
Wheelerness and Complementation
Giuseppa Castiglione1, Giovanna D’Agostino2,*, Alberto Policriti2, Antonio Restivo1 and
Brian Riccardi3

1Dip. di Matematica e Informatica, Università di Palermo, Italy
2Dip. di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, Italy
3Dip. di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Italy

Abstract
Wheeler languages, introduced to capture a class of regular languages compatible with an ordered and indexable
structure, form a well-behaved subclass of the regular languages. In this paper, we study a little-explored
property of such languages: closure under complementation. Specifically, we provide a complete characterization
of Wheeler languages whose complement is also Wheeler. Our results offer a deeper understanding of the
internal structure of these languages and have both theoretical implications—within the classification of regular
languages—and practical applications, particularly in fields leveraging coherent orderings, such as text indexing
and genomic data analysis.

Keywords
String Matching, Deterministic Finite Automata, Wheeler Languages, Graph Indexing, Co-lexicographical Sorting

1. Introduction

In recent years, interest in Wheeler languages, introduced in [1], has grown significantly, in part due to
their central role in efficient indexable data structures such as Wheeler graphs and the Burrows-Wheeler
Transform (BWT). A regular language is said to be Wheeler if it can be recognized by a deterministic
automaton equipped with a total order on its states—i.e. sets of strings—that satisfy monotonicity
conditions coordinating such ordering with the ordering of its transition labels.

While several studies have investigated the structure, minimization, and verification of the Wheeler
property in regular languages (see [2, 3, 4]), and generalize it to a larger context (see [5]), the question of
closure under complementation remains largely open. It is known that the class of Wheeler languages
(a subclass of star-free languages) is not closed under complement in general, which naturally raises
the following questions, first addressed in [6]: which Wheeler languages have the property that their
complement is also Wheeler? Can we provide a structural characterization of this subclass?

In this work, we answer these questions affirmatively by presenting a formal and constructive
characterization of Wheeler languages that are closed under complement within the Wheeler class.
Our analysis relies on a combination of automata-theoretic techniques and combinatorial properties of
co-lexicographical orders, extending and strengthening existing results. In addition to its theoretical
relevance, our characterization helps to delineate more precisely the computational and expressive
boundaries of Wheeler-based data structures.

More precisely, our result builds on a characterization given in [7] of the languages ℒ for which
both ℒ and its complement ℒ are Wheeler with respect to every total order on the alphabet. This
universality condition is particularly strong and, as a consequence, the class of such languages is rather
limited. In fact, it coincides the union of definite (DEF) and reverse definite languages (RDEF). The
classes of DEF and RDEF are classical subclasses of regular languages that have been studied since
the origins of automata theory [8] and play a role in classifications of star-free languages [9]. Starting
from this characterization, our goal is to extend the class DEF ∪ RDEF so as to capture exactly those

ICTCS 2025, 26th Italian Conference on Theoretical Computer Science, September 10–12, 2025, Pescara, Italy
*Corresponding author.

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0/deed.en

languages that are Wheeler and whose complement is also Wheeler, but with respect to a fixed alphabet
order, rather than universally. To this end, we treat the classes DEF and RDEF separately. For the
reverse definite languages, we introduce a new operation—parameterized by a fixed total order on the
alphabet—that, when applied to RDEF, yields a larger class of languages which are guaranteed to be
Wheeler and to have a Wheeler complement for that specific order. For definite languages, we first
provide a novel characterization of the class DEF in terms of string intervals. We then extend this
notion by allowing infinite periodic strings as interval endpoints. As in the RDEF case, this generalized
framework allows us to define new languages that are Wheeler and have Wheeler complements for the
chosen alphabet order.

The paper is organized as follows. In Section 2 we recall the basic notions regarding strings and
regular languages that will be needed to prove our result (see [10] as a general reference). In Section 3 we
will summarize all results on Wheeler automata and Wheeler languages together with some particular
constructions on DFA that will be needed in the sequel. Section 4 contains the characterization of
the class of regular languages which are Wheeler with a Wheeler complement and, finally, Section 5
contains conclusions and open problems.

2. Basics

Strings and Automata. Letting Σ be a finite alphabet, we denote by Σ* the set of finite words (or
strings) over Σ. A language ℒ is a subset of Σ* and Pref(ℒ) is the set of all prefixes of words in ℒ. A
deterministic finite automaton (DFA) is a tuple 𝒟 = (𝑄, 𝑠,Σ, 𝛿, 𝐹), where 𝑄 is a finite non-empty set of
states, 𝑠 is the initial state (or source), the alphabet is Σ, 𝛿 : 𝑄×Σ → 𝑄 is the (possibly partial) transition
function, and 𝐹 ⊆ 𝑄 is the set of final states. Whenever 𝛿 is not defined on (𝑞, 𝜎) we write 𝛿(𝑞, 𝜎) = ⊥.
If 𝛿 is a total function we say that the DFA is complete. When clear from the context, we omit the alphabet
Σ. If we are dealing with a single DFA, the symbols 𝑄, 𝑠, 𝛿, 𝐹 always refer to it. Sometimes we shall
describe the transition function 𝛿 using triples (labeled edges), where (𝑞, 𝑎, 𝑞′) stands for 𝑞′ = 𝛿(𝑞, 𝑎).
We call (𝑞, 𝑎, 𝑞′) an 𝑎-transition and (𝑞, 𝑎, 𝑞) an 𝑎-loop. As customary, we extend 𝛿 to strings: for all
𝑞 ∈ 𝑄, 𝑎 ∈ Σ and 𝛼 ∈ Σ*, we put 𝛿(𝑞, 𝜖) = 𝑞 and 𝛿(𝑞, 𝛼𝑎) = 𝛿(𝛿(𝑞, 𝛼), 𝑎), where 𝛿(⊥, 𝑎) = ⊥. Given
𝒟 = (𝑄, 𝑠,Σ, 𝛿, 𝐹) and 𝑞 ∈ 𝑄, we denote by 𝐼𝑞 the set {𝛼 ∈ Σ* : 𝛿(𝑠, 𝛼) = 𝑞 }. The language accepted
(or recognized) by𝒟 is then defined asℒ(𝒟) =

⋃︀
𝑞∈𝐹 𝐼𝑞 . Moreover, for any 𝑞 ∈ 𝑄, we denote by 𝜆(𝑞) the

set of all letters 𝑎 ∈ Σ that label transitions reaching 𝑞, i.e., 𝜆(𝑞) :− { 𝑎 ∈ Σ : (∃𝑝 ∈ 𝑄)(𝛿(𝑝, 𝑎) = 𝑞) }.
A Σ-loop in a DFA is a state 𝑞 such that 𝛿(𝑞, 𝑎) = 𝑞, for all 𝑎 ∈ Σ. By saying that we add a Σ-loop to 𝒜
we mean that we add a new state 𝑞 together with all transitions 𝛿(𝑞, 𝑎) = 𝑞 for 𝑎 ∈ Σ (and eventually
some other transitions ending in 𝑞). A cycle labeled 𝛾 = 𝑎1 . . . 𝑎𝑛−1 ∈ Σ* in a DFA is a sequence of
states 𝑞1, 𝑞2, . . . , 𝑞𝑛 = 𝑞1 such that 𝛿(𝑞𝑖, 𝑎𝑖) = 𝑞𝑖+1, for all 𝑖 < 𝑛, and it is simple if 𝑞1, . . . , 𝑞𝑛−1 are
pairwise distinct (in particular, a loop is a simple cycle).

We mostly consider trimmed DFAs, that is, automata in which every state is reachable (from the
initial state) and useful (can reach at least one final state). This is not restrictive: every automaton can
be turned into a trimmed and equivalent one by simply deleting unreachable states as well as states
not reaching at least one final state. In a trimmed automata 𝒟 there can be at most one state without
incoming transitions, namely 𝑠, and every string that can be read starting from 𝑠 belongs to the set of
prefixes, Pref(ℒ(𝒟)).

