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Abstract
We provide the conditions under which a cellular automaton defined by certain classes of non-linear local rules
exhibits surjectivity and reversibility. For the latter, the condition turns out to be a characterization. We also
analyze the role of permutivity as a key factor influencing these properties and provide conditions that determine
whether a non-linear CA in such classes is (bi)permutive.
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1. Introduction

A cellular automaton (CA) is a discrete dynamical system consisting of a regular grid of cells where
each cell updates its own state according to a local rule on the basis of the states of the neighboring cells
and in a synchronous way with all the other cells, allowing complex global behavior of the system to
emerge from simple interactions. CA have been extensively studied from a theoretical point of view(see
for instance [1, 2]. Moreover, CA have been widely used to model intricate phenomena in different
scientific fields, including physics [3], biology [4], sociology [5], ecology [6], and cryptography [7]. Their
conceptual simplicity and modeling flexibility have also attracted considerable interest in computer
science, particularly in the domain of cryptography (see [7] for a comprehensive survey of cryptographic
applications).

Among the different classes of CA, linear CA have received considerable attention due to their well-
understood algebraic structure and predictable behavior (see [8] for a comprehensive bibliography and
recent results on linear CA). Such CA have a local rule which can be expressed as a linear combination
of the involved variables. In contrast, non-linear CA, i.e., , CA that are not linear, remain much less
explored, although some attempts have been made to study both qualitatively and quantitatively the
characteristics of such CA [9, 10, 11]. This lack presents both a challenge and an opportunity.

From a theoretical perspective, studying non-linear CA is compelling, as their non linearity introduces
a level of dynamical complexity which is not present in their linear counterparts. This complexity
opens new avenues for analysis and classification, and may reveal behaviors that are fundamentally
different from those observed in well-studied classes. In addition, this complexity and unpredictability
make non-linear CA promising candidates for applications where such properties are desirable - most
notably in cryptography: while linear CA have already been employed in the construction of various
cryptographic primitives, the potential of non-linear CA in this domain remains largely untapped.

In this paper we present the beginning of the theoretical study of a class of non-linear CA, starting
from classical results addressing the injectivity and surjectivity questions. It is widely acknowledged
that characterizing local rules which make a CA injective or surjective proves arduous in the unrestricted
case [12]. Therefore, given the complexity of the issue at hand, we limit our analysis to the class of
non-linear 𝑗-separated CA (see Definition 1). Exploiting the structural properties of 𝑗-separated CA, we
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are able to provide a permutivity characterization. Then, building on these results and restricting to the
class of 𝐿𝑅-separated CA, i.e., non-linear CA that are separated in their both leftmost and rightmost
positions (see Definition 1), we state in Theorem 2 that if a 𝐿𝑅-separated non-linear CA 𝐹 is either
ℓ-permutive or 𝑟-permutive then it is surjective, while in Theorem 3, we state that 𝐹 is reversible if and
only if it is a reversible shift-like. Besides theoretical results, we also provide some illustrative examples
to better clarify the relationships between these fundamental properties, offering new insights into the
dynamical behavior of non-linear CA.

We stress that this short paper is an extended abstract of [13] to which the reader is referred for a
complete version that includes all the proofs.

2. Terminology and Background

We start with some terminology from word combinatorics. An alphabet 𝐴 is a finite set of symbols,
called letters. In this paper, we take 𝐴 = Z𝑚, the set of integers modulo 𝑚. A finite word over an
alphabet 𝐴 is a finite sequence of letters from 𝐴. The length of a finite word 𝑢, denoted by |𝑢|, is the
number of letters it contains. The unique word of length 0 is called the empty word and is denoted by
𝜆. A configuration (or bi-infinite word) 𝑥 = . . . 𝑥−2𝑥−1𝑥0𝑥1𝑥2 . . . over 𝐴 is an infinite concatenation
of letters from 𝐴 indexed by Z. For integers 𝑛 ≤ 𝑚, we denote by 𝑥J𝑛,𝑚K = 𝑥𝑛𝑥𝑛+1 · · ·𝑥𝑚−1𝑥𝑚 the
subword of 𝑥 from position 𝑛 to 𝑚, where J𝑛,𝑚K = [𝑛,𝑚] ∩ Z; further, we will indicate by 𝑢∞ the
constant word, i.e. the word constructed by concatenating the same letter 𝑢 infinitely many times. The
set of all finite (resp. bi-infinite) words over 𝐴 is denoted by 𝐴* (resp. 𝐴Z), and for each 𝑛 ∈ N, the set
of words of length 𝑛 is denoted by 𝐴𝑛.

