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Abstract

The integration of artificial intelligence (Al) in cardiology has shown remarkable potential for improving diagnostic
accuracy. One of the biggest challenges in bringing Al tools into clinical practice is ensuring they are truly
usable and user-friendly by medical professionals. This paper presents X-Heart, a human-centered framework
for explainable detection of premature ventricular contractions that combines automated classification with
transparent decision-making and clinician feedback. The system embeds a human-in-the-loop approach, inviting
clinicians to validate predictions, rate confidence, and provide rationales through an intuitive interface designed to
minimize cognitive overhead. By aligning Al outputs with clinical workflows and prioritizing interpretability with
Grad-CAM-based visual explanations, X-Heart addresses key challenges in medical Al: transparency, clinician
engagement, and mitigation of automation bias. This work underscores the importance of explainable Al and
human-computer collaboration in advancing cardiac diagnostics, with implications for real-world deployment in
healthcare settings.
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1. Introduction

Advancements in Artificial Intelligence (AI) technology are rapidly revolutionizing medicine field [1].
Al has the potential to significantly improve healthcare by optimizing resource allocation, reducing
operational costs, and enhancing diagnostic accuracy. In particular, advanced techniques such as
machine learning (ML) and deep learning (DL) enable early and precise detection of pathological
conditions by identifying complex patterns in large-scale medical data [2, 3]. ML algorithms can analyze
structured datasets to support clinical decision-making, while DL models, especially convolutional and
recurrent neural networks (RNN), excel in processing unstructured data such as medical images and
time-series signals like electrocardiograms (ECGs). These Al-driven tools not only assist in identifying
early signs of disease but also contribute to developing personalized treatment plans, ultimately leading
to more efficient and effective patient care. Despite the potential benefits and advantages that such
computer systems can bring to clinical evaluation, healthcare personnel still have a certain mistrust,
probably due to the inability to understand all the mechanisms underlying AI’s exceptional performance.
The aim of eXplainable Artificial Intelligence (XAI) is precisely to develop computer systems that
can clearly explain their decision-making processes, using techniques such as feature importance
analysis, decision trees, and visualization tools like heat maps and saliency maps [4]. A medical field of
great interest for the use of Al and XAl is cardiological field and, in particular, in electrocardiographic
evaluation of premature ventricular contractions (PVCs). Physiologically, in the cardiac system, electrical
signals follow a defined path during a typical cardiac cycle, initiating contraction sequentially: impulse
for cardiac rhythm originates from sinoatrial node that represent “cardiac pacemaker" and from that
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situs it spreads along cardiac atria [5]. Subsequently, this impulse travels down through the conduction
pathways and causes ventricular depolarization and contraction essential for pump out blood. PVC is a
heart arrythmia which belong to the group of ectopic arrythmias. In ectopic arrythmias ectopic beats
originate outside sinoatrial node determining an anticipation of cardiac contraction (electrocardiographic
changes) and frequently symptoms like palpitations, a feeling of skipped or extra heartbeats, dizziness
or shorts of breaths [6].

DL has shown remarkable potential in classifying electrocardiograms and detecting various cardiac
pathologies, with models such as Convolutional Neural Networks (CNNs), RNNs, and Transformers
achieving high diagnostic accuracy [7, 8, 9, 10]. However, despite their performance, many existing DL
frameworks lack explainable Al mechanisms, making it difficult for clinicians to trust and interpret
their decisions. The absence of robust XAI in ECG classification raises concerns about transparency,
accountability, and bias, particularly when diagnosing critical conditions like arrhythmias or myocardial
infarctions. To bridge this gap, in this preliminary study, we propose a human-in-the-loop (HITL)
approach, integrating clinician feedback with Al-driven analysis to improve diagnostic accuracy while
maintaining interpretability and supporting in clinical decision-making. By incorporating principles
from human-computer interaction (HCI), our framework X-Heart ensures that Al outputs are clinically
actionable and promoting usability in real-world settings. For this purpose, we utilized the MIT-
BIH Arrhythmia Database, training a CNN on selected ECG segments for PVC classification. Our
methodology not only prioritizes model performance but also emphasizes XAlI-driven transparency,
enabling cardiologists to validate Al-generated insights and refine diagnostic precision through iterative
collaboration.

