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Abstract
Emotion recognition is essential for improving human-computer interaction, but single-modality approaches

often face challenges in accurately capturing the complexity of human emotions. To overcome these limitations,

we introduce a novel multimodal system that combines audio, video, and electroencephalogram (EEG) data.

The system employs two deep learning models: an audio-video classifier utilizing hybrid fusion for analyzing

speech and facial expressions, and a Feature-Based Convolutional Neural Network (FBCCNN) designed to process

EEG signals. These models are integrated through a meta-model that uses logistic regression to combine their

predictions. The system is capable of classifying four emotions—happiness, sadness, anger, and neutral—and

outperforms single-modality methods, particularly in handling more complex emotional states.
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1. Introduction

Emotion recognition has become a crucial area of study in human-computer interaction [1, 2], with

significant implications for interpersonal relationships, perception, and decision-making [3]. As au-

tomated systems become increasingly integral to daily life, the precise detection and classification of

emotions have grown in significance, thereby underscoring the importance of research in this domain.

Traditional single-modality approaches, such as analyzing facial expressions [4], voice patterns [5, 6],

or EEG signals [7, 8], often struggle to capture the complexity of human emotions [9]. Emotions are

inherently multimodal, manifesting through various physiological and behavioral channels simulta-

neously. Relying on one modality can lead to incomplete or inaccurate assessments [10], particularly

in real-world contexts where environmental factors may degrade signal quality or introduce noise in

individual channels.

Recent research has demonstrated the potential of multimodal approaches to improve recognition

accuracy [11, 12, 13]. By integrating information from multiple sources, these systems can leverage

complementary features and compensate for weaknesses in individual modalities. However, significant

challenges persist in feature extraction, synchronization, and handling noisy or incomplete data [14, 15].

Deep learning has shown promise in addressing these challenges [16], with Convolutional Neural

Networks (CNNs) and other architectures achieving success in multimodal feature extraction and

classification [17, 18, 19]. These approaches can automatically learn relevant features from raw data,
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potentially capturing subtle emotional cues that traditional methods might miss. However, effectively

integrating diverse modalities remains an active research area requiring innovative solutions.

To address these challenges, we propose a novel cascade multimodal system that integrates audio,

video, and electroencephalogram (EEG) inputs for emotion recognition. Our primary contribution lies

in the development of an effective meta-model integration approach that combines existing specialized

models for different modalities. Specifically, for audio-video processing, we adopt the established model

from Zhang et al. [6], which has demonstrated strong performance in multimodal emotion recognition

through hybrid fusion strategies. For EEG signal processing, we leverage the Feature-Based CNN

(FBCNN) approach described by Pan and Zheng [20].

Our approach differs from previous work in several key aspects:

1. We implement a two-stage cascade architecture that first processes individual modalities through

specialized models before combining their outputs at a meta-level

2. We leverage state-of-the-art deep learning architectures already tailored to each modality unique

characteristics

3. We utilize the existing hybrid fusion strategy for audio-visual processing from [6] that captures

both low-level interactions and high-level semantic relationships

4. We adopt the FBCNN [20] specifically designed to effectively process EEG signals

5. Our main innovation is the development of a meta-model integration approach using logistic

regression that intelligently weighs predictions from each modality to produce superior classifi-

cation results

The proposed system offers key advantages: robust synchronization of modalities, effective fea-

ture extraction through specialized architectures, and an interpretable yet powerful meta-model that

combines predictions. Our experimental results show significant improvements over single-modality

systems, particularly in classifying complex emotional states that have traditionally been difficult to

recognize.

The system is capable of classifying four primary emotions: happiness, sadness, anger, and neutral,

with high accuracy across varied conditions. This approach represents an important step toward

more naturalistic and robust emotion recognition systems that can function effectively in real-world

human-computer interaction scenarios.

The remainder of this paper is organized as follows: Section 2 details the materials and methods,

including the architecture of both the audio-video and EEG models; Section 3 describes the multimodal

classifier and integration approach through our meta-model; Section 4 outlines the experimental

procedure and datasets used; Section 5 presents the results and provides a detailed discussion of our

findings; and Section 6 concludes with a summary of contributions and directions for future research.