Formally, a CA is a map 𝐹 : 𝐴Z → 𝐴Z such that there exist an integer 𝜌 ≥ 0 and a local rule
𝑓 : 𝐴2𝜌+1 → 𝐴 satisfying, for all 𝑥 ∈ 𝐴Z and 𝑖 ∈ Z : 𝐹 (𝑥)𝑖 = 𝑓(𝑥J𝑖−𝜌,𝑖+𝜌K). We refer to 𝜌 as the radius
and 𝑑 = 2𝜌 as the diameter of the CA.

A distinct and particularly relevant class of CA are the so-called permutive CA. We say that a CA 𝐹
of diameter 𝑑 and local rule 𝑓 is permutive at position 𝑖 (with 1 ≤ 𝑖 ≤ 𝑑 + 1) if, for every 𝑢 ∈ 𝐴𝑖−1,
every 𝑣 ∈ 𝐴𝑑−𝑖+1, and every 𝑏 ∈ 𝐴, there exists a unique 𝑎 ∈ 𝐴 such that 𝑓(𝑢𝑎𝑣) = 𝑏. In other words,
when all variables except the 𝑖-th are fixed, the function 𝑓 acts as a permutation in the 𝑖-th variable. In
particular, if 𝑖 = 1 (respectively, 𝑖 = 𝑑+ 1), we say that 𝐹 is left (respectively, right) permutive. A CA
is said to be bipermutive if it is both left and right permutive, and simply permutive if it satisfies at least
one of these conditions. According to [14, Proposition 5.22], every permutive CA is surjective.

We now turn our attention to an algebraic notion and a result which we will rely on in the upcoming
results. Recall that the Euler’s totient function [15], denoted 𝜙(𝑛), is defined as the number of positive
integers less than or equal to 𝑛 that are coprime to 𝑛. Formally,

𝜙(𝑛) = #{𝑘 ∈ Z such that 1 ≤ 𝑘 ≤ 𝑛 and gcd(𝑘, 𝑛) = 1}.

Also, recall that every function from a finite field F to itself can be represented as a polynomial over F.
As mentioned in the introduction, to manage the complexity of non-linear local rules, we narrow

our attention to a specific class of non-linear CA defined by a local rule 𝑓 such that 𝑓 is a multivariate
polynomial with (at least) one variable separated from the others. We end this section by introducing
this notion, which we will rely on in the remainder of the paper.

Definition 1. Let 𝐹 be a CA over the finite ring Z𝑚 with 𝑚 ≥ 3, defined by a local rule 𝑓 : Z𝑑+1
𝑚 → Z𝑚

of the form:
𝑓(𝑥1, . . . , 𝑥𝑑+1) = 𝑎𝑗𝑥

𝑞𝑗
𝑗 + 𝜋(𝑥1, . . . , 𝑥𝑗−1, 𝑥𝑗+1, . . . , 𝑥𝑑+1),

1. We say that 𝐹 is separated in position 𝑗, or simply 𝑗-separated.
2. If 𝑗 = ℓ (resp. 𝑗 = 𝑟), where 𝑎ℓ (resp. 𝑎𝑟) is the leftmost (resp. rightmost) non-zero coefficient, then

𝐹 is said to be leftmost (resp. rightmost) separated.
3. We say that 𝐹 is 𝐿𝑅-separated if it is both leftmost and rightmost separated.



4. We say that 𝐹 is totally separated if the local rule is of the form

𝑓(𝑥1, . . . , 𝑥𝑑+1) =

𝑑+1∑︁
𝑗=1

𝑎𝑗𝑥
𝑞𝑗
𝑗 ,

Remark 1. If 𝐹 is a 𝐿𝑅-separated CA with local rule 𝑓 and diameter 𝑑, then 𝑓 necessarily takes one of
the following forms:

1. 𝑓(𝑥1, . . . , 𝑥𝑑+1) = 𝑎ℓ𝑥
𝑞ℓ
ℓ , in which case ℓ = 𝑟 and 𝐹 is said to be shift-like.