Languages accepted by DFAs form the class of regular languages. Given a regular language ℒ, there
exists a unique (up to isomorphism) state-wise minimum complete DFA accepting ℒ. The states of this
minimum DFA correspond to the classes of the Myhill-Nerode equivalence relation ≡ℒ on Σ*, defined
as follows (see [10]):

𝛼 ≡ℒ 𝛽 ⇐⇒ { 𝛾 ∈ Σ* : 𝛼𝛾 ∈ ℒ} = { 𝛾 ∈ Σ* : 𝛽𝛾 ∈ ℒ} .

Denoting by 𝒟𝑐
ℒ the minimum complete DFA having as states the classes [𝛼]ℒ of the Myhill-Nerode

equivalence, we have: 𝑠 = [𝜖]ℒ, 𝛿([𝛼]ℒ, 𝑎) = [𝛼 · 𝑎]ℒ, and 𝐹 = { [𝛼]ℒ : 𝛼 ∈ ℒ}. Letting 𝒟ℒ be the
DFA obtained from 𝒟𝑐

ℒ by considering only classes [𝛼]ℒ with 𝛼 ∈ Pref(ℒ) and the transitions among

them, one can easily check that 𝒟ℒ recognizes ℒ, it is trimmed, and can differ from 𝒟𝑐
ℒ for (at most)

one non-final Σ-loop. 𝒟ℒ is the DFA with minimum number of states among (not necessarily complete)
DFAs accepting ℒ.

Given a finite set 𝑆 ⊆ Σ*, we define the Prefix-tree of 𝑆 as the DFA having Pref(𝑆) as states, 𝜖 as
(root and) initial state, and whose transitions are 𝛿(𝑠, 𝑎) = 𝑠𝑎, for 𝑠, 𝑠𝑎 ∈ Pref(𝑆). Every state 𝑤 of
this DFA is reached by the single word 𝑤. The Prefix-tree acceptor of a finite set 𝑆 is the Prefix-tree of
𝑆 having 𝑆 as collection of final states.

The class DEF consists of languages of the form 𝐹 ∪ Σ*𝐺, where 𝐹,𝐺 ⊆ Σ* are finite. The class
RDEF is the class of languages whose reverse is in DEF, that is, languages of the form 𝐹 ∪ 𝐺 Σ*,
where 𝐹,𝐺 are finite. Notice that, for RDEF languages, we can always assume Pref(𝐹) ∩𝐺 = ∅ and
𝐺 prefix-free (meaning that there no strings 𝑢, 𝑣 ∈ 𝐺 such that 𝑢 is a prefix of 𝑣). Moreover, in the
minimum trimmed DFA recognizing an infinite language in RDEF the set of states 𝑄 contains a single
final Σ-loop 𝑞 and the transitions restricted to 𝑄 ∖ {𝑞} build no cycle.

3. Preliminaries

Since in this paper we will be dealing with a finite alphabet Σ and a fixed total order over it, unless
otherwise specified, we will always use Σ = {1, . . . , 𝑘}, for some 𝑘 ∈ N ∖ {0}, with its natural order.
We extend such order co-lexicographically to Σ*, that is, for 𝛼, 𝛽 ∈ Σ*, we have 𝛼 ≤ 𝛽 if and only
if either 𝛼 is a suffix of 𝛽 (denoted by 𝛼 ⊣ 𝛽), or there exist 𝛼′, 𝛽′, 𝛾 ∈ Σ* and 𝑎, 𝑏 ∈ Σ, such that
𝛼 = 𝛼′𝑎𝛾 and 𝛽 = 𝛽′𝑏𝛾 and 𝑎 < 𝑏. Notice that in the co-lexicographical order every string 𝛼 has
an immediate successor, the string 1𝛼, but there are strings without an immediate predecessor, e.g.
the string 2. If 𝛼 is a string, we denote by |𝛼| its length, and by 𝛼[𝑖] its 𝑖-th character from the left, if
1 ≤ 𝑖 ≤ |𝛼|.

Wheeler Automata and Languages. Wheeler Automata are a special class of DFAs that leverage
an a priori fixed order of the alphabet in order to achieve, among other things, efficient compression
and indexing (see [1]). Specifically, the co-lexicographic order is lifted from strings to states of the
automaton in such a way that 𝑝 precedes 𝑞 if and only if, for every 𝛼 reaching 𝑝 and 𝛽 reaching 𝑞, 𝛼
precedes 𝛽 co-lexicographically. Axioms (W1) and (W2) below do the job.

Definition 3.1 (Wheeler Automaton [1]). A Wheeler DFA (WDFA for brevity) is a trimmed DFA
endowed with a total order (𝑄,≤) on the set of states such that the initial state 𝑠 has no incoming
transitions, it is minimum for ≤, and the following two Wheeler axioms are satisfied. Let 𝑝′ = 𝛿(𝑝, 𝑖)
and 𝑞′ = 𝛿(𝑞, 𝑗):

(W1) if 𝑖 < 𝑗, then 𝑝′ < 𝑞′;
(W2) if 𝑖 = 𝑗, 𝑝 < 𝑞, and 𝑝′ ̸= 𝑞′, then 𝑝′ < 𝑞′.

Notice that we use the same symbol for the order on the alphabet and the states. Moreover, notice
that (W1) implies that a WDFA is input consistent, that is, |𝜆(𝑝)| = 1 for all states 𝑝 ̸= 𝑠. Any DFA can
be transformed into an equivalent input consistent DFA in 𝒪

(︀
|𝑄| · |Σ|

)︀
time by simply creating, for

each state 𝑞 ∈ 𝑄, at most |Σ| copies of 𝑞, one for each different incoming label of 𝑞. An input consistent
DFA can also be pictured as a graph where the labels of the edges are moved to the respective target
states (a state is labeled 𝑖 when the transitions reaching 𝑞 are 𝑖-transitions). The initial state, reached by
no transitions, is labeled with #, where # < 𝑖 for all 𝑖 ∈ Σ. An example of a Wheeler state-labeled
DFA is depicted in Figure 1. The unique Wheeler order on the DFA is the one where, for 𝑖, 𝑗 ∈ Σ, if
𝑖 < 𝑗, then a state labeled 𝑖 precedes a state labeled 𝑗, and the final state labeled 2 (above in the figure)
precedes the state labeled 2 below.

It can be proved (see [3, 5]) that, if a total order satisfying Definition 3.1 exists, then it is unique and,
as we said, allows the lifting of the co-lexicographic order from strings to states. More precisely, given
a trimmed, input consistent DFA 𝒟 in which the initial state has no incoming edges, we can define a

#start

1

3

2

2 4

Figure 1: A state-labeled WDFA 𝒟 recognizing the language ℒ = 12* ∪ 32+4.

partial order ≤𝒟 on 𝑄 by 𝑞 ≤𝒟 𝑞′ ⇔ (𝑞 = 𝑞′) ∨ (∀𝛼 ∈ 𝐼𝑞)(∀𝛽 ∈ 𝐼𝑞′)(𝛼 < 𝛽). Then, it can be proved
that ≤𝒟 always satisfies properties (W1) and (W2) and the following holds.

Lemma 1 ([5]). A trimmed, input consistent DFA is Wheeler if and only if the partial order ≤𝒟 is total.

Remark 1. Since in a WDFA the order ≤𝒟 is total, we can decide whether 𝑞 ≤𝒟 𝑞′ by simply checking
the relative co-lexicographical order among a pair (𝛼, 𝛽) with 𝛼 ∈ 𝐼𝑞 and 𝛽 ∈ 𝐼𝑞′ . Moreover, if a
sequence of words (𝛼𝑖)𝑖∈N is monotone in the co-lexicographical order of words, the corresponding
sequence of states (𝛿(𝑠, 𝛼𝑖))𝑖∈N must be monotone in the order ≤𝒟 and, since there are only a finite
number of states, the sequence (𝛿(𝑠, 𝛼𝑖))𝑖∈N must be eventually constant.