2. Materials and Methods

This section presents the foundational components of our multimodal emotion recognition system.

We first provide an overview of the system architecture 2.1, followed by detailed descriptions of the

specialized models for each modality and their integration through the meta-model approach 2.3.

2.1. System Architecture Overview

Our proposed system follows a cascade architecture comprising three main components:

1. Audio-Video Emotion Recognition Model: A specialized deep learning model that processes both

audio and video data, extracting complementary features from speech and facial expressions;

2. EEG-based Emotion Recognition Model: A Feature-Based Convolutional Neural Network (FBC-

CNN) designed to analyze EEG signals and extract emotion-relevant patterns from brain activity;

3. Meta-Model Integration: A logistic regression-based model that takes predictions from the two

specialized models as input and produces the final emotion classification.



This architecture allows each modality to be processed by models specifically designed for their

unique characteristics, before combining their outputs at a higher level. The complete system is capable

of classifying four primary emotions: happiness, sadness, anger, and neutral states.

2.2. Audio-Video and EEG architectures

Audio-Video Model The audio-video emotion recognition component is based on the work of Zhang

et al. [6], which processes both audio and video streams through dedicated neural networks before

combining them through a fusion strategy. For our implementation, we adopt a late fusion approach as

described in [21], which has demonstrated effective performance in multimodal emotion recognition

tasks.

As illustrated in Figure 1, the video stream is processed through EfficientFace [22], a lightweight

yet powerful convolutional neural network designed specifically for facial expression recognition.

Simultaneously, the audio stream undergoes processing through a series of one-dimensional convo-

lutional blocks that extract spectral and temporal features from speech signals. The outputs from

these specialized networks are then passed through transformer blocks that implement a cross-modal

attention mechanism. This allows each modality to benefit from complementary information in the

other stream:

• The Audio-Video transformer uses audio features as queries to attend to video features

• The Video-Audio transformer uses video features as queries to attend to audio features

The attended feature maps undergo pooling operations before being concatenated and fed into a

classification head that produces emotion predictions based on the combined audiovisual information.
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Figure 1: Diagram showing architecture used for the Audio-Video model following a late-fusion strategy.

EEG Model For the EEG modality, we implement the FBCNN (Feature-Based Convolutional Neural

Network) approach described in [20]. This architecture is specifically designed to process the unique

characteristics of EEG signals in the context of emotion recognition.

As shown in Figure 2, the FBCNN model first divides the EEG signals into multiple frequency bands

corresponding to established brain wave patterns: alpha (8-14 Hz), beta (14-31 Hz), gamma (31-49 Hz),

and theta (4-8 Hz). Each frequency band is processed separately through dedicated convolutional layers

that extract spatial-temporal features from the corresponding brain activity patterns.

The architecture employs multiple convolutional layers with varying filter configurations to capture

features at different scales and abstraction levels. The extracted features from all frequency bands

are then concatenated and processed through a series of fully connected layers, ultimately producing

emotion classification outputs.
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Figure 2: Main components of FBCCNN architecture.

This band-specific processing is particularly advantageous for emotion recognition, as different

emotional states have been shown to manifest themselvesin distinct frequency bands of brain activity.

For example, gamma activity (31-49 Hz) has been demonstrated to increase during the processing of

emotionally salient stimuli, particularly in the prefrontal and temporal regions of the brain [23, 24].

For both models, we employ a reduced set of four emotion categories: neutral, happy, angry, and sad.

These categories provide a balanced representation of the primary emotional dimensions according to

the Russell Circumplex Model of Affect [25], covering both positive and negative valence as well as

high and low arousal states.

2.3. Meta-model integration

The meta-model serves as the integrative component of our cascade architecture, combining the

predictions from the audio-video and EEG models to produce a final emotion classification. This

approach follows the stacking ensemble method [26], where the outputs of base classifiers become

input features for a higher-level model.

