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Abstract
We study non-obvious manipulability (NOM), a relaxed form of strategyproofness, in the context of Hedonic

Games (HGs) with Friends Appreciation (FA) preferences. In HGs, the aim is to partition agents into coalitions

according to their preferences, which solely depend on the coalition they are assigned to. Under FA preferences,

agents consider any other agent either a friend or an enemy, preferring coalitions with more friends and, in case

of ties, the ones with fewer enemies. Prior research established that computing a welfare maximizing (optimum)

partition for FA preferences is not strategyproof, and the best-known approximation to the optimum subject to

strategyproofness is linear in the number of agents. In this work, we explore NOM to improve approximation

results. We first prove the existence of a NOM mechanism that always outputs the optimum; however, we also

demonstrate that the computation of an optimal partition is NP-hard. In turn, we also propose a NOM mechanism

guaranteeing a (4 + 𝑜(1))-approximation in polynomial time. Finally, we briefly discuss NOM in the case of

Enemies Aversion (EA) preferences, the counterpart of FA, where agents give priority to coalitions with fewer

enemies and show that no mechanism computing the optimum can be NOM.
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1. Introduction

Hedonic Games (HGs) [1] are a game-theoretic model describing the coalition formation of selfish

agents and have been extensively studied in the literature (e.g.,[2, 3, 4, 5, 6, 7, 8]). In such games, the

objective is to partition a set of agents into disjoint coalitions, with each agent’s satisfaction determined

solely by the members of her coalition. Different HG classes capture various social preferences, such as

additively separable HGs (ASHGs) [9] or HGs with friends appreciation (FA) preferences [10]. A recent

stream of research is focusing on designing strategyproof (SP) mechanisms [11] which can prevent

agents from manipulating the outcome by misrepresenting their preferences. Unfortunately, combining

strategyproofness with good social welfare – defined as the sum of the agents’ utilities in the outcome –

is challenging: even in the simple case of FA preferences the best-known SP mechanism guarantees

an approximation of the optimal social welfare linear in the number of agents [12]. Strategyproofness

has also been studied in several game-theoretic settings and turned out to be often incompatible with

other desirable properties or even impossible to achieve [13, 14, 15, 16]. Moreover, according to the

definition of strategyproofness, to successfully manipulate, an agent has to possess the knowledge

of others’ strategies and deeply understand the underlying mechanics of the game; otherwise, she

might end up with an outcome that is worse than the one she attempted to avoid. However, the ability

of a cognitively limited agent to satisfy this requirement seems unrealistic, leading to the notion of

non-obviously manipulable (NOM) mechanisms, which are unlikely to be manipulated in practice [17].

Our Contribution. We initiated the study of NOM within the context of HGs, focusing specifically

on FA preferences. Our contribution is threefold: i) we show that a NOM mechanism that computes

a social welfare-maximizing partition always exists (Theorem 1); ii) we prove that the underlying
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optimization problem is NP-hard (Theorem 2); iii) we design a polynomial-time NOM mechanism

achieving a (4+ 𝑜(1))-approximation (Theorem 3). Finally, we complement these results demonstrating

that optimality and NOM may be incompatible in HGs; we show this under the simple and natural

class with enemies aversion (EA) preferences, the counterpart to FA, where agents prioritize minimizing

enemies. Further details can be found in the conference version of this work [18].

RelatedWork. Alongside the extensive research on HGs [19, 20, 8, 21, 5, 4, 6, 22], the classes with FA
and EA preferences have received extensive attention [23, 24, 25, 26, 27]. In terms of strategyproofness,

part of the literature has focused on SP mechanisms that ensure some form of stability [10, 23, 28, 29].

More recently, attention has shifted toward approximating maximum social welfare [11, 30, 15, 12];

however, the strategyproofness requirement may have a negative impact on the quality of the outcome.

