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Abstract
LLMs struggle with long-term memory, particularly in storing, organising, and accessing domain-specific 
known facts.  RAG-based methods show practical  promise but lack dynamism (continuous knowledge 
updates) and structure (interrelated facts following domain-specific logic and rules). Graph RAG addresses 
some of these issues, but full structural benefits require an accompanying ontology.
This paper introduces ontology-based graph RAG (OB-GRAG), which uses narrow, specific ontologies as 
a domain focus to create a graph-based RAG that supports dynamic updates and structural reasoning. The 
method  involves  defining  the  ontology,  creating  “actions”  for  valid  property  graph  creation,  and 
translating human questions into Cypher queries via LLMs. We demonstrate this using raw TextWorld  
game observations, which are dynamic data with a structure of interest, fit for complex querying. The 
result is a detailed methodology for OB-GRAG's initial version, demonstrated on TextWorld data.
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1. Introduction

LLMs excel  in short-term memory within their  context  window and possess  extensive general 
world  knowledge  embedded  in  their  model  weights.  However,  they  struggle  with  long-term 
memory, which is crucial for receiving, structuring, and querying known facts. This limitation can 
lead to hallucinations [21, 22], inconsistent answers, and difficulties in fact attribution.

A real world problem that motivated this work is a project on workforce and human capital. 
The client has disparate datasets on tax data, education, job vacancies. The answer to the client’s 
questions should be derivable from the entirety of this data, but there isn’t a way to, for example, 
fit  all  this  information into the context  window of  an LLM, and ask the questions of  interest 
(especially  not  at  the  needed scale).  The challenge is  to  make this  comprehensive  knowledge, 
“memory”, accessible to an LLM, enabling effective data interaction, querying, and reasoning.

There are several approaches to address LLM limitations. Fine-tuning is used in some scenarios, 
and efforts are underway to significantly expand the context window size.  However currently, 
especially for this style of problem, the most popular is the use of Retrieval Augmented Generation 
(RAG). RAG retrieves relevant data sections and integrates them into the LLM's context, allowing 
these knowledge bits to be utilised. But RAG is inadequate when the required knowledge isn't 
available as a direct fact, and reasoning over the whole is needed [2, 21].

Graph  RAG,  in  its  various  implementations,  addresses  this  by  structuring  knowledge  into 
graphs,  grouping  related  items,  and  providing  multi-level  summaries  [10].  This  enables  some 
reasoning and information retrieval from the whole, but these methods often lack dynamism and 
structure.

Not being dynamic is that the graph, or at the minimum the summaries at different levels, need 
to be regenerated after any addition of new data. This means the method isn’t applicable in uses 
where new data is constantly coming in.
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Not being structured is that the graph, while being a graph, doesn’t have a particularly useful 
schema. It is usually in no way tailored to the specific data that it stores, thus there is no ability for 
structural rule-based queries, or easy aggregation and multi-hop reasoning.

For these full benefits an ontology is needed alongside the graph. What use cases benefit from 
an ontology? Sharma et al [21] say it is when there is a need for fact based reasoning. Where 
decisions  are  made  following  strict  rules  and  procedures.  Industrial  fields,  medical,  judicial, 
farming;  but  also knowledge work like journalism,  research,  consulting.  These fields filter  and 
organise facts and their relations in proper domain specific structures and systems; this structure is 
then beneficial to use in analysis. Classical RAG and most graph RAG fail to capture this strict and 
organised structure.

We  propose  an  ontology-based  graph  RAG (OB-GRAG).  It  begins  with  defining  a  narrow 
domain-specific ontology, then transforming data into a property graph using this ontology as a 
schema (for  this  step  we propose  the  use  of  “actions”  to  ensure  valid  graphs).  The final  step 
involves a Text to Cypher task [15, 26], where a small, specific schema enhances result quality [22]. 
This final step makes data accessible to non-experts without specialised Cypher querying skills.

We use raw TextWorld [8] game instance observations as example input data, which have an 
extractable  underlying structure.  The game is  dynamic which allows to test  that  aspect.  Also,  
current TextWorld LLM solutions struggle with navigation [2], which is structure extraction and 
multi-hop queries – challenges that the proposed OB-GRAG aims to tackle.