As illustrated in Figure 3, the meta-model receives predictions from both specialized models and

applies a logistic regression function to determine the final classification. This process involves several

key steps:

Data synchronization A critical challenge in multimodal emotion recognition is ensuring temporal

alignment between different data streams. We employ a batch-based synchronization strategy that

creates label-matched data pairs between the audio-video and EEG modalities. This procedure ensures

that both models are exposed to consistent emotional content despite coming from different datasets.

The synchronization process creates emotional bins based on the class labels, allowing samples

from different modalities to be paired according to their emotional content rather than requiring strict

temporal alignment (a detailed description of the synchronization strategy is reported in Sec.3.2 and

Alg.1). This approach provides semantic consistency between modalities while accommodating the

reality that our training data comes from separate specialized datasets.

Meta-Feature Creation The predictions from the audio-video and EEG models serve as meta-features

for the final classification stage. These predictions, represented as logits (pre-softmax outputs) for each

emotion category, capture the confidence levels of each specialized model regarding the emotional

content of the input.

By using these prediction vectors as features, the meta-model can learn which modality tends to be

more reliable for specific emotional states and weigh their contributions accordingly. This approach



is more sophisticated than simple averaging or voting schemes, as it can adapt to the strengths and

weaknesses of each modality.

Logistic Regression for Final Classification The final element of our system is a logistic regression

classifier, which receives the meta-features as input and outputs the final emotion prediction. We chose

logistic regression for this task because of its interpretability, computational efficiency, and effectiveness

in combining predictive signals from multiple sources. The logistic regression model learns the optimal

coefficients for the predictions for each modality, effectively determining their relative contributions to

the final decision. This approach balances the strengths of deep learning models for modality-specific

feature extraction with the interpretability and reliability of traditional machine learning techniques for

the final integration step. The entire process results in a robust multimodal emotion recognition system

that takes advantage of the complementary nature of audiovisual and neuro-physiological signals,

providing more accurate and reliable emotion classification than any single modality could achieve

independently.

Audio-Video 
Model

EEG Model

Prediction

Meta Model

Final predictionPrediction

Video

Audio

EEG Emotional bins 
creation

Dataset  
synchronization

Level 0 features

Stacking

Level 1 features

Figure 3: Final architecture responsible for the merging of classification of modality specific models.

3. Experimental Procedure

This section presents our experimental methodology and results. Following the architectures described

in Figure 3, we first train individual models for audio, video, and EEG data using the datasets detailed

in Section 3.1. These models’ outputs serve as inputs for a meta-model that produces the final emotion

prediction. Section 3.2 details the data preprocessing methodology, with particular emphasis on EEG

signal processing. All experiments were conducted on a high-performance computing cluster running

Linux, comprising eight interconnected computational nodes, with four nodes each equipped with four

NVIDIA V100 GPUs.

3.1. The dataset

A key challenge in multimodal emotion recognition research is the scarcity of datasets that simultane-

ously capture audio, video, and EEG signals during emotional experiences. To address this limitation,

we adopted a two-stage training approach using specialized datasets for each modality, followed by a

synchronized integration procedure for the meta-model. This independent training phase ensures that

each model learns modality-specific features optimally.

Audio-Video Dataset For training and evaluating the audio-video emotion recognition model, we

utilized the RAVDESS dataset (Ryerson Audio-Visual Database of Emotional Speech and Song) [27].



This dataset includes recordings of 24 professional actors (12 female, 12 male) vocalizing two lexically-

matched statements in a neutral North American accent. The actors express various emotions including

calm, happy, sad, angry, fearful, surprise, and disgust, with each expression captured in three formats:

• Audio-only (16bit, 48kHz .wav)

• Audio-Video (720p H.264, AAC 48kHz, .mp4)

• Video-only (no sound)

For our experiments, we focused exclusively on the Audio-Video format to capture both facial

expressions and vocal characteristics simultaneously. The dataset consists of 2,880 recordings, which

we partitioned following a 70:15:15 split for training, validation, and testing, respectively.