For instance, in the FA setting, the best-known SP mechanism achieves only a linear approximation in

the number of agents [12]. In turn, in the case of EA, the best-known polynomial algorithm achieves a

linear approximation in the number of agents, while a constant approximation ratio is possible when

time complexity is not a concern [12]. For ASHGs, a superclass of FA and EA preferences, it has been

shown that no SP mechanism can guarantee a bounded approximation ratio [15].

In contrast to strategyproofness, recently, non-obvious manipulability has been introduced [17]. This

notion turned out to be a relaxation good enough to circumvent the inherent impossibility results of

strategyprofness in several game-theoretic settings [31, 32, 33]. Since in HGs strategyproof mechanisms

fail to approximate the maximum social welfare within a constant ratio or are computationally inefficient,

this provides us with additional motivation to study NOM mechanisms in this setting.

2. Preliminaries

In the classical framework of HGs, we are given a set of 𝑛 agents, denoted by 𝒩 = {1, . . . , 𝑛}, and

aim to create a disjoint partition 𝜋 = {𝐶1, . . . , 𝐶𝑚} such that ∪𝑚ℎ=1𝐶ℎ = 𝒩 and 𝐶ℎ ∩ 𝐶𝑘 = ∅ for

ℎ ̸= 𝑘. Such a partition is also called an outcome or a coalition structure. We denote by Π the set of

all possible outcomes of the game, i.e., all possible partitions, and by 𝜋(𝑖) the coalition that agent 𝑖
belongs to in a given outcome 𝜋 ∈ Π. The main characteristic of HGs is that agents, when evaluating an

outcome, consider only the coalition they belong to, and not how the other agents aggregate. A simple

yet interesting scenario for HGs is when each agent 𝑖 partitions the others into a set of friends 𝐹𝑖 and

a set of enemies 𝐸𝑖, with 𝐹𝑖 ∪ 𝐸𝑖 = 𝒩 ∖ {𝑖} and 𝐹𝑖 ∩ 𝐸𝑖 = ∅. Here, the agents’ preferences depend

solely on how many friends and enemies are in their own coalition. Specifically, in this work we focus

on friends appreciation (FA) preferences, where agents give priority to the number of friends in their

coalition (the higher the better) and in case of ties prefer coalitions with fewer enemies. Games with FA
preferences are a proper subclass of ASHGs, where each agent 𝑖 has a value 𝑣𝑖(𝑗) for every other agent

𝑗 and her utility for being in a given coalition 𝐶 ∈ 𝒩𝑖 is 𝑢𝑖(𝐶) =
∑︀

𝑗∈𝐶∖{𝑖} 𝑣𝑖(𝑗). To comply with the

FA preferences, 𝑣𝑖 can be defined as 𝑣𝑖(𝑗) = 1, if 𝑗 ∈ 𝐹𝑖, and 𝑣𝑖(𝑗) = − 1
𝑛 , if 𝑗 ∈ 𝐸𝑖.Since the utility

of an agent depends only on the coalition she belongs to, we might write 𝑢𝑖(𝜋) to denote 𝑢𝑖(𝜋(𝑖)). An

FA instance is given by ℐ = (𝒩 , {𝑣𝑖}𝑖∈𝒩 ).
One of the main challenges in HGs is to find a partition that maximizes the overall happiness of

the agents measured by the social welfare (SW). Specifically, in an HG instance ℐ the utilitarian social

welfare of a partition 𝜋 is given by SW(𝜋) =
∑︀

𝑖∈𝒩 𝑢𝑖(𝜋). We call social optimum, or simply optimum,

any outcome OPT in argmax𝜋∈Π SW(𝜋) and denote by opt the value SW(OPT).
A very convenient representation of an FA instance ℐ is by a directed unweighted graph where

the agents are the vertices. With 𝐸𝑖 being 𝒩 ∖ {𝐹𝑖 ∪ {𝑖}}, it is sufficient to represent only friendship

relationships through edges: if for 𝑖 ̸= 𝑗 {𝑖, 𝑗} is an edge of this graph, it means 𝑗 ∈ 𝐹𝑖; otherwise, 𝑗 ∈ 𝐸𝑖.