A Wheeler language is a language accepted by a Wheeler DFA. We denote by W(<) the class of
languages that are Wheeler in the ordered alphabet (Σ, <). In order to recognize if a given regular
language is Wheeler, we shall use the following.

Lemma 2 ([3]). A regular language ℒ is Wheeler if and only if all monotone sequences in (Pref(ℒ),≤)
become eventually constant modulo ≡ℒ. In other words, for all sequences (𝛼𝑖)𝑖∈𝜔 in Pref(ℒ) such that:

𝛼1 ≤ 𝛼2 ≤ . . . ≤ 𝛼𝑖 ≤ . . . or 𝛼1 ≥ 𝛼2 ≥ . . . ≥ 𝛼𝑖 ≥ . . . ,

there exists an 𝑛 such that 𝛼ℎ ≡ℒ 𝛼𝑘, for all ℎ, 𝑘 ≥ 𝑛.

Notice that there exists a Wheeler language ℒ for which the minimum DFA 𝒟ℒ is not Wheeler.
Consider e.g. the DFA given in Fig. 2. This DFA is (minimum) but not Wheeler by Lemma 1: the
strings 124, 1244 reach 𝑧, the string 324 reaches state 𝑟, and 124 < 324 < 1244, so that states 𝑟, 𝑧
are <𝒟-incomparable. However the language recognized by this DFA is Wheeler. To prove this, we
can use a characterization of (non) Wheeler languages based on the existence of "special" pairs of
𝒟ℒ-incomparable states. More precisely:

Definition 3.2. Let 𝒟 = (𝑄, 𝑠,Σ, 𝛿, 𝐹) be a DFA. If 𝑝, 𝑞 ∈ 𝑄 then we denote by 𝑝 ▷◁< 𝑞 the fact that
𝑝, 𝑞 are ≤𝒟ℒ-incomparable, that is:

𝑝 ▷◁< 𝑞 ⇐⇒ ∃𝛼, 𝛼′ ∈ 𝐼𝑝, ∃𝛽, 𝛽′ ∈ 𝐼𝑞 (𝛼 < 𝛽) ∧ (𝛽′ < 𝛼′).

Theorem 3 ([4]). Let 𝒟ℒ be the minimum trimmed DFA accepting ℒ. Then, ℒ /∈ W(<) if and only if in
𝒟ℒ there are two nodes 𝑝 ̸= 𝑞 such that:

1. 𝑝, 𝑞 are the starting points of two equally labeled cycles;
2. 𝑝 ▷◁< 𝑞.

Going back to the language of Fig. 2, we notice that 𝒟ℒ contains only one pair from which two
equally labeled cycles start, namely the pair (𝑝, 𝑞), but 𝑝 <𝒟ℒ 𝑞 holds. Hence, the language ℒ(𝒟) is
Wheeler by Theorem 3.

Another consequence of Theorem 3 is that Wheeler languages are star-free. To see this, remember
that a counter in a DFA is a sequence of 𝑛 ≥ 2 pairwise distinct states 𝑞1, . . . , 𝑞𝑛 such that there exists
a string 𝛼 ∈ Σ* for which: (i) 𝛿(𝑞𝑛, 𝛼) = 𝑞1, and (ii) 𝛿(𝑞𝑖, 𝛼) = 𝑞𝑖+1 for all 1 ≤ 𝑖 < 𝑛. It is known that

𝑠start

𝑢

𝑣

𝑝 𝑧

𝑞 𝑟

1

3

2

2 4

2

2

4

4

Figure 2: A non Wheeler minimum DFA 𝒟 recognizing a Wheeler language.

a language is star-free iff the minimum automaton of the language is counter-free. Hence, Wheeler
languages are star-free since one can prove that a counter would always violate the conditions in
Theorem 3.

4. Wheeler Languages with a Wheeler complement

Wheeler languages are not closed under complementation; for example, the language 2* over the
ordered alphabet {1, 2} is Wheeler but its complement is not: indeed, the monotone sequence

2 < 12 < 22 < ... < 2𝑛 < 12𝑛 < 2𝑛+1 < ...

belongs to Pref(ℒ) but it is not eventually constant modulo ≡ℒ. Hence, ℒ is not Wheeler by Lemma 2.

Remark 2. One can easily find a sufficient condition for describing languages which are Wheeler with
a Wheeler complement as follows. Consider a language ℒ recognized by a Wheeler complete DFA 𝒟,
that is an automaton satisfying Def. 3.1 even without trimming. Clearly, since the trimmed version
of 𝒟 is still a Wheeler DFA, ℒ is Wheeler. Moreover, ℒ is also Wheeler, because if we swap final and
non final states in 𝒟 and trim the resulting DFA, we obtain a Wheeler DFA for ℒ. However, this is
not a necessary condition for a language to be Wheeler with a Wheeler complement, as the following
example shows. Consider Σ = {1, 2} and the language 1Σ*. Then ℒ = {𝜖} ∪ 2Σ*. Using Lemma 2
one can easily check that both ℒ and ℒ are Wheeler. However, there cannot be a complete Wheeler
DFA recognizing any of them. By Remark 2, in such a DFA any monotone sequence of words should
eventually end in the same state. However, the words of the sequence

2 < 12 < 22 < ... < 2𝑛 < 12𝑛 < 2𝑛+1 < ...

belong alternatively to ℒ and ℒ, leading to a contradiction. 1

In [7] it is proved that DEF∪RDEF coincides with the class of languages ℒ such that both ℒ and ℒ
are Wheeler with respect to every order of the alphabet.

Lemma 4 ([7]). ℒ,ℒ ∈ W(<) for all total orders < ⇔ ℒ ∈ DEF ∪ RDEF.

What happens if we drop the universality condition above? In this paper, we show that in order
to characterize the class of languages ℒ such that ℒ,ℒ ∈ 𝑊 (<) with respect to a fixed order < of Σ,
it is sufficient to consider a slight extension of the class DEF ∪ RDEF. We start with an example of
a language ℒ such that both ℒ and its complement ℒ are Wheeler for a fixed order, but ℒ is not in
DEF ∪ RDEF.

Example 4.1. Let Σ = {1, 2} and consider the language ℒ = 1+ over Σ, recognized by the DFA 𝒟 in
Fig. 3. This DFA is a complete Wheeler DFA, since it satisfies the conditions of Def. 3.1 even without
trimming — just consider the order 𝑠 <𝒟 𝑞1 <𝒟 𝑞2 <𝒟 𝑞3. Hence, both ℒ and ℒ are Wheeler by
Remark 2. Moreover, 1𝑛 ∈ ℒ, while 21𝑛, 1𝑛2 ̸∈ ℒ, for all 𝑛 > 1: hence, we cannot decide membership

1Notice that this sequence is neither in Pref(ℒ) nor in Pref(ℒ), hence it does not contradict the Wheelerness of ℒ or ℒ.

𝑠 𝑞1 𝑞2 𝑞3

1 1 2

1

2

2

1

2

Figure 3: The language recognized by this DFA and its complement are both Wheeler but outside the class
DEF ∪ RDEF.

in ℒ by just checking a prefix or suffix of fixed length, proving that ℒ ̸∈ DEF ∪ RDEF.
This simple example can also be used to explain another peculiarity of complementation for Wheeler
language. If we change the order of the alphabet so that 2 < 1, then we can prove that the language
1+ is still Wheeler but its complement is not. Consider again the complete DFA 𝒟 of Fig. 3: if 2 < 1
states 𝑞1, 𝑞2 are incomparable with respect to <𝒟, since 1 < 121 < 11 and 1, 11 reach 𝑞1 while 121
reaches 𝑞2. Hence, this DFA is not Wheeler w.r.t. the order 2 < 1 and we cannot count on it to prove
that 1+ is Wheeler. However, if we trim 𝒟 we obtain a Wheeler DFA for 1+ (insensitive to the order of
the alphabet), thereby proving that 1+ is still Wheeler when 2 < 1. Notice that this trimmed DFA is
useless to show the Wheelerness of the complement, which can indeed proved to be a non Wheeler
language by Lemma 2, since the sequence 1 < 121 < 11 < 1211 < 111 < 1211 < . . . is monotone in
(Pref(ℒ), <) but it is not eventually constant modulo ≡ℒ. 2

When the order of the alphabet is fixed, a special role is played, as we shall see, by the first symbol of
the alphabet. This can be explained as follows. If we fix a symbol 𝑖 of the alphabet, the concatenation to
the left with 𝑖, that is, the function from strings to strings defined by 𝛼 ↦→ 𝑖𝛼 is not in general monotone:
e.g. 1 < 21 but 31 > 321. However, if 𝑖 = 1 is the minimum of (Σ, <), then, for any 𝛼 ∈ Σ*, 1𝛼 is the
immediate successor of 𝛼 and, therefore, for 𝛼 < 𝛽 we have:

𝛼 < 1𝛼 ≤ 𝛽 < 1𝛽.