2. Related work

Significant  efforts  have  been  made  to  enhance  the  long-term memory  of  LLMs by  increasing 
context window length. Approaches like MAMBA [14], RMT [5, 6], ARMT [19], and RWKV [18] 
have at best achieved up to 80% fact retrieval from a 50 million token context window, though 
these technologies, at the authors’ admission, are not yet ready for practical use.

Numerous  RAG  and  graph  RAG  implementations  exist  [1,  10,  20,  25],  but  they  face  the 
aforementioned  limitations.  Though  some  approaches  recognise  the  value  of  ontologies;  for 
instance,  OG-RAG [21] uses an ontology but creates a  flattened hyper-graph,  losing structural 
query  capabilities.  CypherBench  [12]  aligns  closely  with  our  work,  splitting  enormous 
unmanageable RDF tables like WikiData [24] into smaller property graphs with strict schemas,  
enabling human questions to be converted into Cypher queries. Its preprint was released in April  
2025, concurrent with our work.

In the TextWorld domain, we considered works [2, 7] and our previous experience [3].
Lastly, research on knowledge graph and LLM combinations [9, 11, 16, 17, 22, 23, 27] highlights  

the benefits LLMs bring to this  field (compared to earlier  manual approaches [4]),  noting that  
narrow schemas are essential for successful automation.

3. Methodology and implementation

Here we make OB-GRAG on TextWorld data as an example. Creating the ontology that defines the  
question domain we are interested in. Input is the raw game observations, and we return this data  
parsed into a property graph that strictly follows our ontology as a schema (strict validity enabled 
by the use of defined “actions”). Then the graph is queryable by using an LLM to write Cypher [13] 
queries from human questions.

3.1. Ontology

The ontology defines the specific question domain we are interested in. It will act as a strict schema 
for the property graph. We want to make it narrow and specific as that improves automatisation, 
as seen in [22].

In that paper the authors noted an example of an ontology alignment task, with the sizes being 
40 classes, 149 object properties, 49 data properties for one, and 156 classes, 124 object properties,  



46 data properties for the other. The LLM failed to align them. But when split into twenty naturally 
occurring modules, and working module by module, the LLM managed to achieve high precision 
and recall. This gives some estimate of ontology sizes. Though the limits observed in practice will  
likely be a balance, where the specific LLM model ability and prompt descriptiveness quality will  
dictate the size of the ontology; giving some flexibility to influence capability, simplicity, and cost.

In this example we choose to keep track of players within the game, rooms, exits, and items.  
Where the player is on each turn. Where items are on different turns. What items the player has 
picked up and used. All the rooms and how they are connected. Exits seen from each room, so that 
unexplored exits can later be found. This is a subset of the information that could be tracked, but it  
is a useful proof of concept.

Such an ontology would allow us to answer questions like “what is the shortest path to the  
kitchen?”,  “where  are  all  the  unexplored  exits?”,  “in  how many  games  are  bedrooms  next  to 
toilets?”, “what is the greatest number of items that a player has had in their inventory?”.

An intermediary ontology drawing can be used to make sure the interested parties agree on the  
question domain, but the final output has to be a property graph schema. Thus the ontology and 
schema used in this work is the following in Figure 1.

Figure 1: The ontology and schema for the TextWorld data example. Nodes are the players, rooms, 
exits, items. They have relationships. Important are the properties “turn” that track on which turn 
the relationship was observed, which enables temporal queries.

3.2. Graph creation

The graph creation has two main components. Defining a set of “actions”, and then a prompt that 
has the LLM call the appropriate actions for each game observation.

We define these actions to match the gameplay, so that there is a simple high-level API for the 
LLM to use. These actions then take care of the data entry into the graph, making sure it strictly  
follows the schema, by asking for a specified list of parameters, then executing predefined Cypher 
code  with  those  parameters.  For  our  use  case  the  actions  are  “new_game”,  “entered_room”, 
“found_item”,  “item_to_inventory”,  “put_down_item”,  “use_up_item”.  Parameter  examples  are 
“room name”, “direction”, “items in room”, though they vary for each action.

Once we have a set of actions, we can write a prompt for the LLM. As input it receives the  
action taken and the resulting game observation. From this the LLM is instructed to select the 
appropriate actions and pass to them the relevant parameters. The prompt structure is “intro; game 
observation; list of actions and their parameters; instructions; examples”.