We call this graph the friendship graph of ℐ and denote it by 𝐺𝑓 = (𝒩 , 𝐹 ), where 𝐹 = {{𝑖, 𝑗} | 𝑗 ∈ 𝐹𝑖}.

Strategyproofness and Non-obvious Manipulability. The sets 𝐹𝑖 and 𝐸𝑖 might be private infor-

mation of the agent 𝑖; therefore, to compute the outcome, we need to receive this information from



the agents. Let us denote by d = (𝑑1, . . . , 𝑑𝑛) the agents’ declarations vector, where 𝑑𝑖 contains the

information related to agent 𝑖. We assume direct revelation, and hence 𝑑𝑖(𝑗) ∈ {1,− 1
𝑛} represents

the value 𝑖 declared for an agent 𝑗. We denote by 𝒟 the space of feasible declarations d. For our

convenience, we denote by d−𝑖 the agents’ declarations except the one of 𝑖, by𝒟−𝑖 the set of all feasible

d−𝑖, and by 𝒟𝑖 the feasible declarations for 𝑖.
In this setting, the natural challenge is to design algorithms, a.k.a. mechanisms, inducing truthful

behavior of the agents. We shall denote byℳ a mechanism and byℳ(d) the output of the mechanism

– a partition upon the declaration d of the agents. The agents might be strategic, which means that

an agent 𝑖 could declare 𝑑𝑖 ̸= 𝑡𝑖, where 𝑡𝑖 ∈ 𝒟𝑖 is the real information of agent 𝑖, also called her real
type. For this reason, the design of mechanisms preventing manipulations is fundamental. The most

desirable characteristic for such kind of mechanisms is strategyproofness.

Definition 1 (Strategyproofness and Manipulability). A mechanismℳ is said to be strategyproof (SP)

if, for each 𝑖 ∈ 𝒩 having real type 𝑡𝑖, and any declaration of the other agents d−𝑖, 𝑢𝑖(ℳ(𝑡𝑖,d−𝑖)) ≥
𝑢𝑖(ℳ(𝑑𝑖,d−𝑖)) holds true for any possible false declaration 𝑑𝑖 ̸= 𝑡𝑖 of agent 𝑖.

In turn, a mechanism is said to be manipulable if there exists an agent 𝑖, a real type 𝑡𝑖 and declarations

d−𝑖 and 𝑑𝑖 ̸= 𝑡𝑖 such that this condition does not hold. Then, such 𝑑𝑖 is called a manipulation.

Since SP mechanisms may be quite inefficient w.r.t. the truthful opt, we aim to understand if mech-

anisms satisfying milder conditions lead to more efficient outcomes. Considering that 𝑖 might be

unaware of which are the declarations d−𝑖 of the other agents, she could not be able to determine

a manipulation without knowing d−𝑖. Thus, we next consider a relaxation of SP where an agent 𝑖
decides to misreport her true values only if it is clearly profitable for her. Given a mechanismℳ, let us

denote by Π𝑖(𝑑𝑖,ℳ) = {ℳ(𝑑𝑖,d−𝑖) |d−𝑖 ∈ 𝒟−𝑖} , the space of possible outcomes ofℳ given the

declaration 𝑑𝑖 of 𝑖. Notice the space Π𝑖(𝑑𝑖,ℳ) is finite.

