑊1)−𝑚𝑣(𝑊1 ∪ {𝑤}). (4)

for all 𝑊1,𝑊2 ∈ 𝒲 with 𝑊1 ⊆ 𝑊2 and 𝑤 /∈ 𝑊2.

To prove this, consider a watching set 𝑊 , a watcher 𝑤 = (𝑧, 𝑍) /∈ 𝑊 and any vertex 𝑣. There are

two cases to consider, depending on the relation between 𝑣 and 𝑍 .

Assume first that 𝑣 /∈ 𝑍. In this case, we have:

𝑀𝑣(𝑊 ∪ {𝑤}) = 𝑀𝑣(𝑊) ∖ 𝑍.

Hence,

𝑚𝑣(𝑊 ∪ {𝑤}) = 𝑚𝑣(𝑊)− |𝑍 ∩𝑀𝑣(𝑊)|,

or equivalently

𝑚𝑣(𝑊)−𝑚𝑣(𝑊 ∪ {𝑤}) = |𝑍 ∩𝑀𝑣(𝑊)|.

Using this relation on both sides of inequality (4), we obtain:

|𝑍 ∩𝑀𝑣(𝑊2)| ≤ |𝑍 ∩𝑀𝑣(𝑊1)|.

Noting that 𝑀𝑣(𝑊2) ⊆ 𝑀𝑣(𝑊1) (see proof of (iii) above), we have that the inequality (4) holds.

The case 𝑣 ∈ 𝑍 is proved with the same arguments, using 𝑍 = 𝑉 ∖ 𝑍 in place of 𝑍 .

Theorem 4. min-𝛽-WS can be approximated in polynomial time by a factor of 2 log 𝑛+ 1.

Proof. Let 𝒜 denote the natural greedy strategy which starts with 𝑊 = ∅ and iteratively adds to 𝑊
the element 𝑤 /∈ 𝑊 that maximizes the marginal gain 𝑓(𝑊 ∪ {𝑤})− 𝑓({𝑤}), until 𝑓(𝑊) = 𝑛2 − 𝑛 is

achieved. By a classical result of Wolsey [18], this greedy algorithm 𝒜 is a (ln(max𝑤 𝑓({𝑤})) + 1)-
approximation algorithm for the Watching System problem. Noticing that using a single watcher 𝑤 we

can have only two codes ({∅, {𝑤}}). Hence,

𝑓({𝑤}) = 𝑛2 −
∑︁
ℓ∈2𝑊

𝑛ℓ(𝑊)2 = 𝑛2 −
(︀
𝑛∅({𝑤})2 + 𝑛{𝑤}({𝑤})2

)︀
= 𝑛2 −

(︀
𝑎2 + (𝑛− 𝑎)2

)︀

for some 1 ≤ 𝑎 ≤ 𝑛− 1. The maximum of this function is obtained for 𝑎 = 𝑛/2 and consequently, for

each watcher 𝑤, we have

𝑓({𝑤}) ≤ 𝑛2 − (𝑛2/4 + 𝑛2/4) = 𝑛2/2.

Hence the approximation provided by the algorithm 𝒜 is

ln(𝑛2/2) + 1 < log(𝑛2/2) + 1 = 2 log 𝑛.

Additionally, since the final solution may still include a vertex associated with the empty code, we may

need to add one extra watcher to obtain a watching system. This increases the approximation ratio by

at most 1, yielding a final approximation factor of 2 log 𝑛+ 1.

It is worth mentioning that, to identify the watcher 𝑤 that maximizes the marginal gain at each step,

the algorithm considers all the vertices 𝑧 ∈ 𝑉 as the location of a new watcher 𝑤, excluding those

that have already been used 𝛽 times. For each candidate location 𝑧, the maximal marginal gain can be

computed in polynomial time based on the following observations:

• Assigning the new code ℓ′ = ℓ ∪ {𝑤} to a vertex having code ℓ does not affect the value of the

function 𝑓 for all the vertices having a different code. Therefore, the vertices can be grouped by

their current codes, and each group can be analyzed independently.

• Within a group of vertices sharing the same code ℓ, updating any subset of them to receive the

new code ℓ′ = ℓ∪ {𝑤}, has the same effect on 𝑓 , regardless of which specific vertices are chosen.

As a result, it is sufficient to determine, for each group, how many vertices should be updated,

rather than which ones.

