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Abstract
In this paper we introduce a temporal, deontic, conditional logic with typicality, 𝐿𝑇𝐿T

𝐷 . It combines a multi-

preferential conditional logic, which can be used for defeasible reasoning, with a temporal and deontic logic.

The combination provides a formalism which is able to capture the dynamics of a system, through its strict

and defeasible temporal properties, and also to reason about obligations and permissions. Temporal ranked

knowledge bases are introduced for strengthening preferential entailment.
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1. Introduction

In this paper we aim at introducing a temporal, deontic, conditional logic with typicality, called 𝐿𝑇𝐿T
𝐷 ,

based on a preferential approach to commonsense reasoning [1, 2, 3, 4, 5, 6]. The logic 𝐿𝑇𝐿T
𝐷 combines

a typicality operator, which allows defining conditional implications, with temporal operators from the

Linear Time Temporal Logic (LTL) [7], and with the deontic operators from Standard Deontic Logic [8],

to represent obligations and permissions.

Preferential approaches to commonsense reasoning have their roots in conditional logics [9], and

have been used to provide axiomatic foundations of non-monotonic or defeasible reasoning. They

allow the representation of conditional statements of the form “normally if 𝛼 holds, 𝛽 holds", which

allow to represent properties of the world that admit exceptions (e.g., that normally students have

classes, but but there are worlds in which this is not the case). In preferential semantics such as in

Kraus, Lehmann and Magidor (KLM) semantics [4], a preference relation on worlds allows identifying

the less exceptional worlds (𝑤 < 𝑤′
means that world 𝑤 is less exceptional than world 𝑤′

).

Extending the conditional logic with the temporal and deontic operators allows considering the

temporal dimension when reasoning about the defeasible properties of a system, e.g., to represent

statements such as “normally students will get a degree", and also to capture rules describing obligations

admitting exceptions (for instance the rule that normally people have the obligation to pay taxes within

a deadline, but, in case of violation, they have the obligation to pay with fine).

The formalism can be exploited for explanation, and for reasoning about fulfillment of obligations,

in the verification of the compliance of a process (like a business process) to norms. It is well known

from the literature that “many normative rules allow for exceptions. Without defeasibility, it would be

impossible to distinguish exceptions from violations" [10], and defeasibility is needed for modelling

temporal normative rules.

In this regard, in this work we aim at a conditional extension of a fragment of the Deontic Dynamic

Linear Time Temporal Logic (Deontic DLTL) studied in [11], a fragment in which the regular expressions

of DLTL [12] (enriching the temporal operators) are not allowed. For simplicity, here we only consider
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the LTL operators next, until, eventually and always, and we develop a conditional extension of a Deontic

LTL. We call the presented formalism 𝐿𝑇𝐿T
𝐷, as the formalism includes a typicality operator T for

expressing conditionals, as well as obligations and permissions.

Preferential extensions of LTL with defeasible temporal operators have been recently studied [13, 14,

15] to enrich temporal formalisms with non-monotonic reasoning features, by considering defeasible

versions of the LTL operators. Our approach, instead, adds the standard LTL operators to a conditional

logic with typicality, an approach similar to the preferential extension considered for Description

Logics (DLs), where the logic LTLT
𝒜ℒ𝒞 [16] extends the temporal description logic LTL𝒜ℒ𝒞 [17] with a

typicality operator to allow for conditional reasoning.

As in the Propositional Typicality Logic (PTL) by Booth et al. [18] (and in the DLs with typicality

[19]) the conditionals are formalized based on material implication (resp., concept inclusions) plus

the typicality operator T. A conditional statement “normally if 𝛼 holds, 𝛽 holds" is represented by a

conditional implication T(𝛼) → 𝛽, meaning that “in the typical situations in which 𝛼 holds, 𝛽 also holds”.

For instance, in this temporal formalism, the conditional implication: T(Student) → ◇get_degree
means that, normally, students will eventually get a degree (although not all students will).

When 𝛼 and 𝛽 are formulas of the propositional calculus, an implication T(𝛼) → 𝛽 is intended to

correspond to the conditional 𝛼 |∼ 𝛽 in KLM logics [4, 6]. As a major difference with KLM logics, in

this paper, we consider a multi-preferential semantics, which exploits multiple preference relations <𝛼

with respect to different formulas 𝛼, along the lines of previous multi-preferential semantics exploiting

preferences with respect to different aspects [20], with respect to different modules [21] and, for DLs,

with respect to different concepts, based on ranked or weighted knowledge bases (KBs) [22, 23]. For

instance, a world 𝑤 may represent a more typical situation describing a student, compared to 𝑤′

(w <stud w ′
) but, vice-versa, world 𝑤′

may represent a more typical situation describing an employee,

compared to 𝑤, (w ′ <emp w ). Under this respect, the semantics we consider is a generalization of the

KLM preferential semantics, which exploits a single preference relation on worlds (see [24] for details).

After extending the conditional logic with typicality with deontic and temporal modalities, the

paper provides a decidability result for the deontic temporal conditional logic 𝐿𝑇𝐿T
𝐷. Then, for

strengthening preferential entailment, it introduces ranked knowledge bases (i.e., knowledge bases in

which conditional implications are associated with a rank) and develops an approach for reasoning

from a ranked knowledge base in the temporal setting, based on a closure construction in the style of

the lexicographic closure [25] for KLM logics, by exploiting the strategy # from Brewka’s framework

for qualitative preferences [26].

The schedule of the paper is the following. Section 2 introduces the two-valued preferential logic

with typicality following [24]. Section 3 extends such a logic with the LTL modalities and with the

deontic modalities to develop a temporal deontic conditional logic, and it proves the decidability of

the logic. Section 4 focuses on ranked KBs and discusses a closure construction for the temporal case.

Section 5 concludes the paper.

2. A Multi-Preferential Logic with Typicality

In this section, we recall the definition of a two-valued preferential logic with typicality from [24] and

slightly generalize it. The preferential semantics of the logic generalizes Kraus Lehmann and Magidor’s

(KLM) preferential semantics [4, 6], allowing for multiple preference relations (i.e., preferences with

respect to multiple aspects), rather than a single one.