From this it follows, for example, that 𝛼 < 𝛽 if and only if 1𝛼 < 1𝛽. This helps significantly when
analyzing Wheelerness of languages.

The following definition characterizes more precisely the kind of application we need from the above
considerations.

Definition 4.1. Let ℒ be a regular language and ℓ = sup {𝑛 ∈ N : 1𝑛 ∈ Pref(ℒ) }. If ℓ = ∞, then we
define 1↑ℒ = ℒ otherwise, 1↑ℒ = ℒ ∪

{︀
1ℓ+𝑛𝛽 : 1ℓ𝛽 ∈ ℒ ∧ 𝑛 ∈ N

}︀
.

Remark 3. If ℓ = 0, then 1↑ℒ = 1*ℒ. For example, if ℒ = {212, 3} over the alphabet {1, 2, 3}, then
1↑ℒ = 1*{212, 3}. Notice that the operator 1↑ℒ is idempotent, but it is not a closure operator because it
is not monotone, e.g. {1, 11} ⊆ {1, 11, 1111} but 1↑{1, 11} = {1} ∪ 1*11 = 1+ ̸⊆ 1↑{1, 11, 1111} =
{1, 11} ∪ 1*1111.

We first prove that the operation ℒ ↦→ 1↑ℒ preserves Wheelerness. The intuition is that since 1𝛼
is the immediate co-lexicographic successor of 𝛼, if we add to a language the monotone sequence
1𝛼, 11𝛼, 111𝛼 . . . , with all strings reaching the same state, this cannot create any new monotone
sequence violating Lemma 2.

Lemma 5. If ℒ ∈ 𝑊 (<) then 1↑ℒ ∈ 𝑊 (<).

Proof. Let ℒ ∈ 𝑊 (<) and let ℓ = sup {𝑛 ∈ N : 1𝑛 ∈ Pref(ℒ) }. If ℓ = ∞, then 1↑ℒ = ℒ and
there is nothing to prove, hence assume ℓ < ∞. Since ℒ ∈ 𝑊 (<), there exists a Wheeler DFA

2Notice that this sequence is not in Pref(ℒ).

𝒟 = (𝑄, 𝑠, 𝛿, 𝐹) recognizing ℒ. We build a Wheeler DFA 𝒟1 recognizing 1↑ℒ in two phases. First,
we construct a (Wheeler) 𝒟′ = (𝑄′, 𝑠′, 𝛿′, 𝐹 ′) with ℒ(𝒟′) = ℒ where, for 𝑘 ≤ ℓ, any state reached by
𝛿′(𝑠′, 1𝑘) is only reached by 1𝑘. Then, we turn 𝒟′ into a Wheeler DFA 𝒟1 recognizing 1↑ℒ, so that
1↑ℒ = ℒ(𝒟1) ∈ 𝑊 (<).

The automaton 𝒟′ = (𝑄′, 𝑠′, 𝛿′, 𝐹 ′) is defined as follows. For any 1 ≤ 𝑘 ≤ ℓ, let 𝑞′𝑘 be
a copy of the state 𝑞𝑘 = 𝛿(𝑠, 1𝑘). Let 𝑄′ = 𝑄 ∪ {𝑞′1, . . . , 𝑞′ℓ}, 𝑠′ = 𝑠, and 𝐹 ′ = 𝐹 ∪
{ 𝑞′𝑘 : 𝑞𝑘 ∈ 𝐹, 1 ≤ 𝑘 ≤ ℓ }. The new transition function 𝛿′ is obtained from 𝛿 by just erasing (𝑠, 1, 𝑞1)
and adding (𝑠, 1, 𝑞′1), (𝑞

′
𝑘, 1, 𝑞

′
𝑘+1), (𝑞

′
𝑘, 𝑗, 𝑞), for 1 ≤ 𝑘 < ℓ, 𝑗 ̸= 1, and (𝑞𝑘, 𝑗, 𝑞) ∈ 𝛿 (see Fig. 4).

𝑠

𝒟

𝑞1

𝑞2

...

𝑞ℓ𝑞

1

1

1

1

j

j

1

𝑠

𝒟′

𝑞1

𝑞2

...

𝑞ℓ𝑞𝑞′ℓ

...

𝑞′2

𝑞′1

1

1

1

1

1

1

1

j

j

1

j

j

𝑠

𝒟1

𝑞1

𝑞2

...

𝑞ℓ𝑞𝑞′ℓ

...

𝑞′2

𝑞′1

𝑠

𝒟1

𝑞1

𝑞2

...

𝑞ℓ𝑞𝑞′ℓ

...

𝑞′2

𝑞′1

1

1

1

1

1

1

1

1

j

j

1

j

j

Figure 4: Assuming 𝑗 ̸= 1, the picture illustrates the two steps of the construction of 𝒟1 in Lemma 5.

Notice that both 𝛿′(𝑞′ℓ, 1) and 𝛿(𝑞ℓ, 1) are undefined. By construction, 𝒟′ is a DFA and for any
1 ≤ 𝑘 ≤ ℓ we have that 𝑞′𝑘 is reached in 𝒟′ by 1𝑘 only. Moreover, words reaching 𝑞 ∈ 𝑄 in 𝒟′

are exactly those reaching 𝑞 in 𝒟 that are different from 1𝑘, for 1 ≤ 𝑘 ≤ ℓ. This implies that
ℒ(𝒟′) = ℒ(𝒟) = ℒ. By possibly erasing non-reachable states we can also assume that 𝒟′ is trimmed.
Moreover, we can check that the preorder ≤𝒟′ is total. Since 1 is the minimum letter of the alphabet, we
have 𝑞′1 <𝒟′ 𝑞′2 <𝒟′ · · · <𝒟′ 𝑞′ℓ and all the 𝑞′𝑖’s precede states in 𝑄′ ∖ {𝑞′1, . . . , 𝑞′ℓ}, which are ordered
as in 𝒟.

From 𝒟′ we obtain 𝒟1, recognizing 1↑ℒ, by adding the self-loop (𝑞′ℓ, 1, 𝑞
′
ℓ), that is, 𝒟1 = (𝑄′, 𝑠′, 𝛿′ ∪

{(𝑞′ℓ, 1, 𝑞′ℓ)}, 𝐹 ′) (see Fig. 4). By construction, 𝑞′𝑘 , for 1 ≤ 𝑘 < ℓ, is reached in 𝒟1 by 1𝑘 only, while 𝑞′ℓ is
reached by the infintely many words in 1ℓ1*. Moreover, a state 𝑞 ∈ 𝑄′ ∖ {𝑞′1, . . . , 𝑞′𝑘} ⊆ 𝑄 is reached
in 𝒟1 only by the words 𝛼 /∈ 1* and such that one of the following holds:

1. 𝛼 reaches 𝑞 in 𝒟′ as well, or
2. 𝛼 = 1ℓ1ℎ𝛽 with ℎ > 0, 1ℓ𝛽 reaches 𝑞 in 𝒟′, and 𝛽[1] ̸= 1.

