
Hyperset Individualisation Algorithms
Simone Boscaratto1,*,†, Francesco Nascimben1,*,† and Alberto Policriti1,*,†

1Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Via delle Scienze, 206, Udine, 33100, Italy

Abstract
In this work, we propose a novel framework for graph canonisation called Hyperset Individualisation, using
bisimulation on a set-theoretic framework in an effort to tackle the Graph Isomorphism problem on simple
graphs. Building on this idea, we define algorithm HID, which we prove to be strictly more expressive than
colour refinement. Moreover, we define two versions of a 𝑘-dimensional HID, which we prove to have different
expressive power.

Keywords
Graph isomorphism, graph canonisation, hypersets, bisimulation, individualisation

1. Introduction

The long-standing Graph Isomorphism complexity problem, i.e. the problem of determining the com-
plexity of establishing whether two graphs are isomorphic or not, remains open to this day. Particularly
relevant to it is the thoroughly studied Weisfeiler-Leman algorithm. Originally introduced in its
2-dimensional version [1] and later generalised by Babai and Mathon [2], the k-dimensional Weisfeiler-
Leman algorithm WL𝑘 produces a stable colouring of the k-tuples of nodes 𝑣⃗ ∈ 𝑉 𝑘 of an input graph
𝐺 = ⟨𝑉,𝐸⟩. Basically, it produces a one-way error multiset WL𝑘(𝐺) containing the stable colours of all
tuples: two isomorphic graphs always result in the same multisets, while the converse does not hold
true in general. Hence, it provides an incomplete, although statistically very accurate [3], test for graph
isomorphism: larger values of 𝑘 correspond to larger classes of correctly identified graphs [4], at the
cost of increasing time complexity.

The first aim of this paper is to introduce and study a Hyperset Individualisation algorithm HI, in
an attempt to give an alternative approach to tackle the Graph Isomorphism problem with respect
to WL1, to this day the most used algorithm to practically identify graphs up to isomorphism [5]. In
this novel framework, node individualisation and bisimulation reduction techniques are combined in a
set-theoretic framework to produce a certificate for each given undirected simple graph: this is achieved
in time 𝒪(𝑛𝑚 log 𝑛), where 𝑛 is the number of nodes and 𝑚 the number of edges of the original graph.
While node individualisation is a well-known concept in the field of graph canonisation (see, e.g., [6, 7]),
and so is bisimulation reduction in several other fields (see, e.g., [8, 9]), to the best of our knowledge
the proposed algorithm is the first attempt at using the two of them together. As HI is shown to be
incomparable to WL1, it is enriched by encoding nodes’ degree, thus obtaining HID: this algorithm is
then proved to be strictly more powerful than Weisfeiler-Leman’s. Next, we define and preliminary
explore two 𝑘-dimensional generalisations of it, namely HIDE𝑘 and HIDA𝑘.

This paper is organised as follows: in Section 2, we introduce the adopted notation and the tackled
problem, recalling some essential notions. In Section 3 we define the (basic) Hyperset Individualisation
algorithm, showing its accomplishments and failures. On these grounds, Section 4 shows the improve-
ments that can be put forward by focusing on HID. In Section 5, we define HIDE𝑘 and HIDA𝑘 , describe
their currently known properties and compare their effectiveness, while in Section 6 we provide a

ICTCS 2025: Italian Conference on Theoretical Computer Science, September 10–12, 2025, Pescara, Italy
*Corresponding author.
†
These authors contributed equally.
$ simoneboscaratto@outlook.com (S. Boscaratto); francesco.nascimben@uniud.it (F. Nascimben); alberto.policriti@uniud.it
(A. Policriti)
� 0009-0008-8192-6898 (S. Boscaratto); 0009-0009-2863-165X (F. Nascimben); 0000-0001-8502-5896 (A. Policriti)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:simoneboscaratto@outlook.com
mailto:francesco.nascimben@uniud.it
mailto:alberto.policriti@uniud.it
https://orcid.org/0009-0008-8192-6898
https://orcid.org/0009-0009-2863-165X
https://orcid.org/0000-0001-8502-5896
https://creativecommons.org/licenses/by/4.0

preliminary analysis of their computational complexity. Finally, in Section 7 we draw conclusions and
state some open problems, mainly concerning the expressiveness of the aforementioned methods.

2. Basics

In this paper, standard graph-theoretic and set-theoretic notations will be adopted. In particular, a tuple
will be delimited by angled parentheses ⟨ ⟩ and a multiset by the parentheses {[]}; unordered pairs will
be represented as (· , ·), as they often do in existing literature. ⊎ will denote the multiset sum operation,
which sums the multiplicities of each element, common or not, of the addend multisets. Connections
between two nodes will be referred to as edges in the case of undirected graphs and as arcs in the
directed case; 𝐺 = ⟨𝑉𝐺, 𝐸𝐺⟩ (resp., 𝐺⃗ = ⟨𝑉𝐺⃗, 𝐸⃗𝐺⃗⟩) will denote an undirected (resp., directed) graph,
while subscripts will be omitted whenever clear from the context and unless otherwise specified. In
this case, by 𝑛 and 𝑚 we will denote, respectively, the number of nodes and edges (or arcs) of a graph.

We will mainly treat the case of finite undirected graphs without self-loops and weighted or multiple
edges, also referred to as simple graphs. At due time, we will also require these graphs to be connected.

Consider then a pair of simple graphs 𝐺 = ⟨𝑉𝐺, 𝐸𝐺⟩ and 𝐻 = ⟨𝑉𝐻 , 𝐸𝐻⟩.

Definition 2.1. An 𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 between two simple graphs 𝐺 and 𝐻 is a bijection 𝜑 : 𝑉𝐺 → 𝑉𝐻

which preserves both adjacencies and non-adjacencies, i.e. (𝑢,𝑤) ∈ 𝐸𝐺 ⇔ (𝜑(𝑢), 𝜑(𝑤)) ∈ 𝐸𝐻 for all
nodes 𝑢,𝑤 in 𝑉𝐺. If such 𝜑 exists, 𝐺 is said to be isomorphic to 𝐻 , denoted by 𝐺 ∼= 𝐻 .

Given two graphs 𝐺 and 𝐻 , the Graph Isomorphism problem (from now on, also abbreviated as GI)
consists in establishing whether 𝐺 ∼= 𝐻 or not.

2.1. Weisfeiler-Leman Algorithm

The 1-dimensional Weisfeiler-Leman (WL1, for short), also known as colour refinement, is the simplest
algorithm of the WL family. Given a graph 𝐺 = ⟨𝑉,𝐸⟩, WL1 produces a stable colouring of its nodes.
Let 𝒞1𝑖 be the colouring produced by WL1 after its 𝑖-th iteration: since we only consider uncoloured
graphs, we assume the initial colouring 𝒞10 to be uniform for all nodes. At step 𝑖 ≥ 1 and for each node
𝑣 ∈ 𝑉 , WL1 collects the colours of 𝑣’s neighbours into a multiset 𝑀𝑖(𝑣), called the aggregation map of
𝑣 at step 𝑖: a new colour 𝒞1𝑖 (𝑣) is then computed from (and uniquely associated to) 𝑣’s previous colour
and its current aggregation map, by means of a perfect hash function HASH. 𝑀0 is not defined.

𝑀𝑖(𝑣) =
{︁[︁
𝒞1𝑖−1(𝑤) : 𝑤 ∈ 𝒩 (𝑣)

]︁}︁
𝒞𝑖(𝑣) = HASH

(︁
𝒞1𝑖−1(𝑣),𝑀𝑖(𝑣)

)︁
Two nodes share the same colour at step 𝑖 only if they shared the same colour at step 𝑖− 1 and their

aggregation maps match. This refinement procedure repeats until a stable colouring 𝒞1∞ is reached:
termination is guaranteed by the finiteness of 𝑉 . We define WL1(𝐺) = {[𝒞1∞(𝑣) : 𝑣 ∈ 𝑉]}.