We consider a propositional language 𝐿, whose formulae are built from a set Prop of propositional

variables using the boolean connectives ∧, ∨, ¬ and → of propositional logic. We assume that ⊥
(representing falsity) and ⊤ (representing truth) are formulae of 𝐿.

A typicality operator is introduced following the approach used in the description logic 𝒜ℒ𝒞+T [27]

as well as in the Propositional Typicality Logic (PTL), by Booth et al. [18]. We let 𝐿T
be the language

with typicality. Intuitively, “a sentence of the form T(𝛼) is understood to refer to the typical situations in

which 𝛼 holds" [18]. As in PTL [18], the typicality operator cannot be nested. In an implication 𝛼 → 𝛽,



𝛼 and 𝛽 may contain occurrences of the typicality operator. When T does not occur in 𝛼 nor 𝛽, the

implication 𝛼 → 𝛽 is called strict. When an implication has the form T(𝛼) → 𝛽, it is called a defeasible

implication, whose meaning is that “normally, if 𝛼 then 𝛽”, and corresponds to KLM conditional 𝛼 |∼ 𝛽.

The KLM preferential semantics [4, 6, 3] exploits a set of worlds 𝒲 , with their valuation and a

preference relation < among worlds (where 𝑤 < 𝑤′
means that world 𝑤 is more normal than world

𝑤′
). A conditional 𝐴 |∼ 𝐵 is satisfied in a KLM preferential interpretation, if 𝐵 holds in all the most

normal worlds satisfying 𝐴, i.e., in all <-minimal worlds satisfying 𝐴.

Here, instead, we consider a multi-preferential semantics, where preference relations are associated

with distinguished propositional formulas𝐴1, . . . , 𝐴𝑚 (called distinguished propositions in the following).

The idea is that how much a situation (a world) is normal (or less atypical) with respect to another one,

depends on the aspects considered for comparison. The semantics introduced below exploits a set of

preference relations <𝐴𝑖 , each associated to a distinguished proposition 𝐴𝑖, where 𝑤 <𝐴𝑖 𝑤
′
means

that world 𝑤 is less atypical than world 𝑤′
concerning aspect 𝐴𝑖. As mentioned above, for two worlds

𝑤 and 𝑤′
in 𝒲 , it may be the case that 𝑤 <student 𝑤

′
, but 𝑤′ <employee 𝑤.

In the following, we limit our consideration to finite KBs, and restrict our attention to a finite set

of distinguished propositions 𝐴1, . . . , 𝐴𝑚. Preferential interpretations are equipped with a finite set of

preference relations <𝐴1 , . . . , <𝐴𝑚 , one for each distinguished proposition 𝐴𝑖. For each 𝐴𝑖, we let

<𝐴𝑖⊆ 𝑊 ×𝑊 be a strict partial order on the set of worlds 𝒲 . So far we assume that, in any typicality

formula T(𝐴), 𝐴 is a distinguished proposition, but we will lift this restriction in Section 4.2.

Definition 1. A (multi-)preferential interpretation is a triple ℳ = ⟨𝒲, {<𝐴𝑖}, 𝑣⟩ where:

∙ 𝒲 is a non-empty set of worlds;

∙ for each 𝐴𝑖, <𝐴𝑖⊆ 𝒲 ×𝒲 is an irreflexive and transitive relation on 𝒲 ;

∙ 𝑣 : 𝒲 −→ 2Prop is a valuation function, assigning to each world 𝑤 ∈ 𝒲 a set of

propositional variables in Prop (the variables which are true in 𝑤).

A ranked interpretation is a (multi-)preferential interpretation ℳ = ⟨𝒲, {<𝐴𝑖}, 𝑣⟩ for which all

preference relations <𝐴𝑖 are modular, that is: for all 𝑥, 𝑦, 𝑧, if 𝑥 <𝐴𝑖 𝑦 then 𝑥 <𝐴𝑖 𝑧 or 𝑧 <𝐴𝑖 𝑦. A

relation <𝐴𝑖 is well-founded if it does not allow for infinitely descending chains of worlds 𝑤0, 𝑤1, 𝑤2, . . .
with 𝑤𝑖+1 <𝐴𝑖 𝑤𝑖.

The valuation 𝑣 is inductively extended to all formulae of 𝐿T
:

ℳ, 𝑤 |= ⊤ ℳ, 𝑤 ̸|= ⊥
ℳ, 𝑤 |= 𝑝 iff 𝑝 ∈ 𝑣(𝑤), for all 𝑝 ∈ Prop

ℳ, 𝑤 |= 𝐴 ∧𝐵 iff ℳ, 𝑤 |= 𝐴 and ℳ, 𝑤 |= 𝐵

ℳ, 𝑤 |= 𝐴 ∨𝐵 iff ℳ, 𝑤 |= 𝐴 or ℳ, 𝑤 |= 𝐵

ℳ, 𝑤 |= ¬𝐴 iff ℳ, 𝑤 ̸|= 𝐴

ℳ, 𝑤 |= 𝐴 → 𝐵 iff ℳ, 𝑤 |= 𝐴 implies ℳ, 𝑤 |= 𝐵

ℳ, 𝑤 |= T(𝐴𝑖) iff ℳ, 𝑤 |= 𝐴𝑖 and ∄w ′ ∈ 𝒲 s.t. w ′ <Ai w and ℳ, 𝑤′ |= 𝐴𝑖.

Whether T(𝐴𝑖) is satisfied at a world 𝑤 also depends on the other worlds of the interpretation ℳ.

Let [[𝐴]]ℳ be the set of all the worlds in ℳ satisfying a formula 𝐴 (i.e., [[𝐴]]ℳ = {𝑤 ∈ 𝒲 : ℳ, 𝑤 |=
𝐴}) and let 𝑀𝑖𝑛<𝐴(𝒮) be the set of <𝐴-minimal worlds in 𝒮 , for any set of worlds 𝒮 ⊆ 𝒲 , and strict

partial order <𝐴, that is: 𝑀𝑖𝑛<𝐴(𝒮) = {𝑤 ∈ 𝒮 | there is no 𝑤′ ∈ 𝒮, such that 𝑤′ <𝐴 𝑤}. For a

well-founded preference relation <𝐴, one can reformulate the semantic condition for the typicality

operator as follows:

ℳ, 𝑤 |= T(𝐴𝑖) iff 𝑤 ∈ 𝑀𝑖𝑛<𝐴𝑖
([[𝐴𝑖]]

ℳ).