From this it follows that also the order ≤𝒟1 is total. Since, for 1 ≤ 𝑘 < ℓ, 𝑞′𝑘 is reached in 𝒟1

only by 1𝑘 and 𝑞′ℓ is reached by the words in 1ℓ1*, we have 𝑞′1 <𝒟1 · · · <𝒟1 𝑞′ℓ. Moreover, since
1 is the minimum in Σ, all states in {𝑞′1, . . . , 𝑞′𝑘} precede states in 𝑄′ ∖ {𝑞′1, . . . , 𝑞′𝑘}. Consider now
𝑞, 𝑞′ ∈ 𝑄′ ∖ {𝑞′1, . . . , 𝑞′𝑘}, with 𝑞 ̸= 𝑞′. Since, as proved above, the order ≤𝒟′ over the automaton 𝒟′ is
total, 𝑞, 𝑞′ are comparable in ≤𝒟′ : say 𝑞 <𝒟′ 𝑞′. We now prove that this implies that 𝑞 ≤𝒟1 𝑞′ holds as
well. Suppose 𝛼 reaches 𝑞 and 𝛼′ reaches 𝑞′ in 𝒟1. Then 𝛼 < 𝛼′ because one of the following cases
apply:

• 𝛼, 𝛼′ reach 𝑞, 𝑞′ in 𝒟′, respectively, hence 𝛼 < 𝛼′ because 𝑞 <𝒟′ 𝑞′.
• 𝛼 reaches 𝑞 in 𝒟′, 𝛼′ = 1ℓ1ℎ𝛽 with ℎ > 0, 1ℓ𝛽 reaches 𝑞′ in 𝒟′, and 𝛽[1] ̸= 1; in this case, from
𝑞 <𝒟′ 𝑞′ it follows 𝛼 < 1ℓ𝛽 < 1ℓ1ℎ𝛽 = 𝛼′.

• 𝛼 = 1ℓ1ℎ𝛽 with ℎ > 0, 1ℓ𝛽 reaches 𝑞 in 𝒟′, and 𝛽[1] ̸= 1, while 𝛼′ reaches 𝑞′ in 𝒟′; in this case,
from 𝑞 <𝒟′ 𝑞′ it follows 1ℓ𝛽 < 𝛼′; moreover, all words in 1ℓ1+𝛽 reach 𝑞 in 𝒟1 and form the
infinite chain of immediate successors of 1ℓ𝛽 in Σ*; since 𝛼′ ̸∈ 1ℓ1+𝛽 (𝛼′ reaches 𝑞′ and not in 𝑞
in 𝒟1), it follows that 1ℓ1ℎ𝛽 < 𝛼′.

• 𝛼 = 1ℓ1ℎ𝛽 with ℎ > 0, 1ℓ𝛽 reaches 𝑞 in 𝒟′, and 𝛽[1] ̸= 1, 𝛼′ = 1ℓ1𝑘𝛽′ with 𝑘 > 0, 1ℓ𝛽′ reaches
𝑞′ in 𝒟′, and 𝛽′[1] ̸= 1. In this case, reasoning as in the previous points we get

1ℓ𝛽 < 1ℓ1ℎ𝛽 = 𝛼 < 1ℓ𝛽′ < 1ℓ1𝑘𝛽′ = 𝛼′.

Hence, we proved that the partial order ≤𝒟1 is, in fact, total. By Lemma 1 we have that 𝒟1 is a
Wheeler automaton and, since it recognizes 1↑ℒ, we have that 1↑ℒ ∈ 𝑊 (<).

Definition 4.2. The class 1↑RDEF is the closure of RDEF under the operator 1↑ℒ:

1↑RDEF = RDEF ∪
{︁
1↑ℒ : ℒ ∈ RDEF

}︁
We first prove that this class is closed under boolean operations.

Lemma 6. The class 1↑RDEF is closed under boolean operations. Moreover, 1↑RDEF ⊆ W(<).

Proof. We first prove closure under complementation. If ℒ ∈ RDEF then it is known that ℒ ∈ RDEF.
If ℒ ∈ 1↑RDEF ∖ RDEF then there exists ℛ ∈ RDEF such that ℒ = 1↑ℛ and 1↑ℛ ≠ ℛ, that is
ℓ = sup{𝑛 : 1𝑛 ∈ Pref(ℛ)} < ∞. Let 𝐹,𝐺 be finite sets such that ℛ = 𝐹 ∪𝐺 Σ*, Pref(F)∩G = ∅,
and 𝐺 is prefix-free. Consider the DFA 𝒟, recognizing the language ℒ = 1↑ℛ, defined as follows. First,
we build the Prefix-tree acceptor of 𝐹 ∪ 𝐺, and since Pref(F) ∩ G = ∅, we have that no state in 𝐺
leads to a state in 𝐹 . We then add a new Σ-loop 𝑞 and all transitions (𝑞, 𝑖, 𝑞), for 𝑞 ∈ 𝐺, obtaining
an automaton recognizing ℛ. Finally, we add the self-loop 𝛿(1ℓ, 1) = 1ℓ obtaining 𝒟 recognizing
ℒ = 1↑ℛ.

In order to obtain a DFA for ℒ, starting from 𝒟, switch final and non-final states and add a new
final Σ-loop 𝑞′, reached by all missing transitions. Finally, we trim all states not reaching a final state,
obtaining a new 𝒟′, easily seen to accept ℒ. Notice that the Σ-loop 𝑞 of 𝒟 will be erased in 𝒟′, because
it is final in 𝒟 and there are no paths leaving it. Hence 𝑞 is not in 𝒟′.

We consider two cases.
If state 1ℓ is erased in 𝒟′, then 𝒟′ contains only one state reached by infinitely many strings — namely,

the Σ-loop 𝑞′. In this case ℒ ∈ RDEF ⊆ 1↑RDEF and we are done.
If 1ℓ is in 𝒟′, then 𝒟′ contains only two states reached by infinitely many strings — namely, 𝑞′ and

1ℓ —, and the only simple cycles in 𝒟′ are the 1-loop on 1ℓ and the Σ-loop on 𝑞′. If we remove the
transition 𝛿(1ℓ, 1) we obtain a DFA 𝒟′′ recognizing a language 𝒮 ∈ RDEF such that ℒ = 1↑𝒮 , proving
that ℒ ∈ 1↑RDEF.

As for closure under union, if ℒ1,ℒ2,∈ 1↑RDEF, let ℒ1 = 1↑ℛ1 and ℒ2 = 1↑ℛ2, with ℛ1,ℛ2 ∈
RDEF. Let ℓ𝑖 = sup{𝑛 : 1𝑛 ∈ Pref(ℛ𝑖)}, for 𝑖 = 1, 2. If ℓ1 = ℓ2 then 1↑ℛ1 ∪ 1↑ℛ2 = 1↑(ℛ1 ∪ ℛ2)
and we are done. If ℓ1 < ℓ2 then consider the language ℛ̃1 = ℛ1 ∪

{︀
1ℎ𝛽 : ℓ1 ≤ ℎ ≤ ℓ2, 1

ℓ1𝛽 ∈ ℛ1

}︀
.

Then ℛ̃1 ∈ RDEF, because whether a word 𝑤 belongs to ℛ̃1 still depends only on the prefix of fixed
length of the word. Hence, ℛ̃1 ∪ℛ2 ∈ RDEF and ℒ1 ∪ ℒ2 = 1↑(ℛ̃1 ∪ℛ2).

Being closed under complementation and union, the class 1↑RDEF is closed under boolean opera-
tions.

Finally, since 1↑RDEF = RDEF∪
{︀
1↑ℒ : ℒ ∈ RDEF

}︀
the inclusion 1↑RDEF ⊆ W(<) follows from

Lemma 4 and Lemma 5.

In Lemma 6 we proved that 1↑RDEF ⊆ W(<). We obtain a partial converse of this inclusion as
follows.