The generalised 𝑘-dimensional Weisfeiler-Leman (WL𝑘 , for short) produces a stable colouring of the k-
tuples in 𝑉 𝑘 . Each 𝑣⃗ ∈ 𝑉 𝑘 is initially coloured with its atomic type atp(𝑣⃗), which describes the (ordered)
subgraph induced on 𝐺 by this tuple. Formally, two tuples 𝑢⃗ = ⟨𝑢1, .., 𝑢𝑘⟩ and 𝑤⃗ = ⟨𝑤1, .., 𝑤𝑘⟩ have the
same atomic type if and only if the mapping 𝑢𝑖 ↦→ 𝑤𝑖 is an isomorphism from the 𝐺-subgraph induced
by 𝑢⃗ to the 𝐺-subgraph induced by 𝑤⃗. We denote the initial colour of each tuple 𝑣⃗ by 𝒞𝑘0 (𝑣⃗) = atp(𝑣⃗).
As for the 1-dimensional version, WL𝑘 also proceeds by repeated aggregation of neighbouring colours:
given 𝑣⃗ = ⟨𝑣1, 𝑣2, .., 𝑣𝑘⟩ and a node 𝑤, the tuple obtained by replacing exactly one of its nodes 𝑣𝑖 with
𝑤 is the 𝑖-th 𝑤-neighbour of 𝑣⃗, which we denote by 𝑣⃗𝑖,𝑤. The colour-update schema is similar to the
one described for WL1, the sole difference being that the aggregation map of a tuple 𝑣⃗ is now a multiset
of 𝑘-tuples of colours, one for each node 𝑤 in 𝐺.

𝑀𝑘
𝑖 (𝑣⃗) =

{︁[︁
⟨𝒞𝑘𝑖−1(𝑣⃗1,𝑤), . . . , 𝒞𝑘𝑖−1(𝑣⃗𝑘,𝑤)⟩ : 𝑤 ∈ 𝑉

]︁}︁
𝒞𝑘𝑖 (𝑣⃗) = HASH

(︁
𝒞𝑘𝑖−1(𝑣⃗),𝑀

𝑘
𝑖 (𝑣⃗)

)︁
Again, the refinement procedure iterates until a stable colouring 𝒞𝑘∞ is reached. We define WL𝑘(𝐺) =
{[𝒞𝑘∞(𝑣⃗) : 𝑣⃗ ∈ 𝑉 𝑘]}. WL𝑘 can be implemented to run in time 𝒪(𝑛𝑘+1 log 𝑛) on 𝑛-vertex graphs [10].

2.2. Hypersets and Bisimulation

The set-theoretic framework for our algorithm is here introduced.
A well-founded set 𝑥 is such that every descending chain in the membership relation starting from it

is finite and acyclic, meaning that 𝑥 ∋ 𝑥1 ∋ · · · ∋ 𝑥𝑛 eventually halts for a finite 𝑛—in a pure set theory,
𝑥𝑛 is always the empty set ∅—and 𝑥 ̸= 𝑥𝑖 ̸= 𝑥𝑗 for every pair 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. To compare two
well-founded sets, the extensionality criterion is applied: two sets are equal if and only if they have the
same elements.1

On the contrary, a non-well-founded set, or hyperset, admits loops in the membership relation: with
such a move we grant, for example, the existence of “extra” sets 𝑥 such that 𝑥 ∈ 𝑥, or 𝑥 ∈ 𝑥1 ∈ · · · ∈
𝑥𝑛 ∈ 𝑥. By overcoming the limits imposed by a well-founded definition of ∈, Forti and Honsell [12],
and then Aczel [13], created a richer universe in which (hyper-)sets like Ω = {Ω} exist. However,
by allowing loops, we also allow multiple alternative representations of the same hyperset (e.g., Ω
can be represented as the hyperset solving the set-theoretic equation 𝜁 = {𝜁}, or 𝜁 = {{𝜁}}, and so
on). This can be seen more easily by translating the set-theoretic representations of a hyperset into
their graph-theoretic equivalents, on which we will rely upon to define a proper equality criterion for
non-well-founded sets.

We refer to [14] for the following definitions, based on the aforementioned [13]. Consider a directed
graph 𝐺⃗ = ⟨𝑉, 𝐸⃗⟩ with finitely many nodes and no labelled or multiple edges between them; loops and
self-loops are admitted. If there exists a node 𝑝 ∈ 𝑉 , dubbed as the point of such a graph, from which
every other node is reachable, we will say that 𝐺⃗ = ⟨𝑉, 𝐸⃗, 𝑝⟩ is an accessible pointed graph, apg for short.
By interpreting each node as a (hyper-)set and each arc as the inverse membership relation—so that the
existence of an arc ⟨𝑢,𝑤⟩ ∈ 𝐸⃗ means that the set associated to 𝑤 belongs to the set associated to 𝑢, or
𝑤 ∈ 𝑢 by abuse of notation—𝐺⃗ can be decorated by suitably labelling each node with its set-theoretic
equivalent. For example, if 𝐺⃗ = ⟨{𝑝}, ∅, 𝑝⟩ is a single node with no edges, 𝑝 shall be interpreted as
the empty set ∅, as this is the only set without elements; on the contrary, if 𝐺⃗ = ⟨{𝑝}, {⟨𝑝, 𝑝⟩}, 𝑝⟩ is
made just by the node 𝑝 but with a self-loop, this shall be labelled as the aforementioned Ω, as it is the
only hyperset to contain just itself as an element (at any nesting depth). It is easy to see that every
well-founded set has a unique representation as an apg; by reversing this idea, the anti-foundation
axiom (AFA) by Aczel states that each apg admits a unique decoration.

Define the transitive closure trCl(𝑥) of a (hyper-)set 𝑥 as the set containing its elements, and their
elements, and so on. More formally:

trCl(𝑥) = 𝑥 ∪
⋃︁
𝑦∈𝑥

trCl(𝑦).

If an apg can be decorated by associating to each node either the set corresponding to its point, or an
element of its transitive closure, it will be referred to as the pointed membership graph of the (hyper-)set
labelling its point. If a hyperset ℎ has a finite transitive closure, then we can represent it by a finite
pointed membership graph: in this case we will say that ℎ is a hereditarily finite rational hyperset.2

Observe that, as the hyperset Ω can be represented in several set-theoretic ways, it has also multiple
graphical representations. To handle this, the following definition is needed to outline an equality
criterion compatible with hypersets.

Definition 2.2 (Bisimulation, bisimilarity). Let 𝐺⃗ = ⟨𝑉, 𝐸⃗⟩ be a directed graph. A binary relation ♭
among the nodes of 𝑉 is said to be a bisimulation on 𝐺⃗ if 𝑢♭𝑤 with 𝑢,𝑤 ∈ 𝑉 always implies that:

• for every child 𝑢′ of 𝑢 there exists a child 𝑤′ of 𝑤 such that 𝑢′♭𝑤′, and

• for every child 𝑤′ of 𝑤 there exists a child 𝑢′ of 𝑢 such that 𝑢′♭𝑤′.
1This is very common to many standard set theories, in particular Zermelo-Fraenkel’s; see, e.g., [11].
2To see that every hyperset can have a graphical representation with infinitely many nodes, it is sufficient to “unwrap” its
loops (e.g., Ω can be represented by an infinitely descending chain, see [13]); to match this definition, though, it is sufficient
that there exist finite ones. Set-theoretically, a hereditarily finite rational hyperset is defined as the solution to a finite system
of finite set equations, see e.g. [15].

The union of all bisimulations on 𝐺⃗ is still a bisimulation, it is called bisimilarity, and it is the coarsest
bisimulation on 𝐺⃗: bisimilarity defines an equivalence relation on the nodes, denoted by ≡𝐺⃗.

The notion of bisimilarity constitutes an equality criterion for hypersets: stating that two pointed
membership graphs (i.e., their points) are bisimilar means that they both represent the same hyperset.
Intuitively, one can think of bisimilarity as the coarsest partition of the nodes set grouping functionally
equivalent ones: assuming 𝑢 ≡𝐺⃗ 𝑤, any “move” performed starting from 𝑢 can be mirrored starting
from 𝑤. Notice that the existence of an isomorphism 𝜑 between two oriented graphs implies that every
vertex 𝑤 of the first graph is bisimilar to its image 𝜑(𝑤). The converse does not hold true in general.

2.3. Node Individualisation

Individualisation of single nodes, for the purpose of symmetry breaking, is a well-known technique
in the field of graph canonisation. Most state-of-the-art practical tools, such as nauty and Traces
[7], rely on the so called individualisation-refinement paradigm, which alternately applies WL1 to the
graph and assigns a unique colour to one node from a non-singleton class (chosen according to some
heuristic) until a discrete node partition. Although this approach generates a (potentially) exponentially
large tree of colourings, appropriate heuristics and exploitation of discovered automorphisms allow
such tools to prune significant parts of the tree, leading to fast performances in most cases.