In this work, we do not assume that all the preference relations <𝐴𝑖 are well-founded, so that the

semantics above is more general than the one in [24], and than the usual KLM semantics [4, 6].

A formula 𝐴 is satisfiable in the multi-preferential semantics if there exist a multi-preferential

interpretation ℳ = ⟨𝒲, {<𝐴𝑖}, 𝑣⟩ and a world 𝑤 ∈ 𝒲 such that ℳ, 𝑤 |= 𝐴. A formula 𝐴 is valid in

an interpretation ℳ (written ℳ |= 𝐴) if, for all worlds 𝑤 ∈ 𝒲 , ℳ, 𝑤 |= 𝐴. A formula 𝐴 is valid in

the multi-preferential semantics (simply, A is valid) if 𝐴 is valid in any multi-preferential interpretation

ℳ. Restricting our consideration to modular interpretations leads to the notions of satisfiability and

validity of a formula in the ranked (or rational) multi-preferential semantics.

When an implication has the form T(𝐴) → 𝐵, with 𝐵 in 𝐿, it corresponds to a conditional

𝐴 |∼ 𝐵 in KLM logics [4]. Note that, for well-founded preference relations, a defeasible implica-

tion T(𝐴) → 𝐵 is valid in a preferential interpretation ℳ (i.e., ℳ |= T(𝐴) → 𝐵) iff for all worlds

𝑤 ∈ 𝒲 , 𝑤 ∈ 𝑀𝑖𝑛<𝐴([[𝐴]]ℳ) implies 𝑤 ∈ [[𝐵]]ℳ, iff 𝑀𝑖𝑛<𝐴([[𝐴]]ℳ) ⊆ [[𝐵]]ℳ holds. When all the

preference relations <𝐴𝑖 coincide with a single well-founded preference relation <, a multi-preferential

interpretation ℳ corresponds to a KLM preferential interpretation [4], and a defeasible implication

T(𝐴) → 𝐵 (with 𝐵 in 𝐿) has the same semantics as KLM conditional 𝐴 |∼ 𝐵. The multi-preferential

semantics is, therefore, a generalization of the KLM preferential semantics.

Let a knowledge base 𝐾 be a set of (strict or defeasible) implications. A preferential model of 𝐾 is

a multi-preferential interpretation ℳ such that ℳ |= 𝐴 → 𝐵, for all implications 𝐴 → 𝐵 in 𝐾 .

Given a knowledge base 𝐾 , we say that an implication 𝐴 → 𝐵 is preferentially entailed from 𝐾 if

ℳ |= 𝐴 → 𝐵 holds, for all preferential models ℳ of 𝐾 . We say that 𝐴 → 𝐵 is rationally entailed from

𝐾 if ℳ |= 𝐴 → 𝐵 holds, for all ranked models ℳ of 𝐾 .

It is well known that preferential entailment and rational entailment are weak. As with the rational

closure [6] and the lexicographic closure [25] for KML conditionals, also in the multi-preferential case

one can strengthen entailment by restricting to specific preferential models, based on some closure

constructions, which allow to define the preference relations <𝐴𝑖 from a knowledge base 𝐾 , e.g., by

exploiting the ranks and weights of conditional implications, when available. Some examples of closure

constructions for the multi-preferential case have been considered, e.g., for multi-preferential variants

of the rational closure [20] and of the lexicographic closure [21], and for (multi-preferential) ranked

or weighted defeasible DLs with typicality [22, 23]. We will come back to consider a construction for

reasoning from ranked temporal deontic KBs later, in Section 4.

3. A Temporal Deontic Preferential Logic with Typicality

In this section we further extend the language 𝐿T
with the temporal operators 𝑋 (next), 𝒰 (until), ◇

(eventually) and □ (always) of Linear Time Temporal Logic (LTL) [7].

We also introduce in the language a deontic operator O, which is read “it is obligatory that", and the

possibility operator P (“it is permitted that") with a semantics as in Standard Deontic Logic [8]. We

allow temporal operators, deontic operators and the typicality operator to occur in the formulas, with

the only restriction that T should not be nested.

The syntax for temporal deontic conditional formulas, shortly, 𝐿𝑇𝐿T
𝐷 formulas, is the following:

𝐴 ::= 𝑝 | 𝐴 ∧𝐵 | 𝐴 ∨𝐵 | ¬𝐴 | 𝑋𝐴 | 𝐴 𝒰 𝐵 | ◇𝐴 | □𝐴 | O(𝐴) | P(𝐴) | T(𝐴𝑖)

where 𝐴 and 𝐵 are well-formed formulas and 𝐴𝑖 is a distinguished formula.

Combining the modalities allows formulating conditions on the evolution of a system, taking into

consideration the obligations of agents, their fulfillment or violation. For instance, normally, when

receiving an invoice, one has the obligation to pay within a deadline (𝑑𝑙1)

T(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑖𝑛𝑣𝑜𝑖𝑐𝑒) → O(¬𝑑𝑙1 𝒰 𝑝𝑎𝑦)

and the violation to pay within deadline 𝑑𝑙1 generates an obligation to pay with a fine within a new

deadline 𝑑𝑙2:



O(¬𝑑𝑙1 𝒰 𝑝𝑎𝑦)) ∧ 𝑑𝑙1 ∧ ¬𝑝𝑎𝑦 → O(¬𝑑𝑙2 𝒰 𝑝𝑎𝑦_𝑓𝑖𝑛𝑒)

The implication above is strict, but it might as well be formulated as a defeasible implication. Other

examples of 𝐿𝑇𝐿T
𝐷 formulae are:

□(T(professor) → 𝑡𝑒𝑎𝑐ℎ𝑒𝑠 𝒰 retired)

lives_in_town ∧ young → T(◇granted_loan)

3.1. Semantics of the temporal deontic logic with typicality

Compared with the preferential semantics in the previous section, the semantics of a temporal deontic

logic with typicality has also to consider the temporal dimension, through a set of time points in N.