Definition 2 (Non-obvious Manipulability). A mechanismℳ is said to be non-obviously manipulable
(NOM) if for every 𝑖 ∈ 𝒩 , real type 𝑡𝑖, and any other declaration 𝑑𝑖 the following hold true:

Condition 1 (best case): max
𝜋∈Π𝑖(𝑡𝑖,ℳ)

𝑢𝑖(𝜋) ≥ max
𝜋∈Π𝑖(𝑑𝑖,ℳ)

𝑢𝑖(𝜋)

Condition 2 (worst case): min
𝜋∈Π𝑖(𝑡𝑖,ℳ)

𝑢𝑖(𝜋) ≥ min
𝜋∈Π𝑖(𝑑𝑖,ℳ)

𝑢𝑖(𝜋)

If there exist 𝑖, 𝑡𝑖, and 𝑑𝑖 such that Condition 1 or 2 is violated, then,ℳ is obviously manipulable and 𝑑𝑖
is an obvious manipulation.

Observation 1. Strategyproofness implies non-obvious manipulability.

In what follows, we always denote by 𝑡𝑖 the real type of 𝑖 and by 𝑒𝑖 = |𝐸𝑖| and 𝑓𝑖 = |𝐹𝑖|, where 𝐸𝑖

and 𝐹𝑖 are the truthful set of friends and enemies of 𝑖, respectively.

3. An optimal and NOMmechanism

In [12], it has been shown that no strategyproof mechanism can have an approximation better than 2.

In contrast, we next show there is a way to simultaneously guarantee optimality and NOM.

Theorem 1. There exists a mechanismℳOPT that is optimal and NOM.

To show the theorem, we at first need to understand which are the worst/best outcomes for 𝑖 in the

space of possible outcomes of the optimal mechanism when 𝑖 reports 𝑡𝑖. We will then compare their

utility for 𝑖 with the worst/best outcomes for any other feasible 𝑑𝑖. Also, since in the worst/best case

instances there might be more than one optimum, we have to define a tie-breaking rule. One of the

possible ways to do it while maintaining non-obvious manipulability is to choose the optimal partition

minimizing the number of coalitions.

When 𝑖 truthfully reports 𝑡𝑖, in the best case, 𝑖 ends up in the coalition 𝐶 = {𝑖} ∪ 𝐹𝑖, which happens

when d−𝑖 is so that 𝐶 is a bidirectional clique in the friendship graph 𝐺𝑓
and all other nodes are
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(a) Octopus graph.
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(b) Generalized octopus graph.

Figure 1: Octopus graph structures having center 𝑖. Undirected edges represent bidirectional edges in 𝐺𝑓 .

isolated. This coalition is of maximum utility for 𝑖, and therefore the best case cannot be improved by

any misreport 𝑑𝑖 ̸= 𝑡𝑖. Understanding the worst case upon any possible declaration, instead, is less

trivial. When truthfully reporting, it is achieved when d−𝑖 induces in 𝐺𝑓
a specific graph structure:

Definition 3 (Octopus Graph). Given an agent 𝑖 and 𝐻 ⊆ 𝒩 ∖ {𝑖}, 𝐺𝑓 = (𝒩 , 𝐹 ) is an 𝑖-centered

octopus graph with the head 𝐻 if i) 𝐻 is a bidirectional clique in 𝐺𝑓
; ii) for each 𝑗 ∈ 𝐻 , {𝑗, 𝑖} ∈ 𝐹 ; iii)

for each 𝑗 ∈ 𝒩 ∖ 𝑖 and 𝑘 ∈ 𝒩 ∖ ({𝑖} ∪𝐻), none of {𝑗, 𝑘}, {𝑘, 𝑗}, {𝑘, 𝑖} belongs to 𝐹 while {𝑖, 𝑗} may

belong to 𝐹 . See Figure 1a for an example.

Then, if 𝐻 consists of 𝐸𝑖 and max{
⌈︀
𝑁
2

⌉︀
− |𝐸𝑖|, 0} 𝑖’s friends, then, regardless of 𝑖’s preferences, in

the optimum 𝑖 ends up in the coalition 𝐻∪{𝑖}, which is in fact the worst case by truthfully reporting. To

prove it is not possible to improve the worst case reporting 𝑑𝑖 ̸= 𝑡𝑖, we use another graph structure, the

generalized octopus graph, where agents from𝒩 ∖ ({𝑖} ∪𝐻) may form arbitrary cliques (see Figure 1b).