2. 𝑓(𝑥1, . . . , 𝑥𝑑+1) = 𝑎ℓ𝑥
𝑞ℓ
ℓ + 𝜋(𝑥ℓ+1, . . . , 𝑥𝑟−1) + 𝑎𝑟𝑥

𝑞𝑟
𝑟 , where 1 ≤ ℓ < 𝑟 ≤ 𝑑 + 1, such that 𝑎ℓ

(resp. 𝑎𝑟) is the leftmost (resp. rightmost) non-zero coefficient, and 𝜋 : Z𝑟−ℓ−1
𝑚 → Z𝑚 is an arbitrary

map.

Notice that in both cases it is possible to write 𝑓(𝑥1, . . . , 𝑥𝑑+1) = 𝑎ℓ𝑥
𝑞ℓ
ℓ + 𝜋(𝑥ℓ+1, . . . , 𝑥𝑟−1) + 𝑎𝑟𝑥

𝑞𝑟
𝑟

with 𝜋 : Zℎ
𝑚 → Z𝑚, where ℎ = max{0, 𝑟 − ℓ− 1}.

We will refer to ℓ (resp. 𝑟) as the leftmost (resp. rightmost) position of 𝐹 .

It is also important to stress that this work focuses on the case 𝐴 = Z𝑚 with 𝑚 ≥ 3, as the case
𝑚 = 2 corresponds to linear CA, which have already been extensively studied in the literature (see, for
example, [16] and [17]).

3. Quadratic CA on finite fields

Among non-linear CA, a particularly notable subclass is that of quadratic CA. It directly turns out that
no quadratic CA can be surjective over a finite field Z𝑝.

Definition 2. A CA 𝐹 with diameter 𝑑 and local rule 𝑓 : Z𝑑+1
𝑚 → Z𝑚 is quadratic if 𝑓 is a quadratic

form on Z𝑑+1
𝑚 (i.e. 𝑓(𝑎𝑢) = 𝑎2𝑓(𝑢) for any 𝑢 ∈ Z𝑑+1

𝑚 and 𝑎 ∈ Z𝑚, and, the map (𝑢, 𝑣) ↦→ 𝑓(𝑢+ 𝑣)−
𝑓(𝑢)− 𝑓(𝑣) is bilinear form that is linear in each argument separately).

Lemma 1. Let 𝐹 be a totally separated CA over the finite field Z𝑝, where 𝑝 is prime number with 𝑝 ≥ 3,
i.e. the local rule 𝑓 is given by

𝑓(𝑥1, . . . , 𝑥𝑑+1) =

𝑑+1∑︁
𝑖=1

𝑎𝑖𝑥
𝑞𝑖
𝑖 ,

where each 𝑎𝑖 ∈ Z𝑝. If every 𝑞𝑖 is an even positive integers for all 𝑖 ∈ J1, 𝑑+ 1K, then the global map 𝐹 is
not surjective.

We can specialize Lemma 1 to the context of quadratic local rules, yielding a corresponding result for
quadratic CA.

Corollary 1. There is no surjective quadratic CA over Z𝑝 for any prime 𝑝 ≥ 3.

Corollary 2. Let 𝐹 be a totally separated CA over Z𝑝 for any prime 𝑝 ≥ 3. If the powers 𝑞𝑖’s are all even
positive integers, then 𝐹 is not injective.

4. Permutivity

In this section, we focus on the study of the permutivity property of non-linear 𝑗-separated CA.

Lemma 2. Let 𝐹 be a 𝑗-separated CA over Z𝑚 and with diameter 𝑑 , where 𝑚 is a positive integer and
its local rule 𝑓 can be written as

𝑓(𝑥1, . . . , 𝑥𝑑+1) = 𝑎𝑥𝑛𝑗 + 𝑔(𝑥1, . . . , 𝑥𝑗−1, 𝑥𝑗+1, . . . , 𝑥𝑑+1),

where 𝑎 ∈ Z𝑚 is invertible and 𝑔 : Z𝑑
𝑚 → Z𝑚 is any map.

It holds that 𝐹 is permutive in position 𝑗 if and only if gcd(𝑛, 𝜙(𝑚)) = 1.



Remark 2. In particular, if 𝐹 is (𝑑+ 1)-separated [resp. 1-separated] then 𝐹 is right-permutive [resp.
left-permutive] if and only if gcd(𝑛, 𝜙(𝑚)) = 1.