Lemma 7. Let ℒ be a regular language. If Pref(ℒ) ̸= Σ* then

ℒ ∈ W(<) ⇒ ℒ ∈ 1↑RDEF.

Proof. Suppose that ℒ ∈ W(<). Since we are assuming Pref(ℒ) ̸= Σ*, it follows that in 𝒟ℒ—minimum
DFA accepting ℒ—there is a final Σ-loop 𝑞. If the only simple cycles in 𝒟ℒ are the loops over 𝑞, then
ℒ ∈ RDEF and we are done.

Otherwise, consider a simple cycle not visiting 𝑞. We claim that if 𝛾 is the label of (any) such a simple
cycle 𝒞 starting from a state 𝑝 and 𝛼 is such that 𝛿(𝑠, 𝛼) = 𝑝, then 𝛾 = 1 and 𝛼 = 1𝑚 for some 𝑚 ∈ N.
This implies that such a cycle is unique, namely, a 1-loop on 𝛿(𝑠, 1𝑚). We prove our claim showing
that, otherwise, we could find three words 𝜁1 < 𝜁2 < 𝜁3 with 𝜁1, 𝜁3 reaching 𝑞 and 𝜁2 reaching 𝑝,
respectively. This would imply 𝑝 ▷◁< 𝑞 and, since 𝛾 is the label of a cycle both from 𝑝 and from (the
Σ-loop) 𝑞, by Theorem 3 we would contradict ℒ ∈ W(<).

Let 𝜉 be a word reaching 𝑞. We may assume 𝜉 ̸= 𝜖, otherwise ℒ = Σ* and we are done. Let 𝛼′ ∈ Σ*

be any word with 𝛼 < 𝛼′. Suppose first that 𝛾 ̸∈ 1*. Then, there exists 𝛾′ < 𝛾 with |𝛾′| = |𝛾| and we
can consider 𝜁1 = 𝜉𝛾′ < 𝜁2 = 𝛼𝛾 < 𝜁3 = 𝜉𝛼′𝛾. Since 𝜁1, 𝜁3 ∈ 𝐼𝑞 , and 𝜁2 ∈ 𝐼𝑝, we are done. Hence,
𝛾 ∈ 1* and, furthermore, since ℒ ∈ 𝑊 (<) and, consequently, is star-free, 𝒟ℒ must be counter-free,
implying 𝛾 = 1.

Next, suppose that 𝛼 ̸∈ 1*. Then let 𝛼′, 𝛼′′ ∈ Σ* be such that |𝛼′′| = |𝛼| and 𝛼′′ < 𝛼 < 𝛼′. Since
𝜁1 = 𝜉𝛼′′, 𝜁2 = 𝛼, 𝜁3 = 𝜉𝛼′ are such that 𝜁1 < 𝜁2 < 𝜁3, we would again contradict ℒ ∈ 𝑊 (<).
Therefore, 𝛼 ∈ 1* and the claim is proved.

The only cycle in 𝒟ℒ not visiting 𝑞 is the 1-labelled self-loop on 𝑝, with 𝑝 reached by 1𝑚 only.
Erasing the 1-loop from 𝑝 we then obtain a DFA accepting ℛ ∈ RDEF, thereby proving ℒ = 1↑ℛ ∈
1↑RDEF.

Corollary 8. If ℒ is a regular language with ℒ ∈ 𝑊 (<) and Pref(ℒ) ̸= Σ*, then ℒ ∈ 𝑊 (<).

Proof. Suppose ℒ ∈ 𝑊 (<) and Pref(ℒ) ̸= Σ*. By Lemma 7 we have that ℒ ∈ 1↑RDEF, hence
ℒ ∈ 1↑RDEF ⊆ W(<) by Lemma 6.

Corollary 9. If ℒ is a regular language and Pref(ℒ) ̸= Σ* then,

ℒ ∈ 𝑊 (<) ⇔ ℒ ∈ 1↑RDEF.

Proof. Implication from left to right is given in Lemma 7. Implication from right to left follows from
Lemma 6.

Thanks to the previous results we now have a complete characterization of the Wheeler Languages
with a Wheeler complement in the cases in which either Pref(ℒ) or Pref(ℒ) are different from Σ*.
Indeed it easily follows from Corollary 9 that this class coincides with 1↑RDEF.

In order to complete our characterization, we need to consider the case in which both ℒ and ℒ are
Wheeler and Pref(ℒ) = Pref(ℒ) = Σ*. In this case we will generalize the notion of interval on Σ*. A
(classic) interval in (Σ*, <) is a set of the form

(𝛼, 𝛽), [𝛼, 𝛽), (𝛼, 𝛽], [𝛼, 𝛽], (𝛼,∞), [𝛼,∞),

where 𝛼, 𝛽 ∈ Σ* and

(𝛼, 𝛽) = {𝛾 ∈ Σ* : 𝛼 < 𝛾 < 𝛽}, [𝛼, 𝛽) = {𝛾 ∈ Σ* : 𝛼 ≤ 𝛾 < 𝛽}, etc...

The words 𝛼, 𝛽 are called the bound words of the intervals (𝛼, 𝛽), [𝛼, 𝛽), . . .
Following the ideas introduced in [11], we generalize this type of intervals by considering intervals

of finite words but whose bound words can be periodic in Σ𝜔 . Since we will compare finite and infinite
words co-lexicographically, it is convenient to think of infinite words as “growing” to the left. More
precisely, an infinite word 𝜎 is depicted as 𝜎 = . . . 𝜎𝑛𝜎𝑛−1 . . . 𝜎1𝜎0, where 𝜎𝑖 ∈ Σ. Finite words are then
seen as infinite words with an infinite occurrence of the character # on the left: . . .# # # 𝜎𝑛 . . . 𝜎0,

where # < 𝑖, for all 𝑖 ∈ Σ. The co-lexicographic order < over Σ* ∪Σ𝜔 , extending the co-lexicographic
order < over Σ*, can then be defined by:

𝜎 < 𝜏 ⇔ ∃𝑛 (𝜎(𝑛) < 𝜏(𝑛) ∧ ∀𝑘 < 𝑛 𝜎(𝑘) = 𝜏(𝑘)),

where an infinite sequence of # is appended to finite words as explained above. Finally, if 𝛾, 𝛿 ∈ Σ* we
denote by 𝛾𝜔𝛿 the infinite periodic word3 . . . 𝛾𝛾 . . . 𝛾𝛿.

We can now consider intervals with bounds that are infinite periodic words. E.g. if Σ = {1, 2, 3} we
have:

(2𝜔3,∞) = {𝛼 ∈ Σ* : 2𝜔3 < 𝛼} = Σ*32*3,

while [33,∞) = Σ*33, and [3321, 31) = Σ*3321. As we shall prove later, these generalized intervals
are always (regular) Wheeler languages. First we characterize the class DEF using usual (classical)
intervals.

Lemma 10. A regular language ℒ is in DEF if and only if it is a union of a finite number of intervals in
(Σ*, <) having finite words or ∞ as bounds.

Proof. Let Σ = {1, 2, . . . , 𝑘}. We first consider languages of the form Σ*𝛽. If 𝛽 = 𝜎1 . . . 𝜎𝑛, with
𝜎𝑗 ∈ Σ, we consider two cases:

1. 𝛽 ∈ 𝑘*; in this case Σ*𝛽 = [𝛽,∞).
2. 𝛽 ̸∈ 𝑘*; in this case let ℎ be the first index from the left such that 𝜎ℎ = 𝑖 ̸= 𝑘, that is, 𝛽 =

𝑘ℎ−1 𝑖 𝜎ℎ+1 . . . 𝜎𝑛, with 𝑖 ̸= 𝑘. Define the finite word 𝛽′ as 𝛽′ = (𝑖 + 1) 𝜎ℎ+1 . . . 𝜎𝑛. Then
Σ*𝛽 = [𝛽, 𝛽′).