Hence, once the location 𝑧 of the watcher is fixed, the optimal subset 𝑍 ⊆ 𝑁 [𝑧] that maximizes the

marginal gain can be computed as follows. For each code ℓ appearing among the vertices in 𝑁 [𝑍],
define:

• 𝑐 = |{𝑢 ∈ 𝑁 [𝑍] | 𝐶𝑊 (𝑢) = ℓ}| : the number of vertices in 𝑁 [𝑍] with code ℓ,

• 𝐶 = |{𝑢 ∈ 𝑉 | 𝐶𝑊 (𝑢) = ℓ}| : the total number of vertices in the graph with code ℓ.

The objective is to choose a value 1 ≤ 𝑥 ≤ 𝑐, representing how many vertices in the group should have

their code updated from ℓ to ℓ′ = ℓ∪{𝑤}, in a way that maximizes the increase in 𝑓 . Since maximizing

the increase in 𝑓 corresponds to minimizing the function 𝑔(𝑥) = 𝑥2 + (𝐶 − 𝑥), which is convex and

minimized at 𝑥 = 𝐶/2, the optimal number of updates is 𝑥 = min{𝑐, ⌊𝐶/2⌋}.

Thus, for a fixed location 𝑧, an optimal subset 𝑍 ⊆ 𝑁 [𝑧] can be computed in 𝑂(|𝑁 [𝑧]|) time. Since

this procedure is repeated for each candidate vertex 𝑧, the overall time complexity for identifying the

locally optimal watcher 𝑤 at each step is 𝑂(𝑚).

4. An Algorithm for Trees

In this section, given a watching set 𝑊 , with a slight abuse of notation, we refer to a vertex 𝑣 as a

watcher if 𝑣 is the location of at least one watcher in 𝑊 .

We give a dynamic programming algorithm, which, exploiting the structure of the input graph (a

tree), enables us to solve the min-𝛽-WS problem.

Before proceeding with the description of the algorithm, the following observation should be noted.

Observation 1. Given a graph 𝑇 = (𝑉,𝐸) and a watching set 𝑊 . If a node 𝑣 is covered by at least two

watchers in 𝑊 , then its code 𝐶𝑊 (𝑣) is unique.

Given a tree 𝑇 = (𝑉,𝐸), we root it at an arbitrary vertex 𝑟, and define 𝑇 (𝑣) as the subtree of vertex

𝑣, for any 𝑣 ∈ 𝑉 . We denote by 𝑉 (𝑇 (𝑣)) the vertex set of 𝑇 (𝑣). Moreover, for each 𝑣 ̸= 𝑟, we denote

by 𝑝(𝑣) the parent of 𝑣 and by 𝐶ℎ(𝑣) the set of children of 𝑣 in 𝑇 .

The algorithm processes the vertices in a postorder manner, so that all children’s vertices are always

visited before their parent.

Fix a vertex 𝑣 ∈ 𝑉 and consider the tree 𝑇 (𝑣). In order to be able to recursively reconstruct the

solution, the algorithm calculates partial solutions 𝑊𝑣 associated with 𝑇 (𝑣), under different hypotheses,

based on the following considerations.

The vertex 𝑣 can be either a watcher (cases 𝑎, 𝑏, 𝑐) or not (cases 𝑑, 𝑒, 𝑓). If 𝑣 is a watcher, then it is

necessary to distinguish three cases: (a) The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), is a watching

system for the nodes in 𝑉 (𝑇 (𝑣)) plus the parent node 𝑝(𝑣) (that is, it enables to identify all the nodes

in 𝑉 (𝑇 (𝑣)) ∪ {𝑝(𝑣)}); (b) The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), is a watching system for the

nodes in 𝑉 (𝑇 (𝑣)); (c) The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), is a watching system for the nodes

in 𝑉 (𝑇 (𝑣)) ∖ {𝑣}.

In the case 𝑣 is not a watcher, it is necessary to distinguish three additional cases: (d) The watching

set 𝑊𝑣 , associated with 𝑇 (𝑣), is a watching system for the nodes in 𝑉 (𝑇 (𝑣)); (e) The watching set 𝑊𝑣 ,

associated with 𝑇 (𝑣), is a watching system for the nodes in 𝑉 (𝑇 (𝑣)) ∖ {𝑣} and at least one child of

𝑣 is a watcher; (f) The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), is a watching system for the nodes in

𝑉 (𝑇 (𝑣)) ∖ {𝑣}.