To align with our four-category emotion classification scheme, we mapped the original eight emotional

expressions in RAVDESS to our target categories (neutral, happy, angry, and sad) based on the Russell

Circumplex Model of Affect [25]. This model arranges emotions in a two-dimensional space defined by

valence (positive/negative) and arousal (high/low), providing a theoretical foundation for our emotion

grouping. The specific mappings are detailed in Table 1.

EEG dataset For the EEG modality, we employed the SEED-IV dataset [28], which contains EEG

recordings from 15 subjects during emotion-elicitation experiments. The dataset includes simultaneous

recordings from EEG and eye-tracking devices, providing comprehensive neurophysiological data

during emotional experiences.

The original dataset comprises 1,080 EEG signals, which we further segmented into sequences of

800 samples each, resulting in a total of 37,575 samples. This segmentation approach ensures uniform

sample sizes and eliminates the need for padding operations. We divided the dataset using an 80:10:10

scheme for training, validation, and testing.

Similar to the approach taken with the audio-video dataset, we mapped the original emotion categories

in SEED-IV (happy, sad, neutral, and fear) to match our four-category classification scheme. Specifically,

we consolidated the "fear" category into the "sad" emotional bin, as detailed in Table 1. This mapping

was guided by the valence-arousal coordinates in the circumplex model, where fear and sadness share

negative valence characteristics.

Input Emotions Final Category
Neutral, Calm Neutral
Happy, Surprised Happy
Angry, (Fear)ful, Disgusted Angry
Sad Sad

Table 1
Mapping of Emotions to Final Categories. Emotions mapped from the original datasets are presented in bold
with fear/fearful belonging to both.

Meta-Model Dataset The dataset for training and evaluating the meta-model consists of the pre-

diction outputs from both pre-trained models (audio-video and EEG). These models were individually

trained on their respective datasets to extract modality-specific information, producing prediction

vectors that reflect the emotional content of the inputs.

A critical aspect of our approach is the synchronization between data from separate datasets. For

the meta-model, each sample is constructed by ensuring that the predictions from both modalities are

based on inputs associated with the same emotional label. This process, detailed in Section 3.2 and

Algorithm 1, guarantees semantic consistency between the features extracted from different modalities

and preserves the integrity of the emotional information.



3.2. Feature Extraction

Effective feature extraction is crucial for capturing emotion-relevant information from heterogeneous

data sources. We implemented modality-specific preprocessing pipelines optimized for audio, video,

and EEG signals.

Audio and Video Data Preprocessing The audio-video model processes both audio and visual data

following established methods from the literature [21]. For the audio stream, we extract Mel-frequency

cepstral coefficients (MFCC) as the primary feature representation [6]. This choice was informed by

comparative studies showing no significant advantages in using alternative features such as chroma or

spectrograms for emotion recognition tasks in speech.

For the visual stream, we implemented a preprocessing pipeline consisting of:

1. Frame sampling at regular intervals

2. Image scaling to a standard resolution

3. Region of interest detection using multi-task cascaded convolutional networks (MTCNN) [29] to

localize and extract facial regions

4. Feature extraction using EfficientFace [22], a lightweight yet powerful model specifically designed

for facial expression recognition

This preprocessing strategy ensures that the visual model receives consistent and relevant facial

expression data while filtering out irrelevant background information.

EEG Data Preprocessing The preprocessing of EEG signals involved several specialized steps to

enhance signal quality and extract emotion-relevant features. First, we conducted channel selection to

match our laboratory equipment constraints. From the 62 channels available in the SEED-IV dataset, we

selected a subset of 14 channels: ’AF3’, ’AF4’, ’F3’, ’F4’, ’F7’, ’F8’, ’T7’, ’T8’, ’P7’, ’P8’, ’O1’, ’O2’, ’FC5’, and

’FC6’. This selection corresponds to the channels available in the EEG headset Epoch Plus used in our

laboratory, ensuring compatibility with our experimental setup for future multimodal data collection.