Then, Condition 2 is not violated as we show that a) for generalized octopus graphs, the space of possible

optimal outcomes coincides with the corresponding space for any friendship graph and b) there is no

generalized octopus graph where in the optimal outcome 𝑖 ends up in the coalition worse than 𝐻 ∪ {𝑖}.

4. Computing the optimum is NP-hard

In this section, we show that, unfortunately, computing an optimum partition is NP-hard.

Theorem 2. For FA preferences, computing the optimum is NP-hard.

Theorem 2 is proven with a reduction from the following 3-Partition problem:

Input: A ground set {𝑥1, 𝑥2, . . . , 𝑥3𝑚} of 3𝑚 elements such that for some 𝑇 > 0: (i)

∑︀3𝑚
ℎ=1 𝑥ℎ = 𝑚𝑇 ;

(ii) for each ℎ ∈ [3𝑚], 𝑥ℎ ∈ N; (iii) for each ℎ ∈ [3𝑚], 𝑇
4 < 𝑥ℎ < 𝑇

2 .

Question: Does there exist a partition of the ground set into 𝑚 disjoint subsets 𝑆1, . . . , 𝑆𝑚 such that,

for every 𝑘 ∈ [𝑚], 𝑆𝑘 = {𝑠1𝑘, 𝑠2𝑘, 𝑠3𝑘} and 𝑠1𝑘 + 𝑠2𝑘 + 𝑠3𝑘 = 𝑇 ?

Let us note that in the standard formulation of 3-Partition, condition (iii) is usually not required,

however, the problem remains strongly NP-hard even under such a condition [34]. Moreover, condi-

tion (iii) also implies that for any 𝑆 ⊆ {𝑥1, 𝑥2, . . . , 𝑥3𝑚} if

∑︀
𝑥∈𝑆 𝑥 = 𝑇 , then |𝑆| = 3. Consequently,

any partition into subsets, each having sum 𝑇 , is a partition into triples.

Given a 3-Partition instance, we construct the graph 𝐺𝑓
representing an FA instance as follows:

Element-cliques: Each of these cliques represents a specific element in the ground set of the 3-Partition

instance: For every ℎ ∈ [3𝑚], we create a bidirectional clique 𝐾ℎ
of size 𝑥ℎ.

Set-cliques: We create 𝑚 bidirectional cliques 𝐾1
𝑋 , . . . ,𝐾𝑚

𝑋 each one of size 𝑋 = 4𝑚2𝑇 . The choice

of 𝑋 is made in such a way that we can use the cliques 𝐾1
𝑋 , . . . ,𝐾𝑚

𝑋 to interpret a coalition in an

optimum partition, for the FA instance, as a triple in a partition for the 3-Partition instance.

Connections between cliques: We add 𝑥ℎ bidirectional edges between 𝐾ℎ
and each 𝐾𝑘

𝑋 in such a way

that there is exactly one bidirectional edge between each vertex of 𝐾ℎ
and some node in 𝐾𝑘

𝑋 . Since

|𝐾ℎ| = 𝑥ℎ < 𝑋 , this is always possible.

Notice that the number of agents is 𝑛 =
∑︀3𝑚

ℎ=1 𝑥ℎ +𝑚𝑋 = 𝑚𝑇 + 4𝑚3𝑇 ; thus, with 3-Partition

being strongly NP-hard the correctness of the reduction proves the NP-hardness of our problem.



5. An approximation mechanism

For the sake of achieving NOM in polynomial time, in this section, we present a (4+𝑜(1))-approximation

mechanism. We recall that in [12] it was shown that creating a coalition for each weakly connected

component of 𝐺𝑓
is SP and guarantees an 𝑛-approximation to the optimum. This is so far the best

approximation achieved by an SP mechanism. The bad performances of this mechanism can be attributed

to the fact that when 𝐺𝑓
is weakly connected but really sparse (e.g., a directed path), it would be

convenient to split the unique weakly connected component of 𝐺𝑓
into smaller coalitions.