Hence, the following cases are considered:

Case: 𝑣 is a watcher: We consider three sub-cases:

Case 𝑎: The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), satisfies the inequality

∙ log(𝑐′(𝑣) + 3) ≤ 𝜎𝑊 (𝑣) ≤ 𝛽, if no children of 𝑣 is a watcher

∙ log(𝑐′(𝑣) + 2) ≤ 𝜎𝑊 (𝑣) ≤ 𝛽, if at least one children of 𝑣 is a watcher

where 𝑐′(𝑣) denotes the number of children of 𝑣 that have only a single watcher in their

neighborhood—namely, 𝑣 itself.

According to Observation 1, only the children that have a single watcher require distinct

codes, provided by 𝑣, since no other watcher helps distinguish them. The additional 3 codes

account for the following: the empty code is not permitted, one code must be assigned to 𝑣
itself (this is not needed if at least one child of 𝑣 is a watcher), and one code may be reserved

for the parent 𝑝(𝑣), in case it is needed. That is, the watching set 𝑊𝑣 , associated with 𝑇 (𝑣),
is a watching system for the nodes in 𝑉 (𝑇 (𝑣)) plus the parent node 𝑝(𝑣).

Case 𝑏: The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), satisfies the inequality

∙ log(𝑐′(𝑣) + 2) ≤ 𝜎𝑊 (𝑣) ≤ 𝛽, if no children of 𝑣 are watcher

∙ log(𝑐′(𝑣) + 1) ≤ 𝜎𝑊 (𝑣) ≤ 𝛽, if at least one children of 𝑣 is a watcher

meaning it is a watching system for the nodes in 𝑉 (𝑇 (𝑣)).

Case 𝑐: The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), satisfies the inequality

∙ log(𝑐′(𝑣) + 1) ≤ 𝜎𝑊 (𝑣) ≤ 𝛽,

meaning it is a watching system for the nodes in 𝑉 (𝑇 (𝑣)) ∖ {𝑣}.

We notice that if at least one child of 𝑣 is a watcher, cases 𝑏 and 𝑐 coincide.

Case 𝑣 is not a watcher: We consider three sub-cases:

Case 𝑑: The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), is a watching system for the nodes in

𝑉 (𝑇 (𝑣)). This occurs when 𝑣 has at least two watchers among its children, or one child

can provide an additional distinct code (see Case 𝑎).

Case 𝑒: The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), is not a watching system in 𝑉 (𝑇 (𝑣)), and

there exists a child 𝑢 ∈ 𝐶ℎ(𝑣) such that 𝑢 is a watcher (i.e., 𝑣 is covered by one watcher).

Case 𝑓 : The watching set 𝑊𝑣 , associated with 𝑇 (𝑣), is not a watching system in 𝑉 (𝑇 (𝑣)).

We notice that for cases 𝑎, 𝑏, 𝑑 we have that all the vertices in 𝑇 (𝑣) have a distinct code, and

consequently, they enable us to identify a 𝛽-Watching System. The other cases are auxiliary and will be

used to reconstruct the solutions related to the tree, rooted in 𝑣, starting from the solutions of the trees

rooted in each of its children.

Definition 5. Let 𝑇 = (𝑉,𝐸) be a tree of 𝑛 vertices. For each 𝑣 ∈ 𝑉, we denote by 𝒮[𝑣, 𝑥] the size of

an optimal partial solution 𝑊 *
𝑣 , such that all the vertices in 𝑉 (𝑇 (𝑣)) ∖ {𝑣} have a distinct code and case

𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} occurs.

According to Definition 5, the size of an optimal 𝛽-Watching System for 𝑇 is

min{𝒮[𝑟, 𝑎],𝒮[𝑟, 𝑏],𝒮[𝑟, 𝑑]}.

We compute all the values 𝒮[𝑣, 𝑥], for 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and for each 𝑣 ∈ 𝑉, using a bottom up

approach. In particular, for each leaf ℓ we have,

𝒮[ℓ, 𝑎] =

{︃
2 if 𝛽 ≥ 2

∞ Othewise,

𝒮[ℓ, 𝑏] = 𝒮[ℓ, 𝑐] = 1,

𝒮[ℓ, 𝑑] = 𝒮[ℓ, 𝑒] = ∞,

𝒮[ℓ, 𝑓] = 0.