The valuation function assigns, at each time point 𝑛 ∈ N, a truth value to each propositional variable

in a world 𝑤 ∈ 𝒲 ; the preference relations <𝑛
𝐴𝑖

(with respect to each 𝐴𝑖) are relative to time points.

Evolution in time may change the valuation of propositions at the worlds, and it may also change the

preference relations between worlds (𝑤 might represent a typical situation for a student at time point

0, but not at time point 50). At each time point 𝑛 an accessibility relation 𝑅𝑛
is used for evaluating

obligations at time point 𝑛.

Definition 2. A temporal deontic (multi-)preferential interpretation (or 𝐿𝑇𝐿T
𝐷 interpretation) is a triple

ℐ = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, {𝑅𝑛}𝑛∈N, 𝑣⟩ where:

• 𝒲 is a non-empty set of worlds;

• for each 𝐴𝑖 and 𝑛 ∈ N, <𝑛
𝐴𝑖
⊆ 𝒲 ×𝒲 is an irreflexive and transitive relation on 𝒲 ;

• 𝑣 : N×𝒲 −→ 2Prop is a valuation function assigning, at each time point 𝑛, a set of propositional

variables in Prop to each world 𝑤 ∈ 𝒲 ;

• for 𝑛 ∈ N, 𝑅𝑛 ⊆ 𝒲 ×𝒲 is a serial accessibility relation.

For 𝑤 ∈ 𝒲 and 𝑛 ∈ N, 𝑣(𝑛,𝑤) is the set of the propositional variables which are true in world 𝑤
at time point 𝑛. When there is no 𝑤′ ∈ 𝒲 s.t. 𝑤′ <𝑛

𝐴 𝑤, we say that 𝑤 is a normal situation for 𝐴
at time point 𝑛. 𝑅𝑛

is the accessibility relation of the deontic modality O at time point 𝑛. We have

assumed that, for all time points 𝑛 ∈ N, 𝑅𝑛
is serial, that is: for all 𝑤 ∈ 𝒲 , there is a 𝑤′ ∈ 𝒲 such that

(𝑤,𝑤′) ∈ 𝑅𝑛
. This is the usual assumption in SDL. O(𝐴) is true in a world 𝑤 at time point 𝑛 if 𝐴 is

true in all the worlds which are ideal with respect to 𝑤 at time point 𝑛 (i.e., in all the worlds 𝑤′
such

that (𝑤,𝑤′) ∈ 𝑅𝑛
).

Given an 𝐿𝑇𝐿T
𝐷 interpretation ℐ = ⟨𝒲, {<𝑛

𝐴𝑖
}𝑛∈N, {𝑅𝑛}𝑛∈N, 𝑣⟩, we define inductively the truth of

a formula 𝐴 in a world 𝑤 at time point 𝑛 (written ℐ, 𝑛, 𝑤 |= 𝐴), as follows:

ℐ, 𝑛, 𝑤 |= ⊤ ℐ, 𝑛, 𝑤 ̸|= ⊥
ℐ, 𝑛, 𝑤 |= 𝑝 iff 𝑝 ∈ 𝑣(𝑛,𝑤), for all 𝑝 ∈ Prop

ℐ, 𝑛, 𝑤 |= 𝐴 ∧𝐵 iff ℐ, 𝑛, 𝑤 |= 𝐴 and ℐ, 𝑛, 𝑤 |= 𝐵

ℐ, 𝑛, 𝑤 |= 𝐴 ∨𝐵 iff ℐ, 𝑛, 𝑤 |= 𝐴 or ℐ, 𝑛, 𝑤 |= 𝐵

ℐ, 𝑛, 𝑤 |= ¬𝐴 iff ℐ, 𝑛, 𝑤 ̸|= 𝐴

ℐ, 𝑛, 𝑤 |= 𝐴 → 𝐵 iff ℐ, 𝑛, 𝑤 |= 𝐴 implies ℐ, 𝑛, 𝑤 |= 𝐵

ℐ, 𝑛, 𝑤 |= 𝑋𝐴 iff ℐ, 𝑛+ 1, 𝑤 |= 𝐴

ℐ, 𝑛, 𝑤 |= ◇𝐴 iff there is an 𝑚 ≥ 𝑛 such that ℐ,𝑚,𝑤 |= 𝐴

ℐ, 𝑛, 𝑤 |= □𝐴 iff for all 𝑚 ≥ 𝑛, ℐ,𝑚,𝑤 |= 𝐴

ℐ, 𝑛, 𝑤 |= 𝐴𝒰𝐵 iff there is an 𝑚 ≥ 𝑛 such that ℐ,𝑚,𝑤 |= 𝐵 and, for all 𝑘 such that

𝑛 ≤ 𝑘 < 𝑚, ℐ, 𝑘, 𝑤 |= 𝐴

ℐ, 𝑛, 𝑤 |= O(𝐴) iff for all 𝑤′ ∈ 𝒲 , such that (𝑤,𝑤′) ∈ 𝑅𝑛
, ℐ, 𝑛, 𝑤′ |= 𝐴

ℐ, 𝑛, 𝑤 |= T(𝐴𝑖) iff ℐ, 𝑛, 𝑤 |= 𝐴𝑖 and ∄w ′ ∈ 𝒲 s.t. w ′ <n
Ai

w and ℐ, 𝑛, 𝑤′ |= 𝐴𝑖.



Note that a temporal interpretation ℐ = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, {𝑅𝑛}𝑛∈N, 𝑣⟩ can be regarded as a sequence

of (non-temporal) deontic preferential interpretations ℳ0,ℳ1,ℳ2, . . . where each ℳ𝑛 is defined

as follows: ℳ𝑛 = ⟨𝒲, {<𝑛
𝐴𝑖
}, 𝑅𝑛, 𝑣𝑛⟩, where 𝑤 <𝑛

𝐴𝑖
𝑤′

holds in ℳ𝑛 iff 𝑤 <𝑛
𝐴𝑖

𝑤′
holds in ℐ , for all

𝑤,𝑤′ ∈ 𝒲 ; 𝑣𝑛(𝑤) = 𝑣(𝑛,𝑤), for all 𝑤 ∈ 𝒲 , and 𝑅𝑛
in ℳ𝑛

is the accessibility relation at time point

𝑛 in ℐ .