Individualisation finds applications in important theoretic results. 𝑡-CR bounded graphs, for which a
discrete colouring can be obtained by repeatedly applying WL1 and assigning a unique colour to each
node of a non-singleton class of size at most 𝑡, play a key role in Grohe et al.’s test for isomorphism
running in time 𝑛polylog(ℎ) for 𝑛-vertex graphs excluding some ℎ-vertex graph as a minor [16].

In both previous examples, this simmetry-breaking technique is iteratively paired with WL1 in order
to reach a discrete colouring. On the other hand, in theHI framework introduced below, individualisation
is applied only once for each node 𝑣 in the graph, before launching a bisimulation algorithm which
produces a hyperset ℎ𝑣 associated to 𝑣.

3. The Hyperset Individualisation Algorithm

The first definition of the Hyperset Individualisation algorithm HI is aimed at giving a set-theoretic cut
to the graph canonisation problem by assigning a multiset of hypersets to each undirected simple graph.
As for WL1, the result obtained after performing HI is a multiset encoding pieces of information about
the chosen graph; however, while this is based on nodes’ degrees for the former, the latter computes
bisimilarity contractions by interpreting the graph as the pointed membership graph of some hyperset.

Due to the following lemma, we can, and will, restrict our analysis to connected simple graphs.

Lemma 3.1. Let 𝐺 = ⟨𝑉𝐺, 𝐸𝐺⟩ and 𝐻 = ⟨𝑉𝐻 , 𝐸𝐻⟩ be undirected, possibly non-connected simple graphs.
Let 𝐺′ = ⟨𝑉𝐺 ∪ {𝑠𝐺}, 𝐸𝐺 ∪ {(𝑠𝐺, 𝑣) : 𝑣 ∈ 𝑉𝐺}⟩ and 𝐻 ′ = ⟨𝑉𝐻 ∪ {𝑠𝐻}, 𝐸𝐺 ∪ {(𝑠𝐻 , 𝑣) : 𝑣 ∈ 𝑉𝐻}⟩
be the graphs obtained by adding to both a source node reaching each node of the original graphs. Then,
𝐺 ∼= 𝐻 if and only if 𝐺′ ∼= 𝐻 ′.

HI pseudocode is reported as Algorithm 1. After replacing each (undirected) edge with a pair of
opposite arcs, a new arc from a node 𝑣 to a new node 𝑣∅—which, from a set-theoretic perspective,
represents the empty set—is added. Given the so-modified pointed graph 𝐺⃗𝑣 , with 𝑣 itself as the point,
a tool such as the one defined in [8] can be applied to get its bisimulation contraction, resulting in the
apg of a hyperset ℎ𝑣 . Then, ℎ𝑣 is added to a multiset and the operation is repeated for every node of
the original graph: the resulting multiset is the certificate given by the algorithm to the input graph.

Remark 1. Consider the definition of rank of a node 𝑢 in an individualised graph 𝐺⃗𝑣 as its distance
from the empty set ∅ following a simple path, i.e. without cycles.3 Clearly, for any 𝐺⃗𝑣 , the only node
of rank 1 is 𝑣 itself; furthermore, by definition of bisimulation, two nodes of different rank will not
collapse within each other in ℎ𝑣 .
3This definition is consistent with the one of rank for hereditarily finite well-founded sets.

Algorithm 1 Hyperset individualisation HI

Require: 𝐺 = ⟨𝑉,𝐸⟩ ◁ Undirected, simple, connected
Ensure: HI(𝐺)

1: 𝐸⃗ ← ∅
2: for (𝑢,𝑤) ∈ 𝐸 do
3: 𝐸⃗ ← 𝐸⃗ ∪ {⟨𝑢,𝑤⟩, ⟨𝑤, 𝑢⟩} ◁ Replace an edge with a pair of arcs
4: end for
5: HI(𝐺)← {[]} ◁ Initialise HI(𝐺) as the empty multiset
6: for 𝑣 ∈ 𝑉 do
7: 𝐺⃗𝑣 ← ⟨𝑉 ∪ {𝑣∅}, 𝐸⃗ ∪ {⟨𝑣, 𝑣∅⟩}, 𝑣⟩ ◁ Append a node labelled as the empty set ∅ to 𝑣
8: ℎ𝑣 ← DPP(𝐺⃗𝑣) ◁ Run the bisimulation algorithm defined in [8] on 𝐺⃗𝑣

9: HI(𝐺)← HI(𝐺) ⊎ {[ℎ𝑣]} ◁ Add the resulting hyperset to HI(𝐺)
10: end for

The hyperset individualisation algorithm provides a one-way error test for graph isomorphism: given
a pair (𝐺,𝐻) of undirected graphs, HI(𝐺) ̸= HI(𝐻) implies that 𝐺 and 𝐻 are not isomorphic, while
the converse does not necessarily hold.

Example 3.1. HI can distinguish non-isomorphic graph pairs whichWL1 cannot. Indeed, by performing
HI on the graphs 𝐺 and 𝐻 below, we obtain the multisets containing the depicted hypersets with the
reported multiplicities (recall that each undirected edge represents a pair of opposed arcs in hypersets).

𝐺

⇝

𝑢2

𝑢1

𝑢3 𝑢4

𝑢6

𝑢5

4⋆ 2⋆ 2⋆ 4⋆

𝐻

⇝

𝑤2

𝑤1

𝑤3

𝑤4

𝑤6

𝑤5

Observe that in HI(𝐺) (resp., HI(𝐻)) there are four copies of the hyperset obtained by individualising
𝑢𝑖 (resp., 𝑤𝑖) with 𝑖 ∈ {1, 2, 5, 6} and two copies of the one obtained by individualising 𝑢𝑖 (resp., 𝑤𝑖)
with 𝑖 ∈ {3, 4}. As they differ between the two graphs, HI distinguishes 𝐺 and 𝐻 ; on the contrary,
WL1 produces the same colours for each pair (𝑢𝑖, 𝑤𝑖). Yet, this graph pair is distinguished also by WL2.

Example 3.2. Despite WL1 can identify each non-isomorphic tree, the following pair is not distin-
guished by HI (for both graphs, nodes at the same depth yield the same hyperset after individualisation).

From the previous examples, it follows that the expressive powers of WL1 and HI are incomparable.

4. Refinements

As Example 3.2 shows, HI (in fact, bisimulation) does not take into account the size of a node’s neigh-
bourhood: indeed, it proves itself more powerful than WL1 exactly when this property is irrelevant,
but it could fail otherwise. A natural way to address this limitation, in an attempt to make HI strictly
stronger than WL1, is to endow each node with an initial label encoding its degree.

In order to maintain a purely set-theoretic view, the nodes’ degrees can be conveniently represented
by adding edges towards a node in a directed, descending chain (gadget graph) of nodes which is
external with respect to the original graph. Basically, this chain represents the (Zermelo) ordinals, or
super-singletons of the empty set up to the maximum degree of a node in the graph; the fact that 𝑣 ∈ 𝐺
has degree 𝑑 can be represented by an arc ⟨𝑣, 𝑣{∅}𝑑⟩, where, iteratively, {∅}0 := ∅ and {∅}𝑖 := {{∅}𝑖−1}.

Definition 4.1. Consider an undirected simple graph 𝐺 = ⟨𝑉𝐺, 𝐸𝐺⟩ and define its gadget graph as

𝐷⃗𝐺 = ⟨𝑉𝐷⃗𝐺
, 𝐸⃗𝐷⃗𝐺

⟩ :=
⟨︀{︀

𝑣{∅}𝑑 : 0 ≤ 𝑑 ≤𝑀
}︀
,
{︀
⟨𝑣{∅}𝑑 , 𝑣{∅}𝑑−1⟩ : 1 ≤ 𝑑 ≤𝑀

}︀⟩︀
,

where 𝑀 := max𝑣∈𝐺{deg(𝑣)}. Then, the Hyperset Individualisation algorithm with Degrees HID is the
variant of HI obtained by re-defining 𝐺⃗𝑣 as

𝐺⃗𝑣 =
⟨︀
𝑉𝐺 ∪ 𝑉𝐷⃗𝐺

, 𝐸⃗𝐺 ∪ 𝐸⃗𝐷⃗𝐺
∪ {⟨𝑤, 𝑣{∅}deg(𝑤)⟩ : 𝑤 ∈ 𝑉𝐺} ∪ {⟨𝑣, 𝑣∅⟩}, 𝑣

⟩︀
at line 7 in Algorithm 1 (𝐸⃗𝐺 is the set of arcs replacing the undirected edges of 𝐺).