When the LLM returns a list of actions and their parameters the relevant action Cypher codes 
are executed to enter the data into the graph.



3.3. Queries

We now have a property graph that strictly follows our schema. The final step is querying this  
data. For that we again use an LLM to receive human questions, and translate them to Cypher  
queries. The prompt contains the ontology/schema we defined in Section 3.1. which allows the 
LLM to write proper queries. The prompt structure is “task; ontology; hints; question”.

Automatic error correction is included, by repeating the prompt upon failure with “previous 
attempt; error message” appended to the end. These types of failures the LLM can often fix itself. A  
worse  scenario  is  if  a  query  runs  successfully,  but  its  logic  is  flawed.  Currently  there  is  no 
automatic system to catch these, the user would need to know Cypher or know what answers to  
expect. To avoid this, it is advised to use the best available LLM (in this paper for this step we used  
OpenAI gpt-o3-mini).  Eventual solutions could involve developing more sophisticated prompts or 
integrating additional layers of validation to ensure query accuracy and thus system robustness.

4. Results

  

Figure  2: (left)  All  100 game instance graphs.  (right)  One example graph of  the largest  game 
instance by node count, showing the player (orange), items (blue), rooms (purple), exits (brown); 
where what was on each turn, and how they are connected.

4.1. Graph creation results and discussion

For the input data a 100 game walkthrough instances were created, of different sizes, quest lengths, 
item counts. For each game that is a sequence of textual observations for each turn, as well as the 
action performed by the agent. Figure 2 shows an overview of all the instances, as well as a close  
up of the largest game instance by node count.

There isn’t a trivial way to check the correctness of the whole graph, thus a combination of 
systemic sanity checks and manual examinations was used.

There are the expected 100 separate instance graphs. No rooms have more than the expected 
single connection between them (no room is  both,  say,  east  and south of  another room).  One  
mislabeled room was found, that caused pathways to merge incorrectly (a pantry was mistakenly 
labeled as a kitchen, thus merging their exits). There are 37 missing exit nodes, where there are 
room connections (5 of these can be seen missing in Figure 2, right).



The  authors’  opinion  is  that  these  issues  can  be  solved  with  better  prompts.  The  current 
prompts  are  very minimalistic,  without  explaining what  is  an exit  (whether  the direction you 
entered is also an exit, whether locked doors count, etc.), or that the room name should be taken 
directly from the observation without any guess work.

4.2. Query results and discussion

The system was asked various questions – the 4 sanity checks on the graph were done using this 
question function,  as well  as 11 other questions to check the ability to aggregate information,  
perform multi-hop reasoning, and to overall test the system.

Thirteen of the questions were answered correctly on the first try. For one question an error  
was returned about incorrect shortest path command usage, but the system was able to resolve the 
error on its own. For one question an answer was returned but the query was non-sensical; the 
same question was asked a second time and then a correct answer was returned.

Overall  the  system demonstrated  impressive  capabilities  in  question  answering,  and  in  the 
authors’ opinion show great promise in this approach. Some highlight questions are included here.

Some of the questions answered correctly on the first go:

 “Show me rooms that relate to other rooms in directions, where they don’t have exits”
 “Return all rooms that have unexplored exits”
 “In which games was the player in a bedroom after they were in a bathroom?”
 “Does the presence of a knife within the game influence the map size?”

The question where the system successfully error corrected itself:

 “In game 18, return the shortest paths from the players current room, to the rooms with  
unexplored exits”

The question where non-sensical Cypher was returned and needed a re-run:

 “In what room are knifes usually in?”

5. Conclusions

An early  version  of  OB-GRAG was  successfully  created  and  demonstrated  on  the  TextWorld 
example. With the use of a specific ontology and actions, an LLM can create a property graph that  
strictly follows the ontology/schema. This narrow specific ontology then allowed for successful 
Text to Cypher creation for the question answering section.

The system is dynamic and structured, able to store and use the specific knowledge structure of 
the domain. It provided a TextWorld solution that is able to navigate in the game world, as well as 
answer other difficult questions.

This  initial  version  can  now  be  improved  towards  a  more  complete  RAG  solution.  Major 
improvements  are  expected  with  more  detailed  prompt  engineering,  taking current  failures  as 
guidelines on how to improve the prompt. This method can also now be applied to actual practical 
client needs and data (as is being done in parallel to this work).
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