Suppose ℒ ∈ DEF. Then there are finite sets 𝐹 = {𝛼1, . . . 𝛼𝑚}, 𝐺 = {𝛽1, . . . , 𝛽𝑛} such that
ℒ = 𝐹 ∪Σ*𝐺 and, thus, ℒ = {𝛼1} ∪ · · · ∪ {𝛼𝑚} ∪Σ*𝛽1 ∪ · · · ∪Σ*𝛽𝑛. Since {𝛼𝑖} = [𝛼𝑖], for all 𝑖, by
the previous result ℒ is a union of a finite number of intervals in (Σ*, <) having finite words or ∞ as
bounds.

Conversely, if 𝛽 ∈ Σ*, we first prove that [𝛽,∞) ∈ DEF. If 𝛽 = 𝑘𝑗 ∈ 𝑘*, then [𝛽,∞) = Σ*𝑘𝑗 ∈
DEF. If 𝛽 ̸∈ 𝑘*, then let 𝛽′ be defined as in (2) above. Then, starting from 𝛽, we can reach a word in
𝑘𝑗 ∈ 𝑘* in a finite number of iterations of (·)′, obtaining [𝛽,∞) = [𝛽, 𝛽′) ∪ [𝛽′, 𝛽′′) ∪ . . . ∪ [𝑘𝑗 , 𝑘𝜔) =
Σ*𝛽 ∪ Σ*𝛽′ ∪ · · · ∪ Σ*𝑘𝑗 , proving that [𝛽,∞) ∈ DEF. Since [𝛽,∞) ∈ DEF, its complement [𝜖, 𝛽)
is in DEF as well and the same holds for [𝜖, 𝛽] = [𝜖, 𝛽) ∪ {𝛽} and (𝛽,∞) = [𝛽,∞) ∖ {𝛽}. Finally, if
𝛽 < 𝛾 then (𝛽, 𝛾) = (𝛽,∞) ∩ [𝜖, 𝛾) is in DEF, together with all its variations obtained by closing the
interval to the left or to the right. Since DEF is closed under finite unions, this proves that a union of a
finite number of intervals with finite or ∞ as bounds is in DEF.

Remark 4. Notice that the usual definition of DEF does not depend on a fixed order of the alphabet.
The previous lemma tells us that if ℒ ∈ DEF then, whatever the order < is, we can decompose ℒ as a
union of intervals, but these intervals change if we change the order. E.g. if Σ = {𝑎, 𝑏} and 𝑎 < 𝑏 then
Σ*𝑎 = [𝑎, 𝑏), while, if 𝑏 < 𝑎 then Σ*𝑎 = [𝑎,∞).

In the previous lemma we proved that languages in DEF are those of the form
⋃︀𝑛

𝑖=1 𝐼𝑖 where 𝐼𝑖 are
open/closed intervals with bounds 𝛼, 𝛽 ∈ Σ* ∪ {∞}. We call them intervals with finite bounds. We now
prove that, by allowing bounds to be also periodic infinite words, we get exactly the class of regular
Wheeler languages ℒ with Pref(ℒ) = Σ*.

Definition 4.3. The class DEFlim is the class of regular languages which are finite unions of intervals
in (Σ+, <) with finite or periodic words as bounds4.

By Lemma 10 we have DEF ⊆ DEFlim.

3Using the embedding introduced in [11] one such word would map to a periodic rational.
4Notice that if 𝑘 = 𝑚𝑎𝑥 Σ then we can use 𝑘𝜔 instead of ∞ as bound of an interval.

Lemma 11. The class DEFlim is closed under boolean operations. Moreover, DEFlim ⊆ W(<).

Proof. The complement of an interval is either an interval or a union of two intervals. The intersection
of a finite number of intervals is an interval. Hence, the complement of a finite union of intervals is a
finite unions of intervals. Clearly, the union of two sets that are finite union of intervals is still a finite
union of intervals, hence DEFlim is closed under boolean operations.

Suppose ℒ =
⋃︀𝑛

𝑖=1 𝐼𝑖, where the 𝐼𝑖’s are intervals. We first prove that ℒ is regular. We have already
proved that intervals with finite bounds are regular. Consider an interval of type (𝛾𝜔𝛿,∞). Then

(𝛾𝜔𝛿,∞) = {𝛼 ∈ Σ* : 𝛾𝜔𝛿 < 𝛼} = Σ*𝐹1 ∪ Σ*𝐹2𝛾
*𝛿,

with 𝐹1 = {𝛽 ∈ Σ* : |𝛽| ≤ |𝛾𝛿|, 𝛾𝛿 < 𝛽 } , 𝐹2 = {𝛽 ∈ Σ* : |𝛽| ≤ |𝛾|, 𝛾 < 𝛽 }. Hence (𝛾𝜔𝛿,∞) is
regular. Since any other interval with bounds which are finite or periodic can be constructed from
intervals of this form or with finite bounds using boolean operations, the claim follows.

We are now left to prove that the regular language ℒ =
⋃︀𝑛

𝑖=1 𝐼𝑖 is Wheeler. If ℒ is finite, this is
obvious. If ℒ is not finite, then we use Lemma 2. Assume, by way of a contradiction, that there exists a
monotone sequence (𝛼𝑖)𝑖∈𝜔 which visit alternatively two different states 𝑞, 𝑞′ of the minimum DFA
accepting ℒ. Let 𝛽 ∈ Σ* be such that 𝛿(𝑞, 𝛽) ∈ 𝐹, 𝛿(𝑞′, 𝛽) ̸∈ 𝐹 (including the case 𝛿(𝑞′, 𝛽) = ⊥), and
consider the monotone sequence (𝛼𝑖𝛽)𝑖∈𝜔 . This sequence is in ℒ infinitely often, hence there must
be an interval 𝐼𝑘 that contains an infinite number of elements of (𝛼𝑖𝛽)𝑖∈𝜔 . Notice that, by definition,
an interval contains all words of Σ* between its bound words. Hence, all elements of the sequence
(𝛼𝑖𝛽)𝑖∈𝜔 will be eventually in 𝐼𝑘 and, as a consequence, in ℒ, contradicting the fact that 𝛼𝑖 reaches 𝑞′

for infinitely many 𝑖’s and 𝛿(𝑞′, 𝛽) ̸∈ 𝐹 .

Remark 5. In Lemma 11 we have just proved that any finite union of intervals in Σ*, with finite or
periodic words as bounds, is a Wheeler language. It is not possible to generalize this result to intervals
in Pref(ℒ), e.g. the language ℒ = 13*1 ∪ 23*2 ∪ {2} is the union of two intervals in Pref(ℒ), that is,

ℒ = {𝛼 ∈ Pref(ℒ) : 11 ≤ 𝛼 < 3𝜔1 } ∪ {𝛼 ∈ Pref(ℒ) : 2 ≤ 𝛼 < 3𝜔2 }

(notice that e.g. 11 < 21 < 3𝜔1 but 21 ̸∈ Pref(ℒ)), but ℒ is not Wheeler.

Remark 6. There is an important difference, when Wheelerness is concerned, between intervals with
finite or ∞ bounds and intervals with periodic bounds. If a language ℒ is a finite union of classical
intervals and we change the order, then ℒ is still a finite union of classical intervals w.r.t. the new order
(because it is in DEF, see Remark 4). In other words, the class DEF is not sensitive to the underlying
order of the alphabet: although our characterization seems to depend from the order, the usual definition
of the class does not. This independence does not hold for intervals with periodic bounds. E.g. consider
the alphabet Σ = {1, 2, 3} and the language ℒ = Σ*12*, which is in DEFlim if the order is the standard
1 < 2 < 3 because Σ*12* = [1, 2𝜔). In this order there are two infinite sequences of words converging,
from below and above, respectively, to 2𝜔—namely, 𝛼12𝑛 and 𝛼32𝑛, for 𝛼 ∈ Σ* and 𝑛 ∈ N+.