EEG signals were pre-processed by filtering out artifacts through a baseline noise removal procedure,

eliminating parts of the signal unrelated to the emotional stimulus. The signals were then transformed

into the frequency domain and divided into 𝑓 bands corresponding to alpha (8–14 Hz), beta (14–31 Hz),

gamma (31–49 Hz), and theta (4–8 Hz) bins. Each frequency band is known to uniquely contribute to

the understanding of emotional and cognitive states. The gamma band (31–49 Hz), in particular, has

been shown to play a critical role in emotion recognition tasks. Studies have highlighted that gamma

activity increases during the processing of emotionally salient stimuli, particularly in the prefrontal

and temporal regions of the brain [23, 24].

Subsequently, the separated channels are processed through a feature extraction mechanism employ-

ing differential entropy technique to extract meaningful information from the provided data.

The resulting EEG signals are then transformed into a spatial grid format by mapping the electrode

signals onto a 2D matrix based on the spatial arrangement of the electrodes. This transformation enables

spatially aware processing—such as with convolutional neural networks—and yields a final output as a

3D EEG frame of size 𝑓 ×𝐺.𝑤𝑖𝑑𝑡ℎ×𝐺.ℎ𝑒𝑖𝑔ℎ𝑡.
The obtained EEG signals of different channels are then projected onto a grid structure to form a 3D

frame EEG signal representation with the size of [number of data points, width of the grid, height of

grid] according to the electrodes position.

Label alignment A fundamental challenge in our multimodal approach is the lack of simultaneously

recorded data across all three modalities. To address this, we developed a label-based synchronization

strategy that creates emotionally consistent batches across modalities. The synchronization procedure,

outlined in Algorithm 1, involves the following steps:



• Organizing the EEG dataset samples into emotional bins corresponding to our four emotion

categories

• Using samples from the audio-video dataset as a guide for selecting corresponding EEG samples

• For each audio-video sample with a specific emotion label, randomly selecting an EEG sample

from the matching emotional bin

• Creating artificial batches containing paired audio-video and EEG samples that share the same

emotional label

This approach ensures semantic consistency between modalities despite the absence of temporally

synchronized recordings. While not capturing the exact same emotional instances across modalities, it

provides a valid basis for training the meta-model to recognize patterns in how each modality responds

to similar emotional states.

The complete synchronization algorithm is presented in Algorithm 1, which describes the creation of

emotional bins and the batch-based selection process that aligns data points across modalities. These

synchronized batches then serve as input for generating the meta-features used in the final classification

model.

Algorithm 1 Dataset Synchronization

1: Input: Dataloaders 𝐷1, 𝐷2; Batch size 𝐵
2: Output: Synchronized batches 𝑆batches

3: procedure OrgByLabels(𝐷)

4: Init 𝐿← {label : [] | label ∈ {0, 1, 2, 3}}
5: for all (data, labels) ∈ 𝐷 do
6: Add data to 𝐿[label]
7: end for
8: return 𝐿
9: end procedure

10: procedure SyncDatasets(𝐷1, 𝐷2, 𝐵)

11: 𝐿2 ← OrganizeByLabels(𝐷2)
12: Init empty 𝑆batches

13: 𝐶batch ← {audio:[], video:[], eeg:[], labels:[]}
14: for all (audio, video, labels) ∈ 𝐷1 do
15: for all 𝑖, label ∈ enumerate(labels) do
16: if 𝐿2[label] ̸= ∅ then
17: Pop 𝑒𝑒𝑔_𝑑𝑎𝑡𝑎 from 𝐿2[label]
18: Add audio[𝑖], video[𝑖] to 𝐶batch

19: Add 𝑒𝑒𝑔_𝑑𝑎𝑡𝑎, label to 𝐶batch

20: if |𝐶batch| = 𝐵 then
21: Add to 𝑆batches

22: Reset 𝐶batch

23: end if
24: end if
25: end for
26: end for
27: if 𝐶batch ̸= ∅ then
28: Add remaining samples to 𝑆batches

29: end if
30: return 𝑆batches

31: end procedure

4. Results and Discussion

The integrated system’s performance is expected to outperform single-modality models by combining

the complementary strengths of audio, video, and EEG data. The Audio-Video Emotion Classification



Model Dataset Loss Acc.
Audio-Video RAVDESS 0.8860 0.7708
FBCCNN SEED-IV 0.7075 0.8067
Meta model Meta-features 0.2915 0.9145

Table 2
Average accuracy and loss values of the audio-video and EEG models at the 100th epoch.