To circumvent this, our mechanism partitions the agents into two sets, 𝑃1 and 𝑃2, of size

⌈︀
𝑛
2

⌉︀
and

⌊︀
𝑛
2

⌋︀
,

respectively. It then updates 𝑃1 and 𝑃2, through the subroutine ImproveSW more formally described

in the full paper. ImproveSW repeatedly tries to improve SW({𝑃1, 𝑃2}) by swapping two agents, that

is, simultaneously moving 𝑖 ∈ 𝑃1 to 𝑃2 and 𝑗 ∈ 𝑃2 to 𝑃1, or moving an agent from the largest to the

smallest coalition (in case the two sets have the same size the algorithm will never perform a move).

ImproveSW terminates when no swap or move can increase the SW. The mechanism then computes

the weakly connected components in 𝑃1 and 𝑃2 which will be the coalitions of the returned partition.

To show the mechanism is NOM, the initialization of {𝑃1, 𝑃2} will be crucial. The mechanism will

create the initial {𝑃1, 𝑃2} by greedily adding agents to the set 𝑃1 in the following way: At first, it inserts

an agent 𝑖 ∈ 𝒩 with highest 𝛿(𝑖), then, iteratively proceeds by including an agent 𝑗 ∈ 𝑁(𝑃1) ∖𝑃1 with

highest 𝛿(𝑗) – ties broken arbitrarily. This process continues until 𝑃1 contains exactly ⌈𝑛2 ⌉ agents. If

at some point 𝑁(𝑃1) ∖ 𝑃1 = ∅, the mechanism selects a new agent 𝑖 ∈ 𝒩 ∖ 𝑃1 with highest 𝛿(𝑖), and

proceeds as before. We call this partition a greedy 2-partition of 𝒩 . In summary:

Mechanismℳ1. Given 𝒩 and the declarations d, it creates a greedy 2-partition {𝑃1, 𝑃2}. Then,

while possible, it updates the partition using ImproveSW: {𝑃1, 𝑃2} ← ImproveSW(𝑃1, 𝑃2). Finally, it

computes 𝐶1, . . . , 𝐶𝑚, the weakly connected components in 𝑃1 and 𝑃2, and returns 𝜋 = {𝐶1, . . . , 𝐶𝑚}.

Theorem 3. For FA instances, Mechanismℳ2 is NOM and guarantees a (4 + 𝑜(1))-approximation of
the optimum in polynomial time.

We note that our approach is similar to the 4-approximating local search algorithm for the Max-Cut

problem in directed and unweighted graphs. However, due to the presence of weights {− 1
𝑛 , 1}, our

approximation factor slightly deteriorates.

6. Discussion

In this paper, we investigated NOM in HGs with FA preferences, aiming at designing mechanisms

optimizing the social welfare while preventing manipulation. Despite proving that computing a welfare-

maximizing partition is NP-hard, we showed that a NOM mechanism having a constant approximation

always exists. Moreover, if time complexity is not a concern, there exists a NOM and optimal mechanism

as well. Interestingly enough, we were also able to show that it is not always the case that optimality is

compatible with NOM. In particular, an optimal outcome cannot be NOM when agents have Enemies

Aversion (EA) preferences, the natural counterpart of FA preferences, where agents give priority to

coalitions with fewer enemies, and when the number of enemies is the same, they prefer coalitions with

a higher number of friends, i.e., 𝑣𝑖(𝑗) ∈ {1,−𝑛}, for 𝑖 ̸= 𝑗. Independent of interest, our approximation

algorithm represents the first deterministic constant-factor approximation for FA preferences; this is an

interesting contrast to EA preferences for which it is known to be hard to approximate the optimum

within a factor of 𝑂(𝑛1−𝜖) [12]. We refer the interested reader to the full paper for further details [18].

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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