The two sequences, however, must reach different states (one accepting and the other not accepting)
in the automaton recognizing ℒ, and cannot be merged into a unique monotone sequence: hence, there
is no violation of Lemma 2 . If, instead, we consider the order 1 < 3 < 2, the language is not Wheeler
because with this order the two sequence above can be merged into a unique monotone sequence

𝛼12 < 𝛼32 < 𝛼122 < 𝛼322 < · · · < 𝛼12𝑛 < 𝛼32𝑛 < 𝛼12𝑛+1 < 𝛼32𝑛+1 . . .

violating Lemma 2. Notice that, if the order is 1 < 3 < 2, then Σ*12* is not an interval in Σ*, because
1, 12 ∈ Σ*12* while 13 ̸∈ Σ*12*, although 1 < 13 < 12 holds.

Lemma 12 ([11]). Suppose Pref(ℒ) = Σ*. Then ℒ ∈ W(<) ⇒ ℒ ∈ DEFlim.

Proof. This result was already proved in [11]. In this paper it is proved that, given a Wheeler DFA, the
set of words ending in any given state constitute an interval of Pref(ℒ) bounded by finite or periodic
words. If ℒ is Wheeler and Pref(ℒ) = Σ*, then there exists a WDFA 𝐷 recognizing ℒ and ℒ is a union
of the Σ*-interval corresponding to final states.

Using Lemma 7 and Lemma 12 we finally obtain the following.

Theorem 13. Let ℒ be a regular language. Then

ℒ,ℒ ∈ W(<) ⇔ ℒ ∈ 1↑RDEF ∪DEFlim

Proof. (⇒) If either Pref(ℒ) or Pref(ℒ) are different from Σ* then ℒ,ℒ are both in 1↑RDEF by Lemma
7 and Lemma 5. If Pref(ℒ) = Pref(ℒ) = Σ*, then ℒ,ℒ are both in DEFlim by Lemma 12 and Lemma
11.

(⇐) If ℒ ∈ 1↑RDEF then ℒ ∈ 1↑RDEF and both ℒ and ℒ are Wheeler according to Lemma 6. If
ℒ ∈ DEFlim then ℒ ∈ DEFlim and both ℒ and ℒ are Wheeler by Lemma 11.

Notice that 1↑RDEF∩DEFlim is not limited to finite and cofinite languages. Indeed, the language ℒ
of Example 4.1 belongs to the intersection 1↑RDEF ∩DEFlim. In fact, it belongs to 1↑RDEF because
ℒ = 1↑({2, 12}{1, 2}*+𝜖) and belongs to DEFlim by Lemma 12, since it is Wheeler and Pref(ℒ) = Σ*.
Moreover, notice that Lemma 7 and Lemma 12 fail to give a complete characterization of Wheeler
language only for the language ℒ such that ℒ ∈ W(<), ℒ ̸∈ W(<), and Pref(ℒ) ̸= Σ*,Pref(ℒ) = Σ*.

5. Conclusions

In this paper we proved that the class of Wheeler languages ℒ whose complement ℒ is also Wheeler
can be fully characterized and shows interesting features. On the one hand, such class is best described
starting from the classic classes DEF and RDEF: any ℒ ∈ DEF ∪ RDEF is certainly Wheeler with
complement also Wheeler. On the other hand, however, both DEF and RDEF need a “closer look” for a
complete characterization: both must be extended to capture (exactly) Wheeler languages with Wheeler
complement. For any ℒ ∈ RDEF also 1↑ℒ is Wheeler with Wheeler complement. Moreover, and
probably more interestingly, the class DEF must also be extended to a class DEFlim that can be seen
as a partition of Σ* into a collection of open/closed intervals. Both cases need further investigation,
in particular in view of the possibility of relativizing this analysis to the (much more general) case of
partial orderings of states.

Acknowledgments

The authors thank Ruben Becker and Nicola Prezza for helpful discussions and comments.

Funding. Giuseppa Castiglione is Supported by Project “ACoMPA” (CUP B73C24001050001) funded
by the NextGeneration EU programme PNRR MUR M4 C2 Inv. 1.5 – Project ECS00000017 Tuscany
Health Ecosystem (Spoke 6), CUP Master B63C22000680007.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] T. Gagie, G. Manzini, J. Sirén, Wheeler graphs: a framework for BWT-based data structures,
Theoretical Computer Science 698 (2017) 67 – 78. doi:10.1016/j.tcs.2017.06.016, algorithms,
Strings and Theoretical Approaches in the Big Data Era (In Honor of the 60th Birthday of Professor
Raffaele Giancarlo).

[2] J. Alanko, N. Cotumaccio, N. Prezza, Linear-time minimization of wheeler dfas, in: 2022 Data
Compression Conference (DCC), 2022, pp. 53–62. doi:10.1109/DCC52660.2022.00013.

[3] J. Alanko, G. D’Agostino, A. Policriti, N. Prezza, Wheeler languages, Inf. Comput. 281 (2021)
104820. URL: https://doi.org/10.1016/j.ic.2021.104820. doi:10.1016/J.IC.2021.104820.

[4] R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, A. Policriti, N. Prezza, Optimal wheeler language
recognition, in: International Symposium on String Processing and Information Retrieval, Springer,
2023, pp. 62–74.

[5] N. Cotumaccio, G. D’Agostino, A. Policriti, N. Prezza, Co-lexicographically ordering automata and
regular languages - part I, J. ACM 70 (2023) 27:1–27:73. doi:10.1145/3607471.

[6] G. Castiglione, A. Restivo, Completing wheeler automata, in: U. de’Liguoro, M. Palazzo, L. Roversi
(Eds.), Proceedings of the 25th Italian Conference on Theoretical Computer Science, Torino, Italy,
September 11-13, 2024, volume 3811 of CEUR Workshop Proceedings, CEUR-WS.org, 2024, pp.
120–132. URL: https://ceur-ws.org/Vol-3811/paper060.pdf.

[7] R. Becker, G. Castiglione, G. D’Agostino, A. Policriti, N. Prezza, A. Restivo, B. Riccardi, Universally
wheeler languages, CoRR abs/2504.19537 (2025). URL: https://doi.org/10.48550/arXiv.2504.19537.
doi:10.48550/ARXIV.2504.19537. arXiv:2504.19537.

[8] S. C. Kleene, Representation of Events in Nerve Nets and Finite Automata, Princeton University
Press, Princeton, 1956, pp. 3–42. doi:doi:10.1515/9781400882618-002.

[9] J. A. Brzozowski, B. Li, D. Liu, Syntactic complexities of six classes of star-free languages, J. Autom.
Lang. Comb. 17 (2012) 83–105. doi:10.25596/JALC-2012-083.

[10] J. Sakarovitch, Elements of automata theory, Cambridge university press, 2009.
[11] G. Manzini, A. Policriti, N. Prezza, B. Riccardi, The rational construction of a wheeler DFA,

in: 35th Annual Symposium on Combinatorial Pattern Matching, CPM 2024, June 25-27, 2024,
Fukuoka, Japan, volume 296 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024,
pp. 23:1–23:15. doi:10.4230/LIPICS.CPM.2024.23.

http://dx.doi.org/10.1016/j.tcs.2017.06.016
http://dx.doi.org/10.1109/DCC52660.2022.00013
https://doi.org/10.1016/j.ic.2021.104820
http://dx.doi.org/10.1016/J.IC.2021.104820
http://dx.doi.org/10.1145/3607471
https://ceur-ws.org/Vol-3811/paper060.pdf
https://doi.org/10.48550/arXiv.2504.19537
http://dx.doi.org/10.48550/ARXIV.2504.19537
http://arxiv.org/abs/2504.19537
http://dx.doi.org/doi:10.1515/9781400882618-002
http://dx.doi.org/10.25596/JALC-2012-083
http://dx.doi.org/10.4230/LIPICS.CPM.2024.23

	1 Introduction
	2 Basics
	3 Preliminaries
	4 Wheeler Languages with a Wheeler complement
	5 Conclusions