Notice how this edit shall not create ambiguity with the process of individualising a node: since
we are now dealing just with connected graphs, no node is without edges, so they all have a positive
degree; therefore, the only arc pointing to the node dubbed as the empty set—now part of the gadget
graph—is the one issuing from the intended individualised node.

Remark 2. Let 𝐺⃗ = ⟨𝑉𝐺 ∪ 𝑉𝐷⃗𝐺
, 𝐸⃗𝐺 ∪ 𝐸⃗𝐷⃗𝐺

∪ {⟨𝑤, 𝑣{∅}deg(𝑤)⟩ : 𝑤 ∈ 𝑉𝐺}⟩ (the same as in Definition
4.1, but without individualising any node and with no definite point; from now on, we will keep this
notation whenever it is not ambiguous). Then, computing maximum bisimulation on the graph 𝐺⃗ is
equivalent to computing maximum bisimulation on the graph 𝐺 by degree-encoding colours to each
node. Moreover, the well-founded part of 𝐺⃗ is its gadget graph 𝐷⃗𝐺.

An interesting result that proves the greater effectiveness of HID w.r.t. HI and WL1 is the following.

Theorem 4.1. HID is strictly more expressive than WL1.

Proof. By example 3.1, there exists a non-isomorphic graph-pair distinguished by HID, but not by WL1.
Thus, we only need to show that every graph-pair distinguished by WL1 is also distinguished by HID.
Let 𝒞𝑖(𝑣) be the colour assigned to the node 𝑣 after the 𝑖-th WL1 iteration: we recall that 𝒞𝑖(𝑣) identifies
the subtree structure 𝑇𝑖(𝑣) of height 𝑖 rooted in 𝑣.4 We show that, for any pair of nodes (𝑢,𝑤):

(∃𝑖 ∈ N)(𝒞𝑖(𝑢) ̸= 𝒞𝑖(𝑤)) =⇒ ℎ𝑢 ̸= ℎ𝑤, (1)

where ℎ𝑢 (resp., ℎ𝑤) is the (pointed membership graph of the) hyperset resulting after performing
bisimulation contraction on 𝐺⃗𝑢 (resp., 𝐺⃗𝑤), pre-processed with nodes’ degrees.

For 𝑖 = 0, the implication is trivially true. Assume now that 𝑖 > 0, 𝒞𝑖(𝑢) ̸= 𝒞𝑖(𝑤) and 𝒞𝑗(𝑢) = 𝒞𝑗(𝑤)
for all 𝑗 < 𝑖. Since the subtree structures match up to height 𝑖− 1, but not further, there must exist
two leaves 𝑢̂ ∈ 𝑇𝑖−1(𝑢), 𝑤̂ ∈ 𝑇𝑖−1(𝑤) such that deg(𝑢̂) ̸= deg(𝑤̂) and the degree sequences from the
roots to their parents are equal. Besides, at least one between 𝑢̂ and 𝑤̂ must be of rank exactly 𝑘:5

otherwise, the WL1 colouring for 𝑢 and 𝑤 would have diverged in an earlier iteration. It follows that,
in the degree-partitioned graph, there is a coloured path of length 𝑖− 1 starting from 𝑢 which cannot
be replicated starting from 𝑤: thus, 𝑢 is not bisimilar to 𝑤 or, equivalently, ℎ𝑢 ̸= ℎ𝑤, proving (1).

Therefore, by considering every node-pair (𝑢,𝑤), we obtain that if the multisets produced for two
graphs (𝐺,𝐻) by WL1 are different, so are the multisets produced by HID.

As HID is so proved to be strictly more expressive than WL1, we are interested in studying its limits.
As an upper bound, we observe that HID is not as expressive as WL3.

Theorem 4.2. There exists a graph pair distinguished by WL3, but not by WL2 or HID.

Proof. Consider the 4x4 Rook’s and the Shrikhande graphs in Fig. 4, both strongly regular graphs with
parameters ⟨𝑛 = 16, 𝑑 = 6, 𝜇 = 2, 𝜏 = 2⟩, where 𝑛 is the number of nodes, 𝑑 the degree of each node,
𝜇 and 𝜏 the number of common neighbours for adjacent and non-adjacent nodes, respectively. This pair
is distinguished by WL3, but not by WL2 (more generally, WL2 cannot tell apart SRGs with identical
parameters [18]). HID is also unable to distinguish them, since, on both graphs, the resulting multiset
contains 16 copies of the same hyperset.
4A subtree-structure differs from a subtree, as the former contains the same node multiple times; see [17, p. 2542].
5Equivalently, it must be a previously unseen node in its respective subtree structure.

Figure 1: The 4x4 Rook’s graph and the Shrikhande graphs as pictured in [19]. The graphs are not isomorphic,
since the neighbours of a node form two separate 3-cycles in the Rook’s graph, while they form a single 6-cycle
in Shrikhande graph, despite having the same strongly regular graphs’ parameters.

We point out two scenarios where HID allows to check for isomorphism in polynomial time.

Lemma 4.1. Let the simple connected graphs 𝐺 = ⟨𝑉𝐺, 𝐸𝐺⟩, 𝐻 = ⟨𝑉𝐻 , 𝐸𝐻⟩ be such that |𝑉𝐺| =
|𝑉𝐻 | = 𝑛 and ∃ℎ ∈ HID(𝐺) ∩ HID(𝐻) : |trCl(ℎ) = 𝑛+𝑀 + 1|. Then 𝐺 ∼= 𝐻 .

Proof. Notice that the ℎ of the statement has maximum transitive closure: there are no bisimulation
collapses among the 𝑛 nodes originally in 𝐺 or 𝐻 , nor (trivially) among the 𝑀 +1 nodes of their gadget
graphs. Any two graphs 𝐺⃗𝑢, 𝐻⃗𝑤 associated to ℎ in HID(𝐺) and HID(𝐻) are, except in the connection
to ∅, isomorphic to 𝐺 and 𝐻 themselves, respectively. The corresponding discrete partition induced by
ℎ on both 𝐺 and 𝐻 naturally yields an isomorphism between the two.

Definition 4.2. Let 𝐺 = ⟨𝑉,𝐸⟩ be a graph, let 2𝑉 be the powerset of its nodes. The (node) orbit
partition of 𝐺 is the coarsest partition 𝑂 ⊂ 2𝑉 of 𝑉 such that all nodes belonging to the same class can
be mapped into each other by an automorphism: such classes are called the (node) orbits of 𝐺. If |𝑂| = 𝑛,
we say that 𝐺 has a discrete orbit partition, as it only admits the identity on 𝑉 as an automorphism.

Lemma 4.2. Let the simple connected graphs 𝐺 = ⟨𝑉𝐺, 𝐸𝐺⟩, 𝐻 = ⟨𝑉𝐻 , 𝐸𝐻⟩ be such that |𝑉𝐺| =
|𝑉𝐻 | = 𝑛 and HID(𝐺) = HID(𝐻) contains 𝑛 distinct hypersets. Then, both graphs have discrete orbit
partitions and the bijection 𝜑 : 𝑉𝐺 → 𝑉𝐻 such that 𝜑(𝑢) = 𝑤 if and only if ℎ𝑢 = ℎ𝑤 is the only possible
isomorphism between 𝐺 and 𝐻 .

Proof. Two nodes producing different hypersets cannot belong to the same orbit (this is trivial: if
they are mapped into each other by an automorphism, then they are bisimilar, thus they produce the
same hyperset once individualised). Therefore, only bijections mapping nodes whose individualisation
produces the same hyperset are candidate isomorphisms.

If the conditions of the previous lemma hold, 𝐺 ∼= 𝐻 can be verified in linear time.

5. Moving to a Higher Plane: 𝑘-Dimensional HID𝑘

In this section, we move to the following, natural question: can the HI(D) idea be lifted to achieve
higher expressive power, in a similar fashion to the 𝑘-dimensional WL? Specifically, we investigate
different approaches to compute a multiset of hypersets associated to sets of 𝑘 > 1 nodes at a time, in
order to define an algorithmic family HID𝑘 akin to WL𝑘.