For each internal vertex 𝑣, we consider first the cases where 𝑣 is a watcher.

Let 𝛿𝑣 the number of children of 𝑣, we denote 𝑢𝑖 the 𝑖𝑡ℎ children of 𝑣. We are going to build another

auxiliary table to compute the optimal solution of internal nodes.

Definition 6. Let 𝑇 = (𝑉,𝐸) be a tree of 𝑛 vertices. For each 𝑣 ∈ 𝑉 , and 1 ≤ 𝑞 ≤ 𝑝 ≤ 𝛿𝑣 , we denote by

• 𝐹 [𝑣, 𝑝, 𝑞, 0] the size of an optimal partial solution 𝑊 for the forest 𝑇 (𝑢1), 𝑇 (𝑢2), . . . , 𝑇 (𝑢𝑝) such

that at most 𝑞 vertices among 𝑢1, 𝑢2, . . . , 𝑢𝑝 are not covered by any watcher while none of them is a

watcher.

• 𝐹 [𝑣, 𝑝, 𝑞,≥1] the size of an optimal partial solution 𝑊 for the forest 𝑇 (𝑢1), 𝑇 (𝑢2), . . . , 𝑇 (𝑢𝑝) such

that at most 𝑞 vertices among 𝑢1, 𝑢2, . . . , 𝑢𝑝 are not covered by any watcher and there is at least

one watcher among the vertices 𝑢1, 𝑢2, . . . , 𝑢𝑝.

We denote by 𝐹 [𝑣, 𝑝, 𝑞] = min{𝐹 [𝑣, 𝑝, 𝑞, 0], 𝐹 [𝑣, 𝑝, 𝑞,≥1]} the size of an optimal partial solution

𝑊 for the forest 𝑇 (𝑢1), 𝑇 (𝑢2), . . . , 𝑇 (𝑢𝑝) such that at most 𝑞 vertices among 𝑢1, 𝑢2, . . . , 𝑢𝑝 are not

covered by any watcher.

We have

𝐹 [𝑣, 1, 𝑖, 0] =

{︃
min𝑥∈{𝑑,𝑒}{𝒮[𝑢1, 𝑥]} if 𝑖 = 0

min𝑥∈{𝑑,𝑒,𝑓}{𝒮[𝑢1, 𝑥]} if 𝑖 = 1

For all 1 < 𝑗 ≤ 𝛿𝑣,

𝐹 [𝑣, 𝑗, 𝑖, 0] =

⎧⎪⎨⎪⎩
𝐹 [𝑣, 𝑗 − 1, 𝑖− 1, 0] + min𝑥∈{𝑑,𝑒,𝑓}{𝒮[𝑢𝑗 , 𝑥]} if 𝑖 = 𝑗

min

{︃
𝐹 [𝑣, 𝑗 − 1, 𝑖, 0] + min𝑥∈{𝑑,𝑒}{𝒮[𝑢𝑗 , 𝑥]}
𝐹 [𝑣, 𝑗 − 1, 𝑖− 1, 0] + 𝒮[𝑢𝑗 , 𝑓]

otherwise (i.e., 𝑖 < 𝑗)

For the table 𝐹 [·, ·, ·,≥1], we have

𝐹 [𝑣, 1, 𝑖,≥1] = min
𝑥∈{𝑎,𝑏,𝑐}

{𝒮[𝑢1, 𝑥]} for 𝑖 = 0, 1.

For all 1 < 𝑗 ≤ 𝛿𝑣,

𝐹 [𝑣, 𝑗, 𝑖,≥1] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min

{︃
𝐹 [𝑣, 𝑗 − 1, 𝑖− 1] + min𝑥∈{𝑎,𝑏,𝑐}{𝒮[𝑢𝑗 , 𝑥]}
𝐹 [𝑣, 𝑗 − 1, 𝑖− 1,≥1] + min𝑥∈{𝑑,𝑒,𝑓}{𝒮[𝑢𝑗 , 𝑥]}

if 𝑖 = 𝑗

min

⎧⎪⎨⎪⎩
𝐹 [𝑣, 𝑗 − 1, 𝑖] + min𝑥∈{𝑎,𝑏,𝑐}{𝒮[𝑢𝑗 , 𝑥]}
𝐹 [𝑣, 𝑗 − 1, 𝑖,≥1] + min𝑥∈{𝑑,𝑒}{𝒮[𝑢𝑗 , 𝑥]}
𝐹 [𝑣, 𝑗 − 1, 𝑖− 1,≥1] + 𝒮[𝑢𝑗 , 𝑓]

otherwise (i.e., 𝑖 < 𝑗)