Remark 3. Making reference to Lemma 2, it holds that if 𝑚 is a prime number, then 𝐹 is permutive in
position 𝑗 if and only if gcd(𝑛,𝑚− 1) = 1, since 𝜙(𝑚) = 𝑚− 1 for 𝑚 prime.

It was shown by Hermitein [18] that a polynomial 𝑓 over a finite field F𝑝 is invertible if and only
if 𝑓 has exactly one root in F𝑝 and for each integer 𝑡 with 1 < 𝑡 < 𝑝 − 2, 𝑡 ̸≡ 0 mod 𝑝, the
reduction of [𝑓(𝑥)]𝑡 mod (𝑥𝑝 − 𝑥) has degree less than 𝑝 − 2. Therefore, a CA over Z𝑝 with local
rule 𝑓(𝑥1, . . . , 𝑥𝑑+1) = 𝜋(𝑥𝑑+1) + 𝑔(𝑥1, . . . , 𝑥𝑑) [resp. 𝑓(𝑥1, . . . , 𝑥𝑑+1) = 𝜋(𝑥1) + 𝑔(𝑥2, . . . , 𝑥𝑑+1)]
is right-permutive [resp. left-permutive] if and only if the two aforementioned conditions hold for the
polynomial 𝜋(𝑥).

Hermite’s criterion can be simplified in the context of the finite field on 𝑝 elements Z𝑝 [19], where
it holds that a polynomial 𝑓 ∈ Z𝑝[𝑥] is invertible on Z𝑝 if and only if gcd(𝑓 ′(𝑥), 𝑥𝑝 − 𝑥) = 1, where
𝑓 ′(𝑥) is the first derivative of 𝑓(𝑥), and 𝑥𝑝 − 𝑥 is the polynomial whose roots are all elements of Z𝑝.
We thus have the following characterization of permutive CA over the finite field Z𝑝.

Proposition 1. Let 𝐹 be a CA over the finite field Z𝑝 with diameter 𝑑 defined by the local rule

𝑓(𝑥1, . . . , 𝑥𝑑+1) = 𝜋(𝑥𝑗) + 𝑔(𝑥1, . . . , 𝑥𝑗−1, 𝑥𝑗+1, . . . , 𝑑𝑑+1),

where 𝜋(𝑥) ∈ Z𝑝[𝑥] is a polynomial and 𝑔 is any map 𝑔 : Z𝑑
𝑝 → Z𝑝. Then 𝐹 is permutive in position 𝑗 if

and only if deg(𝜋) < 𝑝 and gcd(𝜋′(𝑥), 𝑥𝑝 − 𝑥) = 1.

5. Surjectivity

We now provide some alternative characterization results on surjectivity for the class of 𝐿𝑅-separated
CA. We start by recalling some useful facts from [20].

Definition 3 ([20, Def. 8.2.1]). Let F𝑝 be the finite field with 𝑝 elements. A polynomial 𝑓 ∈
F𝑝[𝑥1, ..., 𝑥𝑛] is a permutation polynomial in 𝑛 variables over F𝑝 if the equation 𝑓(𝑥1, ..., 𝑥𝑛) = 𝛼
has exactly 𝑝𝑛−1 solutions in F𝑛

𝑝 for each 𝛼 ∈ F𝑝.

Theorem 1 ([20, Theorem 8.2.9]). Let 𝑓 ∈ F𝑝[𝑥1, ..., 𝑥𝑛] be of the form

𝑓(𝑥1, ..., 𝑥𝑛) = 𝑔(𝑥1, ..., 𝑥𝑚) + ℎ(𝑥𝑚+1, ..., 𝑥𝑛), 1 ≤ 𝑚 < 𝑛.

If at least one of 𝑔 and ℎ is a permutation polynomial over F𝑝 then 𝑓 is a permutation polynomial over F𝑝.
If 𝑝 is prime, then the converse also holds.

The following is a direct consequence of the results above.

Proposition 2. Let 𝐹 be a 𝐿𝑅-separated CA with local rule 𝑓 over Z𝑝, for any prime 𝑝 ≥ 3 and let ℓ
(resp. 𝑟) be the leftmost (resp. rightmost) position of 𝐹 .

1. If the polynomial 𝜋 (defined as in Remark 1) is any non-permutation polynomial, then 𝐹 is surjective
if and only if gcd(𝑞ℓ, 𝑝− 1) = 1 or gcd(𝑞𝑟, 𝑝− 1) = 1.