The paper is structured as follows: Section 2 reviews existing Al approaches for ECG analysis and
identifies gaps in explainability. Section 3 details our proposed HITL framework while section 4 analyzes
clinical implications. Finally, Section 5 summarizes key contributions and future research directions.

2. Related Works

In recent years, the use of explainable frameworks and tools in biomedical signal analysis has become
increasingly important, particularly in the context of automated cardiovascular disease detection. While
high-performing models such as DL offer impressive accuracy, their "black-box" nature limits clinical
trust and adoption. This section presents the proposed framework and the tools employed for early
detection of cardiovascular abnormalities from ECG signals. [11] proposed CardioView, an explainable AI
framework that incorporates the GRAD-CAM (Gradient-weighted Class Activation Mapping) technique
to make the classification of PVCs more transparent and interpretable. CardioView achieves impressive
performance metrics, including 96.21% accuracy, 98.09% recall, 94.74% precision, and an AUC of 99.28%,
highlighting its robust classification capabilities. A key feature of CardioView is its ability to visualize
which parts of the ECG waveform are most relevant to the model’s decisions. This enables both clinicians
and users to understand how the system differentiates between PVC and non-PVC signals, as well as
among PVC subtypes [11]. [12] proposed a lightweight DL model combining CNN and Long Short-Term
Memory (LSTM) layers for classifying eight types of cardiac arrhythmias and normal rhythms. ECG
signals were preprocessed through resampling and baseline wander removal before being input into an
11-layer neural network. Using ECG data from the MIT-BIH arrhythmia and long-term AF databases,
the model achieved a high mean diagnostic accuracy of 98.24%, outperforming many existing methods.
To enhance transparency, SHapley Additive exPlanations (SHAP) were applied, enabling clinicians to
understand which ECG features influenced the model’s decisions. [13] presented a novel approach that
extracts interpretable features using the Gini Index (GI) applied to the Choi-Williams time-frequency
distribution (TFD) of QRS complexes. This marks the first use of GI in conjunction with nonlinear TFD
for ECG analysis. Features were computed from one-minute segments over 30-minute ECG recordings,
enabling both short- and long-term characterization. Evaluation on the MIT-BIH Arrhythmia and
Fantasia datasets showed strong performance across eight ML models, with the top classifier achieving
100% sensitivity and over 94% accuracy. The emphasis on interpretability and low false negative rates



supports clinical usability and integration into smart devices for continuous CVD monitoring, both
online and offline [14]. [15] proposed an explainable heart disease risk prediction framework using
binary classification, with a focus on model interpretability. The system is trained using Random
Forest and XGBoost, with XGBoost selected for its superior performance (85-87% accuracy). To ensure
transparency, the SHAP algorithm is integrated, offering clear visual insights into feature contributions.
Interactive visualizations, including Plotly and 3D scatter plots, help users and clinicians understand
how variables such as cholesterol, blood pressure, and chest pain types influence predictions, with
techniques like waterfall plots enhancing interpretability. The model is deployed through a Streamlit
application, providing a user-friendly interface for real-time risk assessment [16].

Although numerous Al models and diagnostic tools have been proposed in the literature for car-
diovascular analysis, relatively few have specifically focused on the identification and classification of
PVCs. Moreover, even fewer frameworks incorporate a HITL approach, which is essential for enhancing
clinical reliability and interpretability. The absence of mechanisms that allow cardiologists to review,
correct, or guide model predictions limits both transparency and acceptance in real-world settings.
Integrating HITL within Al pipelines could not only improve diagnostic performance through expert
reinforcement but also facilitate the development of trustworthy, explainable systems aligned with
medical practice.

3. The X-Heart System Overview

The X-Heart framework (see Figure 1) is designed to support clinicians in the interpretation of PVCs
by combining automatic classification, visual explanation, and interactive feedback. The framework
operates by generating an initial diagnostic suggestion, followed by an explainable and interactive
interface that enables the participation of clinicians. The diagnostic suggestion is generated from an Al
algorithm, potentially based on ML techniques and previously trained on annotated ECG datasets. The
framework is composed of three main steps:

« ECG prediction: Users can upload an ECG image and receive a preliminary classification result.

o Interactive explainable visualization: A visual heatmap highlights the ECG regions that most
influenced the algorithm decision, improving interpretability.