Model enhances the system’s ability to capture expressive cues from both speech and facial expressions,

while the FBCNN model contributes insights from the brain activity captured in EEG data.

The meta-model further improves performance by combining the predictions from both models,

ensuring that the final emotion classification is robust and accurate. Preliminary results will be analyzed

in terms of accuracy and classification error rates.

We expect that the multi-modal approach will significantly improve recognition rates, particularly in

distinguishing emotions such as anger and sadness, which are often more difficult to classify based on a

single modality alone.

4.1. Audio-Video and EEG results

The audio-video branch of the proposed model, which integrates a Convolutional Neural Network

(CNN) and a Transformer, is implemented following the architecture outlined in the corresponding

reference paper. The performance metrics considered for this model are accuracy and loss, evaluated

during both the training and validation processes.

Similarly, for the EEG-based model, which utilizes the FBCCNN architecture, the same performance

metrics are assessed. As presented in Table 2, the audio-video model, trained on the RAVDESS dataset,

achieves a loss of 0.8860 and an accuracy of 77.08%.

In contrast, the EEG model, evaluated on the SEED-IV dataset, achieves a lower loss of 0.7075 and a

higher accuracy of 80.67%. These results show the better performance of the EEG-based model in terms

of both accuracy and loss.

While the audio-video model demonstrates competitive results, its relatively higher loss and lower

accuracy may be attributed to the inherent complexity of processing multimodal data from the RAVDESS

dataset. Conversely, the EEG model benefits from the frequency-band-specific learning capabilities

of the FBCNN architecture, which prove to be well-suited for the emotion recognition tasks in the

SEED-IV dataset.

4.2. Meta model predictions

The integration of multimodal data through logistic regression represents the final stage of our emotion

recognition pipeline. While logistic regression does involve a training phase. Unlike the complex train-

ing dynamics observed in the CNN and FBCNN networks, this last step follows a more straightforward

optimization path. This simpler nature of the model involved implies that traditional training visualiza-

tions, such as loss curves or learning rate analysis, are less informative and arguably unnecessary for

understanding the model’s performance. In the described scenario the logistic regression serves as a

meta-learner, weighing and combining the features already extracted by our networks for audio-video

and EEG data.

When evaluated independently, the single-modal approaches showed varying degrees of success. The

FBCNN model, which uses the DEAP dataset for EEG analysis and tested on multiple actors, achieved

an average accuracy of 55.87% as reported in Table 7 in the “Experiment” section of the original paper.

The audio-video model, which leverages both audio and video signals via a 1-head dropout transformer

architecture and trained on the RAVDES dataset, demonstrated better performance with an accuracy of

79.08%, as reported in Table III in the “Results and Discussion” section of the original paper.

However, the true potential of emotion recognition emerges through our multimodal integration

approach, which achieves a remarkable accuracy of 91% when combining all three modalities (EEG,



audio, and video signals) as shown in Table 2, demonstrating the effectiveness of multimodal emotion

recognition. The effectiveness of this approach is clearly demonstrated in Figure 4 where the showed

confusion matrix describes a model capable of learning and synthesizing information from multiple

modalities.

Particularly robust performance is highlighted in distinguishing emotional states that are typically

challenging to differentiate. The strongest performance is observed in the happy emotion category,

where the model achieves high accuracy with minimal false positives. This suggests that the combination

of physiological signals from EEG with audiovisual cues provides particularly strong indicators for this

emotional state.
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Figure 4: Confusion matrix obtained across the test set for the Meta-model employing EEG and Audio-Video
models as baseline for meta-features extraction.

While the model shows strong performance across most categories, the detection of sadness presents

more challenges. This aligns with existing literature in emotion recognition, where these types of

emotions appear to be complex to classify correctly [30, 25].