2. If 𝐹 is a totally separated surjective CA, then there is at least one 𝑗 ∈ Jℓ, 𝑟K such that gcd(𝑞𝑗 , 𝑝−1) =
1.

The following result is a direct consequence of Lemma 2 and provides a partial characterization of
surjective 𝐿𝑅-separated CA.

Theorem 2. Let 𝐹 be a 𝐿𝑅-separated CA over the finite ring Z𝑚, for any integer 𝑚 ≥ 3, and let ℓ (resp.
𝑟) be the leftmost (resp. rightmost) position of 𝐹 . If either gcd(𝑞ℓ, 𝜙(𝑚)) = 1 or gcd(𝑞𝑟, 𝜙(𝑚)) = 1, then
𝐹 is surjective.



6. Reversibility

This section is devoted to the study of reversibility for 𝐿𝑅-separated CA. The following results hold.

Theorem 3. Let 𝐹 be a 𝐿𝑅-separated CA with diameter 𝑑 = 2𝜌 and local rule 𝑓 over Z𝑚, for any integer
𝑚 ≥ 3, and let ℓ (resp. 𝑟) be the leftmost (resp. rightmost) position of 𝐹 . Then 𝐹 is injective if and only if
ℓ = 𝑟 and gcd(𝑞ℓ, 𝜙(𝑚)) = 1.

Remark 4. As in the case of Proposition 2, if 𝑚 is a prime number, then, 𝐹 is injective if and only if ℓ = 𝑟
and gcd(𝑞ℓ,𝑚− 1) = 1.

Corollary 3. Let 𝐹 be a 𝐿𝑅-separated CA over Z𝑚, where 𝑚 is an integer with 𝑚 ≥ 3. Then 𝐹 is
bijective if and only if ℓ = 𝑟 and gcd(𝑞ℓ, 𝜌(𝑚)) = 1.

Example 1. Let 𝐹 be a CA with local rule: 𝑓(𝑎, 𝑏, 𝑐) = 𝑎4+3𝑏 mod 7. The global rule 𝐹 is not injective
since 𝐹 ((56)∞) = 𝐹 ((43)∞) = (62)∞. However, 𝑃 (𝑥) = 𝑥4+3𝑥 mod 7, is a permutation polynomial
over Z7.

Example 2. Let 𝐹 be a CA with local rule: 𝑓(𝑎, 𝑏, 𝑐) = 𝑎3 + 2𝑏 + 𝑐2 mod 5. The global rule 𝐹 is
not injective since 𝐹 ((10)∞) = 𝐹 ((3)∞) = 2∞. We can take also 𝐹 ((30)∞) = 𝐹 ((41)∞) = (34)∞.
However, 𝑃 (𝑥) = 𝑥3 + 2𝑥+ 𝑥2 mod 5, is a permutation polynomial over Z5 (even it is the sum of two
non permutation polynomials 𝑃1(𝑥) = 𝑥3 + 2𝑥 mod 5 and 𝑃2(𝑥) = 𝑥2 mod 5).

7. Conclusions and Future Directions

In this work, we analyzed the structural properties of non-linear CA, focusing on permutivity, surjectiv-
ity, and reversibility. We introduced the class of 𝑗-separated non-linear CA and provided conditions for
the above mentioned properties in this class of CA.

Our findings show that permutivity plays a central role in determining surjectivity and reversibility.
Specifically, we provided a condition under which a 𝑗-separated nonlinear CA is surjective. Additionally,
we stated that reversibility is equivalent to the CA being surjective and with local rule 𝑓 depending
only on one variable. These results contribute to a deeper understanding of non-linear CA dynamics
and provide a framework for identifying their computational potential.

Beyond theoretical results, we presented illustrative examples to clarify the interplay between
permutivity, surjectivity, and reversibility.

We conclude by proposing some questions, related to the above discussion, that we find particularly
interesting and worth exploring:

1. What is the complete characterization of surjectivity for LR-separated non-linear CA over Z𝑚

with 𝑚 ≥ 3?
2. What can be said about the dynamical properties (like sensitivity to the initial conditions, topo-

logical transitivity, chaos, etc.) for some classes of non-linear CA?
3. In this work we focused on uniform CA, meaning all local interactions are determined by the

same rule. How do our results transform in the case of non-uniform CA (i.e. a CA allowing
different local rules)?
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