Exploiting the table 𝐹 , we are able to compute the values for 𝒮. We have,

𝒮[𝑣, 𝑎] = min

{︃
min0≤𝑖≤𝑧{𝐹 [𝑣, 𝛿𝑣, 𝑖, 0] + ⌈log(𝑖+ 3)⌉}, where 𝑧 ≤ 𝛿𝑣 and ⌈log(𝑧 + 3)⌉ ≤ 𝛽

min0≤𝑖≤𝑧{𝐹 [𝑣, 𝛿𝑣, 𝑖,≥1] + ⌈log(𝑖+ 2)⌉}, where 𝑧 ≤ 𝛿𝑣 and ⌈log(𝑧 + 2)⌉ ≤ 𝛽
(5)

𝒮[𝑣, 𝑏] = min

{︃
min0≤𝑖≤𝑧{𝐹 [𝑣, 𝛿𝑣, 𝑖, 0] + ⌈log(𝑖+ 2)⌉}, where 𝑧 ≤ 𝛿𝑣 and ⌈log(𝑧 + 2)⌉ ≤ 𝛽

min0≤𝑖≤𝑧{𝐹 [𝑣, 𝛿𝑣, 𝑖,≥1] + ⌈log(𝑖+ 1)⌉}, where 𝑧 ≤ 𝛿𝑣 and ⌈log(𝑧 + 1)⌉ ≤ 𝛽
(6)

𝒮[𝑣, 𝑐] = min
0≤𝑖≤𝑧

{𝐹 [𝑣, 𝛿𝑣, 𝑖] + ⌈log(𝑖+ 1)⌉}, where 𝑧 ≤ 𝛿𝑣 and ⌈log(𝑧 + 1)⌉ ≤ 𝛽 (7)

We notice that 𝒮[𝑣, 𝑎] ≥ 𝒮[𝑣, 𝑏] ≥ 𝒮[𝑣, 𝑐]. From now on, we consider cases where 𝑣 is not a watcher.

We have,

𝒮[𝑣, 𝑑] = min

{︃
min𝑤1,𝑤2∈𝐶ℎ(𝑣){𝒮[𝑤1, 𝑏] + 𝒮[𝑤2, 𝑏] +

∑︀
𝑢∈𝐶ℎ(𝑣)∖{𝑤1,𝑤2}min𝑥∈{𝑏,𝑑} 𝒮[𝑢, 𝑥]}

min𝑤∈𝐶ℎ(𝑣){𝒮[𝑤, 𝑎] +
∑︀

𝑢∈𝐶ℎ(𝑣)∖{𝑤}min𝑥∈{𝑏,𝑑} 𝒮[𝑢, 𝑥]}
(8)

𝒮[𝑣, 𝑒] = min
𝑤∈𝐶ℎ(𝑣)

⎧⎨⎩𝒮[𝑤, 𝑏] +
∑︁

𝑢∈𝐶ℎ(𝑣)∖{𝑤}

𝒮[𝑢, 𝑑]

⎫⎬⎭ (9)

𝒮[𝑣, 𝑓] =
∑︁

𝑢∈𝐶ℎ(𝑣)

𝒮[𝑢, 𝑑]. (10)

Theorem 5. Let 𝑇 = (𝑉,𝐸) be a tree of 𝑛 vertices. We can compute a solution for the instance ⟨𝑇, 𝛽⟩ of

the min-𝛽-WS problem in time 𝑂(𝑛Δ3), where Δ is the maximum degree of any vertex in 𝑇 .

Proof. By induction on the tree, we can prove that the recursive formula presented in (5)–(10) coincides

with the definition of 𝒮[·, ·]; hence, the algorithm described above is correct.