Before doing so, observe that a 0-dimensional Hyperset Individualisation algorithm HI0 is definable
regardless of the precise definition given to any higher-dimensional version, as it subsumes the bisim-
ulation contraction without individualising any node. Since there is no privileged starting point for
the bisimulation algorithm, we will focus once again on the connected case only, so as to avoid that a

single bisimulation reduction results in more than one hyperset.6 For the same reason, in this case we
will also avoid to identify the point of the graph and so of the resulting hyperset.7

Remark 3. HI0—without degrees pre-processing—as applied to a simple connected graph 𝐺 either results
in the empty set ∅ or in the hyperset Ω. Thus, it can only distinguish the graph having just one node
(and no edges) from any other simple connected graph.

Differently from the previous case, if the degrees’ pre-processing is performed—thus obtaining
the HID0 algorithm—the graph results to be already partitioned before computing bisimulation. The
following lemma holds true.

Lemma 5.1. HID0 is equivalent to WL1.

Proof. At each step and for each node 𝑣, WL1 aggregates information about 𝑣’s own degree and,
iteratively, those of all nodes that can be reached from it. Therefore, two nodes will get the same
colour in the final stable partitioning of the graph if and only if they have the same degree, and their
neighbours have pairwise the same degree, and so on. So, computing maximum bisimulation on that
graph is equivalent to collapsing all the nodes belonging to the same WL1-class.

5.1. Individualising by the Empty Set: HIDE𝑘

We define algorithm HIDE𝑘 (Hyperset Individualisation with Degrees and the Empty set) on a connected
simple graph 𝐺. Instead of individualising just a node at a time, we will take 𝑘-many, with 𝑘 ≤ 𝑛,
and run maximum bisimulation contraction on the resulting graph, much as HID does. For the sake of
completeness, a new node will be linked to the newly-individualised nodes to serve as the point of the
resulting hyperset.

Definition 5.1. Let 𝐺 = ⟨𝑉,𝐸⟩ be a connected simple graph, 𝑛 = |𝑉 | and 𝑘 ∈ {2, . . . , 𝑛}; let 𝐺⃗
be the directed version of 𝐺, encoding degrees through the gadget graph, as described in Remark 2.
Then, the Hyperset Individualisation algorithm with Degrees and the Empty set of order 𝑘 HIDE𝑘 is the
generalisation of HID obtained by replacing 𝑣 ∈ 𝑉 with 𝑆 ⊆ 𝑉 : |𝑆| = 𝑘 at every occurrence, and 𝐺⃗𝑣

with
𝐺⃗𝐸

𝑆 :=
⟨︀
𝑉𝐺⃗ ∪ {𝑣𝑆}, 𝐸⃗𝐺⃗ ∪ {⟨𝑣𝑆 , 𝑤𝑖⟩, ⟨𝑤𝑖, 𝑣∅⟩ : 𝑤𝑖 ∈ 𝑆}, 𝑣𝑆

⟩︀
,

at line 7 in Algorithm 1, thus obtaining HIDE𝑘(𝐺) := {[ℎ𝐸𝑆 := DPP(𝐺⃗𝐸
𝑆) : 𝑆 ⊆ 𝑉, |𝑆| = 𝑘]}.

Observe that, since each hyperset is associated to a unique 𝑘-subset of 𝑉 , HIDE𝑘(𝐺) contains
(︀
𝑛
𝑘

)︀
-

many hypersets; for clarity, such hypersets will be denoted as ℎ𝐸𝑆 for each subset 𝑆 fulfilling the
previous definition. It is not trivial to see how much the expressive power of HIDE𝑘 varies by changing
𝑘. However, as a first result, we prove that the expressive power reached by HIDE𝑘 on graphs with
𝑛-many nodes is the same as the one reached by HIDE𝑛−𝑘.

Lemma 5.2. Let 𝐺 = ⟨𝑉𝐺, 𝐸𝐺⟩, 𝐻 = ⟨𝑉𝐻 , 𝐸𝐻⟩ be connected simple graphs. Then, HIDE𝑘(𝐺) =
HIDE𝑘(𝐻) if and only if HIDE𝑛−𝑘(𝐺) = HIDE𝑛−𝑘(𝐻).

Proof. Assume HIDE𝑘(𝐺) = HIDE𝑘(𝐻): therefore, there is a one-to-one correspondence associating
each 𝑆 ⊆ 𝑉𝐺 to a 𝑇 ⊆ 𝑉𝐻 , both of cardinality 𝑘, in such a way that ℎ𝐸𝑆 = ℎ𝐸𝑇 . As they are both
contracted by maximum bisimulation, for each node 𝑢 ∈ ℎ𝐸𝑆 there exists exactly one node 𝑤 ∈ ℎ𝐸𝑇
bisimilar to it: notice that 𝑢 and 𝑤 are the bisimulation contractions of {𝑢′ ∈ 𝑉𝐺⃗𝐸

𝑆
: 𝑢′ ≡𝐺⃗𝐸

𝑆
𝑢} and

{𝑤′ ∈ 𝑉𝐻⃗𝐸
𝑇
: 𝑤′ ≡𝐻⃗𝐸

𝑇
𝑤} respectively, and that every 𝑢′ ∈ 𝑆 if and only if 𝑤′ ∈ 𝑇 . Taking 𝑢′ and

𝑤′ as representatives of those bimilarity classes, and assuming 𝑢′ ∈ 𝑆 and 𝑤′ ∈ 𝑇 (resp. 𝑢′ ∈ 𝑉𝐺 ∖ 𝑆
and 𝑤′ ∈ 𝑉𝐺 ∖ 𝑇), by removing (resp. adding) the links from the sources 𝑣𝑆 , 𝑣𝑇 and to the empty
set 𝑣∅ from (to) the both of them, they will still be bisimilar. Therefore, if 𝑢 and 𝑤 are bisimilar

6As Lemma 3.1 points out, we can reduce to this case without any loss of generality anyway.
7This comes both because it is useless in DPP algorithm and because any node can be coherently dubbed as point (as they all
have the same transitive closure): any chosen point then should be ignored when the hypersets are compared.

w.r.t. ℎ𝐸𝑆 and ℎ𝐸𝑇 , then they will be bisimilar also w.r.t. the hypersets ℎ𝐸𝑉𝐺∖𝑆 and ℎ𝐸𝑉𝐻∖𝑇 obtained by

individualising the previously non-individualised nodes, thus proving that ℎ𝐸𝑉𝐺∖𝑆 = ℎ𝐸𝑉𝐻∖𝑇 and finally
HIDE𝑛−𝑘(𝐺) = HIDE𝑛−𝑘(𝐻). The opposite implication is proven in the same way.

This result proves that HIDE𝑘 reaches its maximum expressiveness for 𝑘 at most ⌈𝑛/2⌉. Since we
have not obtained more precise results about it so far, we can just conjecture that such maximum is
indeed reached at that exact point. To support our claim, the following lemma shows that HIDE2 could
be strictly more powerful than HIDE1 = HID on graphs with sufficiently many nodes.

Lemma 5.3. There exists a graph pair distinguished by HIDE2, but not by WL2 or HID.

Proof. Consider again the 4x4 Rook’s and the Shrikhande graphs in Fig. 4. On the Rook’s graph, HIDE2

produces two distinct hypersets, obtained by individualising adjacent and non-adjacent node pairs,
respectively. On the Shrikhande graph, three distinct hypersets are produced, obtained by individualising
adjacent pairs, non-adjacent pairs with adjacent common neighbours, and non-adjacent pairs with
non-adjacent common neighbours.

Currently, we do not know if the expressive power of HIDE is bounded (i.e. if there exists a non-
isomorphic graph pair which cannot be distinguished by HIDE𝑘, for any possible 𝑘), or if it can reach
complete identification up to isomorphism.

5.2. Individualising by Atoms: HIDA𝑘

Next, we define an alternative generalised algorithm HIDA𝑘 (Hyperset Individualisation with Degrees
and Atoms). Let 𝐺⃗ be as before and add 𝑘 nodes 𝐴 = {𝑎1, . . . , 𝑎𝑘}, called atoms, each belonging to
a unique class, so that they are pairwise non-bisimilar by definition. Thus, the method consists in
linking one node of 𝐺⃗ to one node of 𝐴 at a time, then collapsing the resulting graph by maximum
bisimulation. By introducing different atoms, we guarantee that each pair of the so-individualised nodes
will not be bisimilar, which is not necessarily the case for HIDE𝑘; on the other hand, as the ordering of
those atoms—and, consequently, of the individualised nodes—is irrelevant for that purpose, we need to
introduce an equivalence relation in such a way that different orderings do not affect the reliability of
the test.