« Clinician feedback survey: The interface invites clinicians to confirm or reject the prediction, rate
their confidence, and optionally provide a brief rationale for their decision.

The X-Heart design follows well-established HCI principles, specifically transparency, interpretability,
and minimal cognitive overhead, ensuring that the user remains in control of the diagnostic process
while being supported, not replaced, by automation.

3.1. ECG prediction

Once a single-lead ECG signal is uploaded to the framework, the system automatically launches a
processing pipeline and generates a concise prediction that can be human-interpretable. This initial
output serves as a preliminary prompt in the decision-making process of clinicians, acting more like a
triage recommendation than a conclusive diagnosis.

As illustrated in Figure 2, the prediction panel comprises two key components: a binary classification
label providing a high-level summary of the system’s interpretation and an optional confidence indicator,
displayed as a percentage or as a visual bar, communicating the internal accuracy of the system
intuitively.

Crucially, the system’s output is framed as a suggestion, not a directive. Visual neutrality in the
interface (e.g., restrained color schemes, absence of prescriptive language) helps mitigate automation
bias, inviting users to assess the prediction critically rather than accept it by default. This preliminary
output facilitates rapid clinical orientation and supports the decision of whether to proceed with further
analysis through the explainability module. It functions as an entry point for a more comprehensive
diagnostic process, presenting the Al result as a working hypothesis to be examined and refined.



X-Heart Framework

Supporting clinicians in the interpretation of PVCs via automatic
classification, visual explanation, and interactive feedback
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Figure 1: The X-Heart framework
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Figure 2: Prediction Panel Interface: The image above, from left to right, shows the loaded trace, with the
prediction in the centre, which in this case is “normal”, and on the far right is the probability as a percentage,
related to the prediction provided in the output. The second image shows the same example of the interface, but
with a trace representing “PVC”.

3.2. Explainable Interface

Once the system’s initial prediction is displayed, clinicians can explore the internal reasoning of the
model through a Grad-CAM-based visualization. This component is designed to bridge the cognitive
gap between what the prediction of the model and why the decision made, promoting transparency and
interpretability in clinical Al applications. The explanation is provided through a gradient-based class



activation map (Grad-CAM) [17], which overlays a heatmap on the ECG waveform. This heatmap is
color-coded (e.g., blue to red) to represent the relative importance of different temporal segments in
influencing the output of the model. Regions with stronger activation reflect where the model focused
its attention during decision-making.

This visualization offers insight into the internal logic of the model by highlighting waveform fea-
tures, such as premature QRS complexes or abnormal repolarization patterns, that may have driven
the classification. It also allows clinicians to compare the focus of the model with their own diagnostic
reasoning, allowing a critical evaluation of Al’s attention. In addition, it supports educational engage-
ment, particularly for less experienced users, by illustrating how the model prioritizes parts of the ECG
trace in ways that may confirm or challenge conventional clinical heuristics. Figure 3 illustrates two
Grad-CAM overlays: one corresponding to a normal heartbeat, and the other to a PVC. The activation
map in the PVC trace reveals a significant deviation in the QRS complex, aligning with the typical
pathological patterns, whereas the normal beat shows more diffuse or baseline-aligned activation.
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Figure 3: Grad-CAM Explanations for ECG Traces: In this image, the red box highlights the part of XAl showing
the GradCam heatmap associated with the input trace.

Instead of relying on abstract or numerical indicators of “feature importance”, the system provides
spatial explanations that align more naturally with human visual reasoning. This design choice supports
what Norman described as “external cognition”, using visual representations to offload cognitive effort
and promote perceptual reasoning [18].

The Grad-CAM visualization can also expose uncertainty or disagreement between the model and
clinician. For instance, if the highlighted region does not correspond with the expected premature
complex—or appears diffuse and unfocused—the clinician may question the model’s confidence and
choose to override the output.

3.3. Feedback Panel

The final stage of the X-Heart workflow invites the clinician to actively respond to the system’s
prediction and visual explanation. This step is not a mere formality but a core element of the HITL
design philosophy: it transforms the user from a passive observer into a contributing agent in the
decision-making process.