For each 𝑣 ∈ 𝑉 the table 𝐹 [𝑣, ·, ·, ·] comprises 𝑂(Δ2) values, which can be computed recursively in

time 𝑂(Δ2). Given the table 𝐹 [𝑣, ·, ·, ·], the computation of 𝒮[𝑣, ·] comprises 𝑂(1) values, which can

be computed in time 𝑂(Δ). Hence, the optimal value, which corresponds to

min{𝒮[𝑟, 𝑎],𝒮[𝑟, 𝑏],𝒮[𝑟, 𝑑]}

can be computed within 𝑂(𝑛Δ3) time. An optimal watching system 𝑊 *
can be computed within the

same time by a standard backtracking technique.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] D. Auger, I. Charon, O. Hudry and A. Lobstein. Watching systems in graphs: An extension of

identifying codes. Discrete Applied Mathematics, vol. 161(12), 1674–1685, (2013).

[2] D. Auger, I. Charon. Watching systems in the king grid. Graphs Combin. 29, 333–347, (2012).

[3] D. Auger, I. Charon, O. Hudry, and A. Lobstein. Maximum size of a minimum watching system and

the graphs achieving the bound. Discrete Appl. Math. 164, 20–33, (2014).

[4] A. Darmann and J. Döcker. On simplified np-complete variants of monotone 3-sat. Discret. Appl.

Math., 292, pp. 45–58, (2021).

[5] J. Flum and M. Grohe. Parameterized Complexity theory. Texts in Theoretical Computer Science.

An EATCS Series. Springer-Verlag, Berlin, (2006).

[6] J. Flum, M. Grohe and M. Weyer. Bounded fixed-parameter tractability and log2 𝑛 nondeterministic

bits. Proc. 31st International Colloquium on Automata, Languages, and Programming (ICALP 2004),

LNCS 31425, 55–567, (2004).

[7] F. Foucaud. Combinatorial and algorithmic aspects of identifying codes in graphs. Thesis, Université

Sciences et Technologies - Bordeaux, (2012).

[8] F. Foucaud, M.A. Henning, C. Löwenstein, T. Sasse. Locating-dominating sets in twin-free graphs.

Discrete Applied Mathematics, 200, 52–58, (2016). DOI:10.1016/j.dam.2015.06.019

[9] F. Foucaud, G. Perarnau. Bounds for identifying codes in terms of degree parameters. Discrete

Applied Mathematics, 232, 99–114, (2017). DOI:10.1016/j.dam.2017.07.033

[10] M. Ghorbani, M. Dehmer, H. Maimani, S. Maddah, M. Roozbayani, F. Emmert-Streib. The watching

system as a generalization of identifying code. Applied Mathematics and Computation, 380, (2020).

[11] M. Ghorbani, S. Maddah. On the watching number of graphs using discharging procedure. J. Appl.

Math. Comput. 67, 507–518, (2021). https://doi.org/10.1007/s12190-020-01482-wS.

[12] T. W. Haynes, M. A. Henning, J. Howard. Locating and total-dominating sets in trees. Discrete

Applied Mathematics, 154, 1293–1300, (2006).

[13] M.G. Karpovsky, K. Chakrabarty and L.B. Levitin. On a new class of codes for identifying vertices

in graphs. IEEE T. Inform. Theory 44, 599–611, (1998).

[14] A. Lobstein. Watching systems, identifying, locating-dominating and discriminating codes in

graphs: A bibliography. arXiv preprint arXiv:1004.2192, (2010).

[15] M. Roozbayani and H. R. Maimani. Identifying codes and watching systems in Kneser graphs.

Discrete Mathematics, Algorithms and Applications 09(1), (2017).

[16] S. J. Seo, P. J. Slater. Open neighborhood locating dominating sets. Australasian Journal of Combi-

natorics, 46, 109–119, (2010).

[17] P. J. Slater. Dominating and reference sets in a graph. Journal of Mathematical and Physical

Sciences, 22, 445–455, (1988).

[18] L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.

Combinatorica 2, 385–393, (1982). https://doi.org/10.1007/BF02579435

	1 Introduction
	1.1 Watching systems
	1.2 The beta-Watching System problem
	1.3 Our Contributions

	2 Lower Bounds
	2.1 The A-hierarchy
	2.2 An EPT-reduction
	2.3 No subexponential algorithms for 1-WS
	2.4 Graphs of bounded degree

	3 An O log n-approximation algorithm the beta-Watching System problem
	4 An Algorithm for Trees