A temporal deontic conditional KB is a set of 𝐿𝑇𝐿T
𝐷 formulas. We evaluate the satisfiability of a

temporal formula in a temporal preferential interpretation ℐ , by verifying its truth at the initial time

point 0 of the interpretation ℐ .

Definition 3 (Satisfiability and entailment). A 𝐿𝑇𝐿T
𝐷 formula 𝛼 is satisfied in a temporal preferential

interpretation ℐ = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, 𝑣⟩ if ℐ, 0, 𝑤 |= 𝛼, for some world 𝑤 ∈ 𝒲 .

A𝐿𝑇𝐿T
𝐷 formula𝛼 is valid in the temporal preferential interpretation ℐ (written ℐ |= 𝛼) if ℐ, 0, 𝑤 |= 𝛼,

for all worlds 𝑤 ∈ 𝒲 .

A preferential interpretation ℐ = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, 𝑣⟩ is a model of a temporal deontic conditional

knowledge base 𝐾 , if ℐ |= 𝛼 holds, for all the formulas 𝛼 in 𝐾 .

A temporal deontic conditional knowledge base 𝐾 entails a formula 𝛼 if ℐ |= 𝛼 for all the models ℐ of

𝐾 .

3.2. Decidability and complexity

The temporal deontic logic with typicality introduced in this section can be proven to be decidable. when

the preference relations <𝐴𝑖 are well-founded. The problem of deciding the satisfiability of a 𝐿𝑇𝐿T
𝐷

formula 𝛼 can be polynomially reduced to deciding the satisfiability of a concept 𝐶𝛼 in the description

logic 𝐿𝑇𝐿T
𝒜ℒ𝒞 introduced in [16], which extends the temporal description logic 𝐿𝑇𝐿𝒜ℒ𝒞 [17] with

the typicality operator. 𝐿𝑇𝐿T
𝒜ℒ𝒞 has been shown to be decidable when a finite set of well-founded

preference relations <𝐴1 , . . . , <𝐴𝑚 is considered. This approach allows borrowing the decidability and

complexity results from 𝐿𝑇𝐿T
𝒜ℒ𝒞 .

Concept satisfiability in 𝐿𝑇𝐿T
𝒜ℒ𝒞 can be polynomially reduced to concept satisfiability in 𝐿𝑇𝐿𝒜ℒ𝒞 ,

when a finite set of well-founded preference relations <𝐴1 , . . . , <𝐴𝑚 is considered, and concept in-

clusions are regarded as global temporal constraints [16]. It has been proven that the decidability of

concept satisfiability in 𝐿𝑇𝐿T
𝒜ℒ𝒞 relies on the result that concept satisfiability in LTL𝒜ℒ𝒞 w.r.t. TBoxes

is in ExpTime (and, actually, it is ExpTime-complete), both with expanding domains [28] and with

constant domains [17].

To provide a sketch of the decidability result for 𝐿𝑇𝐿T
𝐷, let us introduce in the language of the

description logic 𝐿𝑇𝐿T
𝒜ℒ𝒞 a concept name 𝑃𝑗 , for each proposition 𝑝𝑗 ∈ Prop, and a role 𝑅𝑑, associated

to the deontic operator O. Given an 𝐿𝑇𝐿T
𝐷 formula 𝛼, we define the concept 𝐶𝛼 associated to 𝛼 in the

description logic 𝐿𝑇𝐿T
𝒜ℒ𝒞 , as follows (by induction on the structure of the formula):

𝐶𝑝𝑗 = 𝑃𝑗 , if 𝑝𝑗 ∈ Prop 𝐶T(𝐴𝑖) = T(𝐶𝐴𝑖)

𝐶¬𝐴 = ¬𝐶𝐴. 𝐶𝑋𝐴 = 𝑋 𝐶𝐴

𝐶𝐴∧𝐵 = 𝐶𝐴 ⊓ 𝐶𝐵 𝐶□𝐴 = □ 𝐶𝐴

𝐶𝐴∨𝐵 = 𝐶𝐴 ⊔ 𝐶𝐵 𝐶◇𝐴 = ◇ 𝐶𝐴

𝐶O(𝐴) = ∀𝑅𝑑.𝐶𝐴 𝐶P(𝐴) = ∃𝑅𝑑.𝐶𝐴

In order to enforce seriality for the deontic modality O, we let the concept inclusion ⊤ ⊑ ∃𝑅𝑑.⊤
belong to the TBox 𝑇 . As assumed before, such an inclusion is global and holds for all individuals at

any time point. Note that the typicality operator can be used in 𝐿𝑇𝐿T
𝒜ℒ𝒞 , so that any formula T(𝐴)

can be mapped to a concept T(𝐶𝐴). The encoding above of a formula 𝛼 into a concept 𝐶𝛼 is clearly

polynomial in the size of the formula 𝛼, and the TBox 𝑇 only contains one axiom.

It can be proven that a 𝐿𝑇𝐿T
𝐷 formula 𝐴 is satisfiable if and only if the concept 𝐶𝐴 is satisfiable in the

description logic 𝐿𝑇𝐿T
𝒜ℒ𝒞 w.r.t. TBox 𝑇 . We omit the proof and refer to [16] for the semantics of the



description logic 𝐿𝑇𝐿T
𝒜ℒ𝒞 and for the proof that concept satisfiability in 𝐿𝑇𝐿T

𝒜ℒ𝒞 w.r.t. TBoxes

is ExpTime-complete. The following proposition provides an upper-bound on the complexity of

satisfiability in 𝐿𝑇𝐿T
𝐷 .

Proposition 1. The satisfiability of an 𝐿𝑇𝐿T
𝐷 formula is in ExpTime, both with expanding domains and

with constant domains.

4. Ranked Conditional Knowledge Bases

As for KLM logics, the notion of preferential entailment considered in this section is rather weak.

For KLM logics some different closure constructions have been proposed to strengthen entailment by

restricting to a subset of the preferential models of a conditional knowledge base 𝐾 . Let us just mention

the rational closure [6], the lexicographic closure [25], and the MP-closure [20]. In the following we will

consider a construction, based on conditionals with ranks, which can be used to associate a preference

relation <𝐴𝑖 to the distinguished formulas 𝐴1, . . . , 𝐴𝑚.