Definition 5.2. Consider 𝑘 atoms 𝐴 = {𝑎1, . . . , 𝑎𝑘}, and two hypersets with atoms ℎ𝐴{𝑢1,...,𝑢𝑘},

ℎ𝐴{𝑤1,...,𝑤𝑘} such that the 𝑖-th node in the subscript is the only one connected by an arc to the atom

𝑎𝑖, for any 𝑖 ∈ {1, . . . , 𝑘}. We write ℎ𝐴{𝑢1,...,𝑢𝑘} ∼𝑘 ℎ𝐴{𝑤1,...,𝑤𝑘} if and only if ∃𝜎 ∈ 𝑆𝑘 : ℎ𝐴{𝑢1,...,𝑢𝑘} =

ℎ𝐴{𝑤𝜎(1),...,𝑤𝜎(𝑘)}
, where 𝑆𝑘 is the symmetric group over the discrete interval [1, 𝑘].

From this point onwards, with a slight abuse of notation in order to improve readability, we shall
use ℎ𝐴𝑆 to denote the (permutation invariant) equivalence class [ℎ𝐴𝑆]∼𝑘

to which the (permutation
dependent) hyperset ℎ𝐴𝑆 belongs. We are now ready to define HIDA algorithmically.

Definition 5.3. Let 𝐺 = ⟨𝑉,𝐸⟩ be a connected simple graph, 𝑛 = |𝑉 |, 𝑘 ∈ {2, . . . , 𝑛} and define a
set of 𝑘-many atoms 𝐴 = {𝑎1, . . . , 𝑎𝑛}; let 𝐺⃗ be the directed version of 𝐺, encoding degrees through
the gadget graph, as described in Remark 2. Then, the Hyperset Individualisation algorithm with
Degrees and Atoms of order 𝑘 HIDA𝑘 is the generalisation of HID obtained by replacing 𝑣 ∈ 𝑉𝐺 with
𝑆 ⊆ 𝑉𝐺 : |𝑆| = 𝑘 at every occurrence and 𝐺⃗𝑣 with

𝐺⃗𝐴
𝑆 :=

⟨︀
𝑉𝐺⃗ ∪𝐴 ∪ {𝑣𝑆}, 𝐸⃗𝐺⃗ ∪ {⟨𝑣𝑆 , 𝑤𝑖⟩, ⟨𝑤𝑖, 𝑎𝑖⟩ : 𝑤𝑖 ∈ 𝑆}, 𝑣𝑆

⟩︀
,

at line 7 in Algorithm 1, thus obtaining HIDA𝑘(𝐺) := {[ℎ𝐴𝑆 := DPP(𝐺⃗𝐴
𝑆) : 𝑆 ⊆ 𝑉, |𝑆| = 𝑘]}.

In order to distinguish a hyperset produced by HIDA𝑘 w.r.t. other already defined algorithms, we will
write it as ℎ𝐴𝑆 for a subset 𝑆 of 𝑘 nodes. Given the previous definition, when comparing the multisets
produced by HIDA𝑘 on a pair of graphs 𝐺 and 𝐻 , we will check if the hypersets they contain are equal
up to any permutation of atoms. In this way, we do not have to consider all the possible permutations of
atoms while performing the algorithm (leading to factorial space complexity), limiting the number of
hypersets in HIDA𝑘(𝐺) to

(︀
𝑛
𝑘

)︀
on a graph 𝐺 with 𝑛 ≥ 𝑘 nodes, as HIDE𝑘 does. Instead, this complexity

is eventually transferred to the research space, as, computationally speaking, we do not have a trivial
way to address sets’ comparison without imposing upon them a specific, although arbitrary, ordering.

The following lemma, along with its immediate corollary, allows us to conclude that the HIDA family
defines a hierarchy of increasingly stronger algorithms, akin to WL𝑘.

Lemma 5.4. Given a simple graph 𝐺 = ⟨𝑉,𝐸⟩ such that |𝑉 | = 𝑛 and 𝑘 < 𝑛, the multiset HIDA𝑘+1(𝐺)
uniquely determines HIDA𝑘(𝐺), up to any permutation of the atoms.

Proof. HIDA𝑘(𝐺) is obtained from HIDA𝑘+1(𝐺) by removing one atom 𝑎𝑖 from each hyperset ℎ𝐴𝑆 and
then checking for possible bisimulation collapse between the de-individualised node 𝑣𝑖 and any other
non-individualised node in ℎ𝐴𝑆 . In this way we get 𝑘 + 1 new hypersets ℎ𝐴∖{𝑎𝑖}

𝑆∖{𝑣𝑖} for 𝑖 ∈ {1, . . . , 𝑘 + 1}
from each 𝑆; however, as the same subset of 𝑘 nodes can be obtained from (𝑛− 𝑘)-many subsets of
cardinality 𝑘 + 1, from |HIDA𝑘+1(𝐺)| =

(︀
𝑛

𝑘+1

)︀
we get(︂

𝑛

𝑘 + 1

)︂
· 𝑘 + 1

𝑛− 𝑘
=

𝑛!

(𝑘 + 1)!(𝑛− 𝑘 − 1)!
· 𝑘 + 1

𝑛− 𝑘
=

(︂
𝑛

𝑘

)︂
= |HIDA𝑘(𝐺)|,

thus confirming that the cardinality of the produced multiset coincides with the one of HIDA𝑘(𝐺).

Corollary 5.1. For all 𝑘 > 1, HIDA𝑘+1 induces a finer or equal partition on the universe of simple graphs
than HIDA𝑘 does.

As the final point of this preliminary analysis, we prove that the highest expressiveness of HIDA𝑘—
which is equivalent to explicitly checking for isomorphism—is reached for 𝑘 = 𝑛− 1 over graphs with
𝑛 nodes. It is currently unknown whether such expressiveness can also be achieved with a smaller 𝑘.

Lemma 5.5. Let 𝐺 and 𝐻 be connected simple graphs with 𝑛 nodes. Then, the following are equivalent.

1. 𝐺 ∼= 𝐻 ;

2. HIDA𝑛(𝐺) = HIDA𝑛(𝐻);

3. HIDA𝑛−1(𝐺) = HIDA𝑛−1(𝐻).

Proof. Trivially, claim 1 implies claims 2 and 3, as the existence of an isomorphism between 𝐺 and 𝐻
implies HIDA𝑘(𝐺) = HIDA𝑘(𝐻) for every 𝑘 ≤ 𝑛, in particular for 𝑘 = 𝑛 and 𝑘 = 𝑛− 1.

Assume claim 2 holds true. Then, any bijection 𝜑 : 𝑉𝐺 → 𝑉𝐻 linking nodes connected to the same
atom in two equal hypersets from HIDA𝑘(𝐺) and HIDA𝑘(𝐻) is an isomorphism, thus proving claim 1.

Assume claim 3 holds true: we will prove that in this case claim 2 holds, too. Since 𝐺 and 𝐻 are
connected, each hyperset in both HIDA𝑛−1(𝐺) and HIDA𝑛−1(𝐻) has a unique node that has rank 2
with respect to at least one atom, i.e. it cannot collapse with any other node by computing bisimulation.
Therefore, by appending a new atom to this spare node we obtain 𝑛 copies of the same hyperset (up to
any permutation of atoms) from both HIDA𝑛−1(𝐺) and HIDA𝑛−1(𝐻). As these are equal, the resulting
hypersets are all ∼𝑛-equivalent, thus proving that HIDA𝑛(𝐺) = HIDA𝑛(𝐻).

5.3. Comparing Expressiveness

While the definition of the HIDE𝑘 version comes quite naturally as a generalisation of HID, it is not
immediate to see whether the HIDA𝑘 version provides any advantage. By definition, HIDA𝑘 is at least
as strong as HIDE𝑘 on a local level, since ℎ𝐸𝑆 ̸= ℎ𝐸𝑇 ⇒ ℎ𝐴𝑆 ̸= ℎ𝐴𝑇 for any two subsets 𝑆, 𝑇 of 𝑘 nodes,
while the opposite implication does not hold true.

Lemma 5.6. Two sets of nodes 𝑆 = {𝑢1, 𝑢2}, 𝑇 = {𝑤1, 𝑤2} can generate distinct hypersets ℎ𝐴𝑆 ̸= ℎ𝐴𝑇 ,
but equal hypersets ℎ𝐸𝑆 = ℎ𝐸𝑇 .