As shown in the Figure 4 the feedback panel is intentionally structured, yet flexible, allowing clinicians
to express their evaluation through three complementary components.
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Figure 4: Clinician Feedback Panel: This image shows the feedback panel, which can be used by clinicians to
evaluate the prediction made by the framework. It also provides the opportunity to give a confidence level and
add a comment to the evaluation. When you click on ‘Submit feedback’, the framework automatically converts
the clinician’s choices into text.

3.3.1. Binary Diagnostic Judgment

The clinicians is first prompted to indicate if they agree or disagree with the classification of the system.
This binary input serves as a clear validation signal and provides the foundation for measuring the
concordance between human and Al decisions. Importantly, this interaction is structured in a non-
coercive manner; the system neither implies nor promotes agreement, allowing the clinician to remain
autonomous.

3.3.2. Confidence Scale

To capture the nuance behind the binary decision, the panel includes a confidence slider ranging from
0 (no confidence) to 10 (absolute certainty). This numerical input allows users to express medical
uncertainty, which provides insight into how strongly they support their diagnostic choice. Over time,
aggregated confidence data can help identify ambiguous ECG cases, highlight systematic discrepancies,
or even flag regions of clinical disagreement.

3.4. Free-text Rationale

Finally, clinicians are optionally invited to provide an open comment explaining the reasoning behind
their decision. This field enables the externalization of tacit knowledge, which is often difficult to
capture through structured fields. Comments may include references to specific waveform anomalies,
comparisons to known PVC patterns, signal quality concerns, or even clinical impressions based on
history of the patient (if available).

4. Discussion

The X-Heart system represents a significant advancement in clinical decision support by addressing
three critical challenges in medical Al interpretability, clinician engagement, and diagnostic workflow
integration. The system’s three-stage workflow (prediction, explanation, feedback) mirrors the natural



diagnostic reasoning process of clinicians, making it more likely to be adopted in practice. The prelimi-
nary classification serves as an effective triage mechanism, particularly valuable in high-volume clinical
settings. Our neutral interface design successfully mitigates automation bias, a common problem in
clinical decision support systems where users may over-rely on algorithmic outputs. The heatmap
visualization provides immediate value by highlighting ECG features that may require closer inspection,
potentially reducing interpretation time for complex cases.

In addition, the feedback mechanism offers particular clinical benefits by creating a structured
process for documenting diagnostic disagreements between clinicians and Al, by capturing valuable
clinical reasoning through free-text rationales and generating data that can identify systematic patterns
in Al errors or clinician uncertainties. Specifically, our Grad-CAM implementation provides several
advantages over traditional feature importance methods:

« the spatial heatmap aligns with existing visual interpretation patterns of the clinicians;

« it enables direct comparison between machine attention and human diagnostic heuristics;

« the visualization can reveal model limitations when activation patterns appear diffuse or mis-
aligned with clinically significant features.

The system successfully implements the principles of external cognition of Norman by transforming
abstract model decisions into visual representations that reduce cognitive load. This is particularly
valuable for training scenarios, where the heatmaps can help less experienced clinicians develop their
pattern recognition skills. By keeping the interface simple and the explanations visual, we’ve created
a system that puts medical expertise first, with technology serving as a transparent aid rather than a
barrier. The true test of this design comes when busy clinicians can use the system effectively without
special training or technical support - and that’s exactly the experience we’ve worked to create. After
all, the value of Al in medicine isn’t in its complexity, but in its ability to make complex information
more accessible to those who care for patients.

5. Conclusion

This work presents X-Heart, a human-centered interface for PVC detection that combines machine-
generated explanations with structured clinician feedback. Rather than focusing on classification
performance, the framework emphasizes transparency, traceability, and collaboration. Through its three
core modules—automated prediction, visual explanation, and interactive feedback, X-Heart suggests
how Al tools can become more interpretable and clinically actionable. Although real-world validation
remains essential, the system shows the potential of interactive and explainable Al to promote trust,
clinician involvement, and improved diagnostic accuracy in cardiology.

Future directions include expanding the system for multi-class arrhythmia detection, investigating
alternative explanation methods, and embedding the platform into clinical workflows for observational
studies.

Declaration on Generative Al
The authors affirm that no generative artificial intelligence tools were used in the prepara-
tion of this work.
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