In particular, here we will focus on ranked knowledge bases, that were first explored by Brewka in

his framework for qualitative preferences [29, 26], where basic preference relations ≥𝐾 are associated

with different ranked knowledge bases 𝐾 , and new preference relations are defined by combining the

basic preference relations. More precisely, we allow for ranked temporal conditional KBs, in which

conditional implications have a rank, a natural number. Each distinguished formula 𝐴𝑖 is associated

with a set of conditionals, which are used for defining the preorders ≤𝐴𝑖 , as well as the strict preference

relations <𝐴𝑖 (the associated strict partial orders). An approach using ranks was adopted in [22] in

a conditional extension of a lightweight description logic, and in [21] in a framework for modular,

multi-concept preferential semantics based on the lexicographic closure (where ranks are determined

by the rational closure construction). Here we extend the construction to the temporal case, and we

exploit user defined ranks for the conditionals, based on the strategy # from Brewka’s framework for

qualitative preferences [26], extended to the temporal case.

4.1. Inducing preferences

Let us introduce the ranked conditional KBs for the temporal case, through an example. Let 𝐾𝑠𝑡𝑢𝑑𝑒𝑛𝑡 be

a set of conditional implications, with their ranks, for the distinguished formula student . They describe

the typical properties of students. The higher is the rank, the higher is the priority of the conditional

formula:

𝑑1: T(student) → O(have_Classes) , 0

𝑑2: T(student) → ◇get_Degree , 0

𝑑3: T(student) → ¬has_Boss , 0

𝑑4: T(student ∧ employee) → has_Boss , 1

Normally, a student has the obligation to have classes, she will eventually get a degree, and she does not

have a boss; while a student who is also an employee has normally a boss. The rules above are intended

to define a preference relation <𝑠𝑡𝑢𝑑𝑒𝑛𝑡. In particular, worlds violating conditionals with lower ranks

are preferred with respect to worlds violating conditionals with higher ranks. We use the same relation,

concerning defaults, as in Lehmann’s lexicographic closure [25], but here we assume that the ranks of

the conditionals are given. For instance, a world 𝑤 describing a student having classes and not having a

boss, and that will eventually get a degree, is more typical than a world 𝑤′
describing a student and

employee having classes and a boss, and that will eventually get the degree. In particular, 𝑤′
violates

the conditional 𝑑3, while 𝑤 does not violate any conditional (the formal definition is given below).

In a ranked conditional knowledge base, the sets of ranked conditionals 𝐾𝐴1 , . . . ,𝐾𝐴𝑚 associated

with the distinguished formulas 𝐴1, . . . , 𝐴𝑚, coexist with a strict part of the knowledge base 𝐾𝑆 , i.e., a

set of formulas which do not contain the typicality operator. For instance, by the strict implication



student →O(paid_taxes 𝒰 (get_degree ∨ withdraw))

in 𝐾𝑆 , all students have the obligation to pay the enrollment taxes until they either get the degree

or withdraw, with no exceptions. A ranked conditional knowledge base is represented by a tuple

𝐾 = ⟨𝐾𝑆 ,𝐾𝐴1 , . . . ,𝐾𝐴𝑚⟩, with 𝐾𝑆 the strict part, and 𝐾𝐴1 , . . . ,𝐾𝐴𝑚 (the defeasible part of the

KB) are sets of ranked conditionals. Each 𝐾𝐴𝑖 is a set of pairs (T(𝐴) → 𝐵, 𝑙) associating defeasible

implications with a rank. Note that 𝐴 is not required to coincide with 𝐴𝑖. As in the example above we

allow any formula 𝐴 in a ranked conditional implication (T(𝐴) → 𝐵, 𝑙).
Given a ranked conditional knowledge base 𝐾 = ⟨𝐾𝑆 ,𝐾𝐴1 , . . . ,𝐾𝐴𝑚⟩, and a preferential temporal

interpretation ℐ , one can define a preorder ≤𝑛
𝐴𝑖

for each distinguished proposition 𝐴𝑖 at time point 𝑛,

by considering the rank 𝑙 of each defeasible implication (T(𝐴𝑖) → 𝐵, 𝑙) in 𝐾𝐴𝑖 .

We let 𝒯 𝑙
𝐴𝑖
(𝑤, 𝑙) be the set of typicality inclusions in 𝐾𝐴𝑖 with rank 𝑙, being satisfied by world 𝑤 at

time point 𝑛 in a temporal interpretation ℐ , that is:

𝒯 𝑙
𝐴𝑖
(𝑤, 𝑛) = {T(𝐴) → 𝐵 | (T(𝐴) → 𝐵, 𝑙) ∈ 𝐾𝐴𝑖 and ℐ, 𝑛, 𝑤 ̸|= 𝐴 or ℐ, 𝑛, 𝑤 |= 𝐵}.

We define the preference relations ≤𝑛
𝐴𝑖

as follows:

Definition 4. Given a ranked conditional knowledge base 𝐾 = ⟨𝐾𝑆 ,𝐾𝐴1 , . . . ,𝐾𝐴𝑚⟩, and an 𝐿𝑇𝐿T
𝐷

interpretation ℐ = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, {𝑅𝑛}𝑛∈N, 𝑣⟩, for all worlds 𝑤1, 𝑤2 ∈ 𝒲 , we let

𝑤1 ≤𝑛
𝐴𝑖

𝑤2 iff either |𝒯 𝑙
𝐴𝑖
(𝑤1, 𝑛)| = |𝒯 𝑙

𝐴𝑖
(𝑤2, 𝑛)|, for all 𝑙,

or ∃𝑙 such that |𝒯 𝑙
𝐴𝑖
(𝑤1, 𝑛)| > |𝒯 𝑙

𝐴𝑖
(𝑤2, 𝑛)| and, ∀ℎ > 𝑙, |𝒯 ℎ

𝐴𝑖
(𝑤1, 𝑛)| = |𝒯 ℎ

𝐴𝑖
(𝑤2, 𝑛)|.