Proof. Consider the following example (gadget graphs and sources have been omitted for clarity).

𝑢6

𝑢5 𝑢4

𝑢1 𝑢2

𝑢3 ⇝

ℎ𝐴{𝑢1,𝑢2}

𝑎1 𝑎2

ℎ𝐸{𝑢1,𝑢2} = ℎ𝐸{𝑤1,𝑤2}

𝑣∅

ℎ𝐴{𝑤1,𝑤2}

𝑎1 𝑎2

⇝𝑤6

𝑤5 𝑤4

𝑤1 𝑤2

𝑤3

As depicted above, individualisation of 𝑢1 and 𝑢2 in the first graph and of 𝑤1 and 𝑤2 in the second graph
yield the same hyperset by doing so with the empty set (HIDE2), but different ones with atoms (HIDA2).
The same can be said for pairs (𝑢4, 𝑢5) w.r.t. (𝑤4, 𝑤5) (trivial), and for (𝑢3, 𝑢6) w.r.t. (𝑤3, 𝑤6).

It can be shown that by computing the whole HIDE𝑘/HIDA𝑘 certificates, the previous graphs are
distinguished by both methods;8 thus, although HIDA𝑘 might be stronger at a local level, this does not
imply that it is a stronger isomorphism test: HIDE𝑘 might still be able to distinguish all graph pairs
distinguished by HIDA𝑘 , as long as 𝑘 ≤ ⌈𝑛/2⌉. It is yet to be verified whether there exists some 𝑘* such
that HIDE𝑘* identifies all 𝑛-vertex graphs up to isomorphism: if this holds, the maximum 𝑘 required
for HIDA𝑘 would also be at most 𝑘*, much smaller than the currently established 𝑘 ≥ 𝑛− 1 bound.

6. Implementation Sketch and Complexity Analysis

We now provide an analysis of the time/space complexity of the aforementioned methods; as a reference,
we recall that WL𝑘 has time complexity 𝒪(𝑛𝑘+1 log 𝑛). Although a multiset of hypersets may seem
harder to describe than the multiset of colours produced by WL𝑘 , it must be noted that such colours are
iteratively obtained by applying a hash function to a multiset of previously computed colours, i.e. for
all purposes they are equivalent to nested multisets.

Multisets of hypersets can be handled, for instance, by keeping a list 𝐿 of all distinct hypersets
generated during a run of HI on a graph 𝐺 = ⟨𝑉,𝐸⟩. Whenever a node 𝑣 ∈ 𝑉 is individualised, ℎ𝑣 ∈ 𝐿
can be checked in polynomial time [14]: if this is the case, we simply increase by 1 the multiplicity of
ℎ𝑣 in HI(𝐺); otherwise, we add ℎ𝑣 to 𝐿 and HI(𝐺), with multiplicity 1.

A single hyperset ℎ𝑣 can be computed in time 𝒪(𝑚 log 𝑛) by an algorithm such as [8]. Whether ℎ𝑣
belongs to 𝐿 can be checked in time 𝒪(|𝐿|𝑚 log 𝑛), where |𝐿| < 𝑛 is the number of unique hypersets
in 𝐿, again using [8]. Algorithm 2 shows how to compare hypersets by their accessible pointed graphs,
running bisimulation on a third 𝑎𝑝𝑔: such procedure can then be applied to ℎ𝑣 and each ℎ ∈ 𝐿.

Each ℎ ∈ 𝐿 may also be associated to a unique integer in [1, 𝑛], according to the time it first appeared
in 𝐿, allowing for constant time comparisons between the hypersets of distinct nodes, if later needed.

To test a graph-pair (𝐺,𝐻) for isomorphism, one can simply run HI in parallel on both, taking care of
checking both 𝐿𝐺 and 𝐿𝐻 whenever a hyperset ℎ𝑣 from either graph is computed, in order to keep the
aforementioned hyperset enumeration coherent. In terms of space, this solution requires 𝒪(𝑛+𝑚) for
each ℎ ∈ 𝐿𝐺/𝐿𝐻 , by definition of bisimilarity: in the worst case, assuming each individualised hyperset
to be distinct, HI has space complexity 𝒪(𝑛(𝑛+𝑚)). In terms of time, the overall complexity of HI is
𝒪(𝑛2𝑚 log 𝑛), since up to 𝑛2 hypersets comparisons, each of cost𝒪(𝑚 log 𝑛), may be required if either
|𝐿𝐺| ∈ Θ(𝑛) or |𝐿𝐻 | ∈ Θ(𝑛). The same bounds hold for HID, as computing the initial degree-partition
of the nodes and extending the graph takes time 𝒪(𝑛+𝑚).

Moving to the 𝑘-dimensional HIDE𝑘, complexity scales according to the number of computed
hypersets: in the worst cases, space𝒪(

(︀
𝑛
𝑘

)︀
(𝑛+𝑚)) and time𝒪(

(︀
𝑛
𝑘

)︀2
𝑚 log 𝑛) may be required. HIDA𝑘

may appear equally costly, since its final multiset also contains
(︀
𝑛
𝑘

)︀
elements; however, it must be noted

8By individualising (𝑢1, 𝑢4) or (𝑢1, 𝑢5) w.r.t. (𝑤1, 𝑤4) or (𝑤1, 𝑤5), both HIDE2 and HIDA2 produce different hypersets.

Algorithm 2 Hypersets comparison

Require: 𝐺⃗1 = ⟨𝑉1, 𝐸⃗1, 𝑝1⟩, 𝐺⃗2 = ⟨𝑉2, 𝐸⃗2, 𝑝2⟩ ◁ Apgs of hypersets ℎ1, ℎ2 to be compared

Ensure: ℎ1
?
= ℎ2

1: 𝑉0 ← 𝑉1 ∪ 𝑉2 ∪ {𝑝0}
2: 𝐸⃗0 ← 𝐸⃗1 ∪ 𝐸⃗2 ∪ {⟨𝑝0, 𝑝1⟩, ⟨𝑝0, 𝑝2⟩}
3: 𝐺⃗0 ← ⟨𝑉0, 𝐸⃗0, 𝑝0⟩ ◁ New 𝑎𝑝𝑔 whose point is linked to the points of 𝐺⃗1 and 𝐺⃗2

4: ℎ0 ← DPP(𝐺⃗0)
5: if 𝑝1 ≡𝐺⃗0

𝑝2 then ◁ Equivalently, they are merged together in ℎ0
6: ℎ1 = ℎ2 ◁ ℎ1 and ℎ2 are bisimilar, and thus equal
7: else
8: ℎ1 ̸= ℎ2
9: end if

that this relies on the use of equivalence relation ∼𝑘 , which hides the computational cost of comparing
two hypersets ℎ𝐴{𝑢1,...,𝑢𝑘} and ℎ𝐴{𝑤1,...,𝑤𝑘} up to any of the 𝑘! possible permutations of the atoms. Since
checking whether two hypersets belong to the same ∼𝑘 class requires 𝑘! comparisons of the kind
described in Algorithm 2, the overall time complexity of HIDA𝑘 is 𝒪(𝑘!

(︀
𝑛
𝑘

)︀2
𝑚 log 𝑛). On a practical

level, simple heuristics can be applied to avoid costly comparisons in all of the above algorithms: for
instance, hypersets whose apgs differ in their number of nodes or edges will certainly be distinct.

7. Open Problems and Conclusions

In this preliminary work, we introduced the notion of Hyperset Individualisation algorithm HI, which
combines a set-theoretic perspective, bisimulation, and a node individualisation technique in order to
provide a novel approach to the Graph Isomorphism and Graph Canonisation problems. After proving
that our 1-dimensional HID algorithm has a strictly stronger separation power than the well-known WL1
algorithm, we defined two 𝑘-dimensional generalisations, called HIDE𝑘 and HIDA𝑘, whose properties
do not perfectly overlap. On 𝑛-vertex graphs, HIDE𝑘 is proved to be exactly as expressive as HIDE𝑛−𝑘 ,
so that its peak must be reached at some 𝑘 ≤ ⌈𝑛/2⌉; on the other hand, HIDA𝑘 is at least as expressive
as HIDA𝑘−1 for any 𝑘, becoming a complete isomorphism test for 𝑘 ≥ 𝑛− 1.