The pattern of misclassifications we observe is notably systematic – the model typically confuses

emotions that are psychologically adjacent rather than making dramatic misclassifications between

opposing emotional states [31]. This suggests that our meta-learning approach has successfully captured

the underlying continuous nature of emotional expressions. However, the performance on sadness

detection indicates an area where the fusion strategy could benefit from further refinement. This

limitation likely reflects the inherent challenge in capturing subtle emotional states across different

modalities, rather than a fundamental limitation of the logistic regression approach itself.

One of the main challenges of this study, or more specifically, one of its significant limitations, was

the need to align and synchronize the data. Since no existing dataset contained data acquired within

the same session or set, we faced the problem of ensuring that the data from different modalities (e.g.,

EEG, audio, and video) were properly aligned in time.

To address this, we had to devise a solution that would enable us to effectively test our meta-classifier

model. However, to overcome this limitation, we are currently conducting an experiment in which

audio, video, and EEG data are being simultaneously collected. This new dataset will be more suitable

for our study and is expected to be made publicly available after a thorough validation phase.

However, overall, the meta-model performance validates the choice of a simpler and more inter-

pretable fusion strategy over more complex alternatives. In conclusion, the use of logistic regression

demonstrates its effectiveness as a fusion strategy for multimodal emotion recognition by integrating

predictions from audiovisual and EEG data streams. This is demonstrated by the strong diagonal

dominance in the confusion matrix, indicating reliable classification across most emotional states.



5. Conclusion

This study presents a novel cascade multimodal system for emotion recognition that effectively integrates

audio, video, and EEG data to achieve superior classification performance. Our approach addresses the

inherent limitations of single-modality systems by leveraging the complementary strengths of each

data stream through a two-stage architecture. The key contributions and findings of this work can be

summarized as follows:

• First, our cascade architecture demonstrates the effectiveness of specialized modality-specific

processing before high-level integration. The audio-video component, implementing the hybrid

fusion approach from Zhang et al., achieved 77.08% accuracy, while the EEG component using the

FBCCNN architecture from Pan and Zheng reached 80.67% accuracy. When combined through

our meta-model approach, the system achieved a remarkable 91.45% accuracy, representing an

improvement of approximately 11% over the best single-modality model;

• Second, the logistic regression-based meta-model proved to be an effective and interpretable

integration strategy. The confusion matrix results revealed particularly strong performance in

distinguishing "happy" emotions (95% accuracy) and consistently high performance for "angry"

and "sad" categories (92% accuracy each). The pattern of misclassifications primarily occurring

between psychologically adjacent emotions in Russell’s circumplex model suggests that our

system successfully captures the underlying continuous nature of emotional expressions;

• Third, our approach offers practical advantages in terms of implementation and extensibility.

By leveraging pre-trained specialized models for each modality, our system can benefit from

advancements in modality-specific architectures without requiring complete redesign. The meta-

model integration strategy also provides flexibility in weighting the contributions of each modality

based on their reliability for specific emotional states.

We acknowledge that a significant limitation of the current study is the lack of simultaneously

recorded multimodal data, necessitating our bin-based synchronization strategy. To address this limita-

tion, we are currently conducting experiments to collect a comprehensive dataset with synchronized

audio, video, and EEG recordings during emotional experiences. This dataset will enable more di-

rect evaluation of temporal dynamics across modalities and will be made publicly available following

validation.

Future research directions include expanding the range of recognizable emotions beyond the four

primary categories (neutral, happy, angry, sad) to include more nuanced states such as surprise, fear,

and disgust. Additionally, we plan to explore more sophisticated meta-model architectures that can

adapt their weighting strategies dynamically based on signal quality and context. The integration of

additional physiological signals such as heart rate variability or galvanic skin response also presents

promising avenues for further improving recognition accuracy, particularly for subtle emotional states.

In conclusion, our multimodal approach represents a significant step toward developing more natural-

istic and robust emotion recognition systems that can function effectively in real-world human-computer

interaction scenarios. By demonstrating substantial improvements over single-modality approaches,

particularly for complex emotional states, this work contributes to the advancement of empathetic

computing systems capable of more nuanced understanding of human emotional experiences.
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