Informally, the preference relation ≤𝑛
𝐴𝑖

gives higher preference to worlds violating a smaller number

of conditional implications with higher rank for 𝐴𝑖 at time point 𝑛. It corresponds to the strategy # in

Brewka’s framework for qualitative preferences [26], transferred to the temporal case. The preorder ≤𝑛
𝐴𝑖

is total. The strict preference relation <𝑛
𝐴𝑖

is defined as usual from the preorder relation as: 𝑤 <𝑛
𝐴𝑖

𝑤′

iff 𝑤 ≤𝑛
𝐴𝑖

𝑤′
and 𝑤′ ̸≤𝑛

𝐴𝑖
𝑤.

Definition 5. An 𝐿𝑇𝐿T
𝐷 interpretation ℐ = ⟨𝒲, {<𝑛

𝐴𝑖
}𝑛∈N, {𝑅𝑛}𝑛∈N, 𝑣⟩, is a model of the ranked

knowledge base 𝐾 = ⟨𝐾𝑆 ,𝐾𝐴1 , . . . ,𝐾𝐴𝑚⟩, if ℐ is a model of 𝐾𝑆 according to Definition 3 and, for each

distinguished proposition 𝐴𝑖, the preference relation ≤𝑛
𝐴𝑖

is defined according to Definition 4.

A formula 𝛼 is entailed from a ranked 𝐿𝑇𝐿T
𝐷 knowledge base 𝐾 = ⟨𝐾𝑆 ,𝐾𝐴1 , . . . ,𝐾𝐴𝑚⟩ if ℐ |= 𝛼

for all the models ℐ of the ranked knowledge base 𝐾 .

Let us continue with our example. Whether an obligation is fulfilled or not at a world, depends on

the trajectory starting at that world. One can represent a situation in which an obligation, normally, has

to be fulfilled, but it may have exceptions. For instance, the obligation O(𝑝𝑎𝑖𝑑_𝑡𝑎𝑥𝑒𝑠 𝒰 (𝑔𝑜𝑡_𝑑𝑒𝑔𝑟𝑒𝑒∨
𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑛)) should by normally fulfilled but, when it is not, there is a new obligation to pay with a

fine within (e.g.) the next May (a contrary to duty obligation). Also, the obligation is normally canceled

if there is a tax amnesty. This policy can be encoded by a set of defeasible implications (for sake

of conciseness, we will use O(𝑜1) as a short name for the formula O(𝑝𝑎𝑖𝑑_𝑡𝑎𝑥𝑒𝑠 𝒰 (𝑔𝑜𝑡_𝑑𝑒𝑔𝑟𝑒𝑒 ∨
𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑛))):

𝑑4: T(O(o1 )) → paid_taxes 𝒰 (got_degree ∨ withdrawn), 0

𝑑5: T(O(o1 ) ∧ paid_taxes ∧ ¬got_degree ∧ ¬withdraw) → XO(o1 ), 0

𝑑6: T(O(o1 ) ∧ ¬paid_taxes ∧ ¬got_degree ∧ ¬withdrawn)
→ XO(¬may 𝒰 pay_fine) ∧X¬O(o1 ), 1

𝑑7: T(O(o1 ) ∧ tax_amnesty)→ X¬O(o1 ), 2

By conditional 𝑑5, the obligation O(𝑜1) normally persists to the next state if it has not been violated

(paid_taxes holds) and it is not already fulfilled (by reaching a degree or withdrawing). Conditional 𝑑6,

with rank 1, states that, in a typical situation in which obligation O(𝑜1) is violated (i.e., O(𝑜1) holds,

but taxes have not been paid, and the student neither has received a degree nor has withdrawn), in



the next state a new obligation to pay with fine within May is added, and O(𝑜1) is canceled. By 𝑑7 the

obligation O(𝑜1) is normally canceled if there is a tax amnesty (conditional with rank 2).

In this example, we may assume that the conditionals concerning the payment of taxes for students

belong as well to the set of ranked conditionals 𝐾𝑠𝑡𝑢𝑑𝑒𝑛𝑡. Based on the semantics above, this set of

ranked conditionals induces a preference relation <𝑠𝑡𝑢𝑑𝑒𝑛𝑡, which enable us to prove, for instance the

property that normally students will pay taxes until they get a degree or withdraw:

T(Student) → paid_taxes 𝒰 (got_degree ∨ withdrawn)

(i.e., that the obligation for students to pay taxes is normally fulfilled).

4.2. Combining preferences

In the general case, we may want to verify conditional properties of the form T(𝐴) → 𝐵, where 𝐴 is

not a distinguished proposition. For instance, we may want to check whether the conditional

T(Student ∧ Employee) → paid_taxes 𝒰 (got_degree ∨ withdrawn)

is entailed from a ranked KB also in case Student ∧ Employee is not a distinguished proposition. When

general typicality formulas of the form T(𝐴) are admitted (provided 𝐴 does not contain the typicality

operator), we also needs to generalize the semantic condition for evaluating the typicality operator

T(𝐴).
The semantic condition in Definition 2 can be extended to all typicality formulas, as follows:

ℐ, 𝑛, 𝑤 |= T(𝐴) iff ℐ, 𝑛, 𝑤 |= 𝐴 and ∄w ′ ∈ 𝒲 s.t. w ′ <n
A w and ℐ, 𝑛, 𝑤′ |= 𝐴.

This requires to provide a definition of the preference relation <𝑛
𝐴 also for the cases when 𝐴 is not a

distinguished formula. New preference relations can be obtained by combining the preference relations

<𝑛
𝐴1

, . . . , <𝑛
𝐴𝑛

, based on Brewka’s framework for preference combination [26].

In Brewka’s framework, qualitative preferences [29, 26] are defined, starting from basic preference

descriptions to define preorders on models (propositional interpretations). More precisely, a logical

preference description language, LPD, is introduced, to combine basic preference descriptions 𝑑1 and

𝑑2 into complex ones. If 𝑑1 and 𝑑2 are preference descriptions in LPD, also 𝑑1 ∧ 𝑑2, 𝑑1 ∨ 𝑑2, ¬𝑑1 and

𝑑1 > 𝑑2 are preference descriptions in LPD, where: 𝑑1 ∧ 𝑑2 is defined as the set theoretic intersection

of relations 𝑑1 and 𝑑2; 𝑑1 ∨ 𝑑2 is defined as the transitive closure of the set theoretic union of 𝑑1 and

𝑑2; ¬𝑑1 is defined as the inverse of relation 𝑑1, and 𝑑1 > 𝑑2 is intended to express preferences among

expressions (in particular, preference 𝑑1 has higher priority with respect to preference 𝑑2; we refer to

[26] for details).