A number of open problems arise. HIDA𝑘 is known to be at least as expressive as HIDE𝑘 at a local
level, but the exact relationship between the two families should be further investigated. It is not clear
whether HIDE𝑘 ever reaches the level of a complete isomorphism test for some 𝑘 ≤ ⌈𝑛/2⌉: in this case,
HIDA𝑘 for the same (or lower) 𝑘 would, too—thus for a 𝑘 much lower than the already established
bound of 𝑘 = 𝑛− 1.

How the HIDE𝑘/HIDA𝑘 and WL𝑘 hierarchies intersect, besides the preliminary result on HID being
strictly more expressive than WL1, is another point of interest. Studying the behaviour of our algorithms
on non-isomorphic graph pairs generated through the CFI construction [4] seems the most natural
way to gain insight on this matter. If either HIDE𝑘 or HIDA𝑘 turned out not to line up with the WL𝑘
hierarchy (up to some additive constant on their dimensionality), looking for a suitable logic capturing
their expressiveness would be the next step.

From a practical standpoint, when checking for isomorphism between two graphs (𝐺,𝐻), one
could think of iteratively applying HIDE1,HIDE2, . . . ,HIDE𝑘≤𝑛 until either a mismatch is found or a
threshold (e.g. a bound on 𝑘) is met. In such a context, we would be interested in determining whether
(and how much) we could restrict the choice of the 𝑘-sets to be individualised when running HIDE𝑘

on 𝐺 and 𝐻 , depending on the previously computed multiset HIDE𝑘−1(𝐺) = HIDE𝑘−1(𝐻), in order
to optimise such a sequential application. For the same purpose, given two sets 𝑆 and 𝑇 of size 𝑘,
being able to efficiently distinguish their hypersets ℎ𝐸𝑆 and ℎ𝐸𝑇 a priori, based on the hypersets for 𝑆
and 𝑇 ’s (𝑘 − 1)-subsets, could greatly reduce the number of required comparisons. Entirely similar
considerations apply to HIDA𝑘.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] B. Weisfeiler, A. A. Lehman, A Reduction of a Graph to a Canonical Form and an Algebra Arising
During This Reduction, Nauchno-Technicheskaya Informatsia Ser. 2 (1968) 12–16.

[2] L. Babai, R. Mathon, Talk at the south-east conference on combinatorics and graph theory, 1980.
[3] L. Babai, P. Erdös, S. Selkow, Random graph isomorphism, SIAM J. Comput. 9 (1980) 628–635.

doi:10.1137/0209047.
[4] J.-Y. Cai, M. Furer, N. Immerman, An optimal lower bound on the number of variables for graph

identification, in: 30th Annual Symposium on Foundations of Computer Science, 1989, pp. 612–617.
doi:10.1109/SFCS.1989.63543.

[5] M. Grohe, D. Neuen, Recent advances on the graph isomorphism problem, London Mathematical
Society Lecture Note Series, Cambridge University Press, 2021, p. 187–234.

[6] F. Fuhlbrück, J. Köbler, I. Ponomarenko, O. Verbitsky, The Weisfeiler-Leman algorithm and
recognition of graph properties, in: T. Calamoneri, F. Corò (Eds.), Algorithms and Complexity,
Springer International Publishing, Cham, 2021, pp. 245–257.

[7] B. D. McKay, A. Piperno, Practical graph isomorphism, ii, Journal of Symbolic Computation
60 (2014) 94–112. URL: https://www.sciencedirect.com/science/article/pii/S0747717113001193.
doi:https://doi.org/10.1016/j.jsc.2013.09.003.

[8] A. Dovier, C. Piazza, A. Policriti, An efficient algorithm for computing bisimulation equivalence,
Theoretical Computer Science 311 (2004) 221–256. URL: https://www.sciencedirect.com/science/
article/pii/S030439750300361X. doi:https://doi.org/10.1016/S0304-3975(03)00361-X.

[9] E. G. Omodeo, Bisimilarity, hypersets, and stable partitioning: a survey, Rend. Istit. Mat. Univ.
Trieste Volume 42 (2010) 211–234.

[10] N. Immerman, E. Lander, Describing Graphs: A First-Order Approach to Graph Canon-
ization, Springer New York, New York, NY, 1990, pp. 59–81. URL: https://doi.org/10.1007/
978-1-4612-4478-3_5. doi:10.1007/978-1-4612-4478-3_5.

[11] T. Jech, Set Theory: The Third Millennium Edition, revised and expanded, Springer Monographs
in Mathematics, 3 ed., Springer Berlin Heidelberg, 2003. URL: https://books.google.it/books?id=
CZb-CAAAQBAJ.

[12] M. Forti, F. Honsell, Set theory with free construction principles, Annali della Scuola Normale
Superiore di Pisa - Classe di Scienze 10 (1983) 493–522. URL: http://eudml.org/doc/83914.

[13] P. Aczel, Non-Well-Founded Sets, Csli Lecture Notes, Palo Alto, CA, USA, 1988.
[14] E. G. Omodeo, A. Policriti, A. I. Tomescu, On Sets and Graphs: Perspectives on Logic and

Combinatorics, Springer, 2017. URL: https://link.springer.com/book/10.1007/978-3-319-54981-1.
doi:10.1007/978-3-319-54981-1.

[15] S. Boscaratto, E. G. Omodeo, A. Policriti, On generalised ackermann encodings - the basis issue,
in: E. D. Angelis, M. Proietti (Eds.), Proceedings of the 39th Italian Conference on Computational
Logic, Rome, Italy, June 26-28, 2024, volume 3733 of CEUR Workshop Proceedings, CEUR-WS.org,
2024. URL: https://ceur-ws.org/Vol-3733/paper3.pdf.

[16] M. Grohe, D. Neuen, D. Wiebking, Isomorphism testing for graphs excluding small minors, SIAM
Journal on Computing 52 (2023) 238–272. URL: https://doi.org/10.1137/21M1401930. doi:10.1137/
21M1401930. arXiv:https://doi.org/10.1137/21M1401930.

[17] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, K. M. Borgwardt, Weisfeiler-
Lehman graph kernels, J. Mach. Learn. Res. 12 (2011) 2539–2561.

[18] M. Fürer, On the combinatorial power of the Weisfeiler-Lehman algorithm, in: D. Fotakis,
A. Pagourtzis, V. T. Paschos (Eds.), Algorithms and Complexity, Springer International Publishing,
Cham, 2017, pp. 260–271.

http://dx.doi.org/10.1137/0209047
http://dx.doi.org/10.1109/SFCS.1989.63543
https://www.sciencedirect.com/science/article/pii/S0747717113001193
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2013.09.003
https://www.sciencedirect.com/science/article/pii/S030439750300361X
https://www.sciencedirect.com/science/article/pii/S030439750300361X
http://dx.doi.org/https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4612-4478-3_5
http://dx.doi.org/10.1007/978-1-4612-4478-3_5
https://books.google.it/books?id=CZb-CAAAQBAJ
https://books.google.it/books?id=CZb-CAAAQBAJ
http://eudml.org/doc/83914
https://link.springer.com/book/10.1007/978-3-319-54981-1
http://dx.doi.org/10.1007/978-3-319-54981-1
https://ceur-ws.org/Vol-3733/paper3.pdf
https://doi.org/10.1137/21M1401930
http://dx.doi.org/10.1137/21M1401930
http://dx.doi.org/10.1137/21M1401930
http://arxiv.org/abs/https://doi.org/10.1137/21M1401930

[19] V. Arvind, F. Fuhlbrück, J. Köbler, O. Verbitsky, On Weisfeiler-Leman invariance: Subgraph counts
and related graph properties, Journal of Computer and System Sciences 113 (2020) 42–59. URL:
https://www.sciencedirect.com/science/article/pii/S0022000020300386. doi:https://doi.org/
10.1016/j.jcss.2020.04.003.

https://www.sciencedirect.com/science/article/pii/S0022000020300386
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2020.04.003
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2020.04.003

	1 Introduction
	2 Basics
	2.1 Weisfeiler-Leman Algorithm
	2.2 Hypersets and Bisimulation
	2.3 Node Individualisation

	3 The Hyperset Individualisation Algorithm
	4 Refinements
	5 Moving to a Higher Plane: k-Dimensional HIDk
	5.1 Individualising by the Empty Set: HIDEk
	5.2 Individualising by Atoms: HIDAk
	5.3 Comparing Expressiveness

	6 Implementation Sketch and Complexity Analysis
	7 Open Problems and Conclusions