In our context, the preference relations ≤𝐴1 , . . . ,≤𝐴𝑛 , associated with the distinguished propositions

𝐴1, . . . , 𝐴𝑛 play the role of basic preference descriptions to be combined, based on the framework

above. Given the preferences ≤𝐴 and ≤𝐵 , we let: ≤𝐴∧𝐵 = (≤𝐴 ∩ ≤𝐵), ≤𝐴∨𝐵 = (≤𝐴 ∪ ≤𝐵)
+

, and

≤¬𝐴 = (≤𝐴)
−1

, where (≤𝐴)
−1

is the inverse of preference relation ≤𝐴 , (≤𝐴 ∪ ≤𝐵)
+

is the transitive

closure of the set theoretic union of ≤𝐴 and ≤𝐵 , and (≤𝐴 ∩ ≤𝐵) is the set theoretic intersection of

≤𝐴 and ≤𝐵 .

Note that, when ≤𝐴 and ≤𝐵 are total preorders, ≤¬𝐴 and ≤¬𝐵 are total preorders; and the union

≤𝐴 ∪ ≤𝐵 is transitive, and is as well a total preorder (in this case, applying the transitive closure is not

needed). Note also that ≤𝐴∧𝐵 is a preorder, but not necessarily total. When ≤𝐴 and ≤𝐵 are ranked

preference relations, it holds that:

𝑤 ≤𝐴∧𝐵 𝑤′
iff 𝑤 ≤𝐴 𝑤′

and 𝑤′ ≤𝐵 𝑤′

𝑤 ≤𝐴∨𝐵 𝑤′
iff 𝑤 ≤𝐴 𝑤′

or 𝑤′ ≤𝐵 𝑤′

𝑤 ≤¬𝐴 𝑤′
iff 𝑤′ ≤𝐴 𝑤



As observed by Brewka, the preference description ¬(𝑑1 ∨ 𝑑2) is different from ¬𝑑1 ∧ ¬𝑑2 and, in our

context, the preference relation ≤¬(𝐴1∨𝐴2) differs from ≤¬𝐴1∧¬𝐴2 . To avoid the problem that equivalent

formulas may be associated to different preference relations, we let the relation ≤𝐴 associated to a

boolean formula 𝐴 be the preference relation associated to its conjunctive normal form (CNF). The

preference relation associated to a formula in CNF can be computed from the basic ranked preferences,

taking their inverse (still total preorders), then computing the preferences of the disjunctions as unions

of total preorders, and finally, computing the intersections of the preferences for the disjuncts.

Once a preference relation ≤𝐴 has been associated to each formula 𝐴, the induced strict partial order

<𝐴 can be used in the evaluation of the typicality formula T(𝐴) while computing entailment.

This approach for dealing with ranked KBs provides an example of the constructions which can

be adopted for reasoning in the temporal deontic conditional logic with ranked knowledge bases.

Alternative constructions could be used for ranked knowledge bases, including, for instance, exploiting

different lexicographic orders, while approaches, based on weighted knowledge bases can also be

considered (as done for temporal defeasible Description Logics [16]).

5. Conclusions

The paper proposes a temporal, deontic, conditional logic with typicality, 𝐿𝑇𝐿T
𝐷 , based on a preferential

semantics and exploiting the operators of LTL and the deontic operators of SDL. The interpretation of

the typicality operator is based on a multi-preferential semantics, and exploits an extension of ranked

conditional knowledge bases to the temporal deontic case.

Our starting point for defining 𝐿𝑇𝐿T
𝐷 is a multi-preferential logic with typicality, a logic which

allows for conditional reasoning based on a multi-preferential semantics. It is defined along the lines of

preferential logics with typicality, such as the description logic 𝒜ℒ𝒞 +T [27] and the Propositional

Typicality Logic (PTL) [18] and, more precisely, along the lines of multi-preferential logics with typicality,

which have been used for conditional reasoning about multilayer networks [23] and about gradual

argumentation semantics [30, 31], and have been recently exploited in a conditional extension of

Answer Set Programming (Conditional ASP) [24]. The paper borrows and extends the propositional

multi-preferential semantics in [24].

Future work includes studying different closure constructions, including constructions based on

weighted KBs for temporal conditionals, as well as considering extensions of Answer Set Programming

with temporal conditionals and providing reasoning tools.

On a different route, in the two-valued case, a preferential logics with defeasible LTL operators has

been studied in [14, 32]. The decidability of different fragments of the logic has been proven, and

tableaux based proof methods for such fragments have been developed [13, 32]. Our approach does not

consider defeasible temporal operators nor preferences over time points, but it combines standard LTL

operators with the typicality operator in a temporal logic.

Related work also include the many-valued conditional logic for the verification of temporal properties

of gradual argumentation graphs under a gradual argumentation semantics developed in [33, 34]. In

this paper we have considered a two-valued temporal conditional logic, also including the deontic

operators and we have proved a decidability result. We have as well developed a closure construction

based on ranked knowledge bases, and their combination.

The Temporal Modal Defeasible Logic [10] and Temporal Defeasible Logic [35] are temporal extensions

of Defeasible Logic [36], a formalism which extends logic programming (without negation) to deal

with exceptions, exploiting defeasible rules, priorities between them, and defeaters. Whether priorities

between conditionals can be accommodated in our preferential approach is a matter of investigation.

A Dynamic Deontic and Temporal Logic has been proposed by Dignum and Kuiper [37] to reason

about obligations and deadlines. In particular, they provide a formalization of achievement obligations

as obligations with an until formula as argument. This idea has been later exploited in a simple Deontic

Dynamic Temporal Logic (DDLTL) [11] showing that several kinds of obligations which are relevant

for business process verification can be formulated. In this paper, we have developed a conditional



extension of the LTL fragment of DDLTL, which does not allow for program expressions. Extending

the formalism with complex program expressions (as in DLTL) is a subject of future investigation.
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