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Abstract 
Background: Formal thought disorders (FTDs) are a characteristic of schizophrenia 
symptomatology, but are difficult to score objectively. The Thought and Language 
Disorder (TALD) scale has been validated but not yet fully incorporated with NLP tools. 
We tested whether a large language model (LLM) could score the TALD reliably against 
clinicians. 
Methods: Thirty-three individuals with schizophrenia (SCZ, n = 19) or treatment-resistant 
schizophrenia (TRS, n = 14) were evaluated and scored on the TALD by experienced 
clinicians. Recordings were also evaluated with an LLM trained on predetermined 
language measures. Intraclass correlation coefficients (ICCs) for total scores and weighted 
Cohen's kappa for items were used to determine reliability. A mixed-design ANOVA was 
used to test group effects. 
Results: The LLM consistently provided higher TALD total scores than clinicians (p = 
0.001), but replicated the absence of differences between SCZ and TRS patients. ICCs 
showed good overall agreement, and most items reached moderate-to-near-perfect 
concordance, but more atypical features (e.g., logorrhea, dissociation of thinking) showed 
smaller kappa values. 
Conclusions: Automated TALD scoring approximates clinician ratings with good 
reliability, and therefore has potential as an objective and scalable assessment of thought 
disorder in schizophrenia. 
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Introduction 

Approximately 1% of the global population is affected by schizophrenia, a highly 
heterogeneous disorder with pleiotropic manifestations, including cognitive deficits, 
disturbances in thought form and content, perceptual abnormalities, and impairments 
in social cognition and emotional regulation. 
This phenotypic heterogeneity likely reflects underlying neurobiological diversity, with 
multiple independent causal mechanisms converging on various pathophysiological 
pathways that give rise to broadly similar behavioral outcomes. 

Consequently, efforts to identify a single, unifying etiology or pathophysiological 
mechanism for schizophrenia have been repeatedly frustrated by inconclusive results, 
and even advances in molecular, genomic, and neuroimaging research have been 
hampered by inconsistent findings. These challenges have hindered the development 
of reliable disease biomarkers, including emerging digital biomarkers derived from the 
rapidly growing field of medical artificial intelligence. 

However, in recent years, formal thought disorder (FTD) has emerged as a core, 
relatively homogeneous behavioral phenotype of schizophrenia, with clear genetic 
underpinnings [1]. Individuals with schizophrenia often demonstrate reduced verbal 
productivity and verbal fluency, frequently producing disjointed and fragmented 
speech in which discourse lacks logical organization and coherence. Such semantic 
incoherence not only hampers effective communication but also reflects the underlying 
cognitive disorganization characteristic of schizophrenia [2-4] and is likely closely 
linked to the neurobiological substrates of this phenotype. Notably, in our previous 
work, the disorganization dimension—largely considered to capture formal thought 
disorder—was found to be the most predictive psychopathological domain for non-
response to pharmacological treatments in patients with schizophrenia [5]. 
Furthermore, disorganization has been identified as the only psychotic dimension to 
correlate with impaired metabolic patterns of the prefrontal cortex in an FDG-PET 
study of patients with schizophrenia [6]. Together, these findings support the 
hypothesis that FTD may represent a promising candidate for research into 
schizophrenia-related biomarkers, including digital biomarkers. 

Historically, Andreasen argued that in thought disorder the speaker “violates the 
syntactical and semantic conventions which govern language usage” [7]. She 
developed and validated the Scale for the Assessment of Thought, Language and 
Communication (TLC) [8] which distinguishes “positive” and “negative” thought 
disorder [9]. Positive thought disorder includes reductions in semantic or discourse 
coherence (e.g., tangentiality, derailment, circumstantiality), whereas negative thought 
disorder includes poverty of speech and poverty of content; while positive thought 
disorder ratings predicted psychosis, negative thought disorder was specifically 
predictive of schizophrenia [10]. 



Against this clinical backdrop, computational approaches have demonstrated that 
discourse abnormalities can be quantified and localized reproducibly. Foundational 
work using Latent Semantic Analysis (LSA) showed that automated measures of 
semantic coherence discriminate patients with schizophrenia from healthy controls 
and align with clinical ratings [11]. LSA is both a cognitive model of knowledge 
acquisition and a practical tool for concept-based text analysis: it learns semantic 
structure from large corpora by factorizing the term-by-context matrix via Singular 
Value Decomposition (SVD) to obtain a low-dimensional “semantic space” (ca. 100–500 
dimensions) [12]. Within this tradition, LSA has localized where incoherence emerges 
during sentence production and predicted the degree of disorganization as well as class 
membership (patient vs. control) with accuracies around 80–82% [11]. Extending 
beyond patients, automated analyses have detected subtle deviations in relatives of 
individuals with schizophrenia, consistent with intermediate phenotypes and familial 
liability [13]. These and subsequent reviews established that linguistic biomarkers—
coherence, referential cohesion, syntactic complexity, semantic density—can index 
psychosis risk, correlate with clinician ratings, and support prediction tasks [14-15]. 

Modern NLP has expanded this toolkit. Contextual embedding models (e.g., 
BERT/RoBERTa) capture bidirectional context and enable sentence-level embeddings 
sensitive to subtle disruptions in flow and meaning. A common approach measures 
semantic dissimilarity across adjacent utterances via distances in embedding space; 
additional features include next-sentence probability and surprisal, which 
operationalize, respectively, contextual fit and unexpectedness of an utterance [15-18]. 
These transformer-based measures detect subclinical language disturbance even when 
conventional clinical scores show no group differences, capturing increased 
tangentiality (larger embedding distances) and shifts in function-word usage in 
schizophrenia-spectrum disorders [15]. Complementary morpho-syntactic features, via 
part-of-speech (POS) tagging, quantify complexity (e.g., clause usage, sentence length), 
while Coh-Metrix-style indices such as type–token ratio (TTR) are often reduced and 
correlate with thought-disorder ratings [14; 18]. On the semantic content side, vector 
unpacking estimates semantic density—how many distinct meaning vectors are needed 
to reconstruct a sentence’s meaning from distributional embeddings—thus indexing 
poverty of content; critically, low semantic density has been linked to increased risk of 
conversion from CHR to psychosis [19]. 

Beyond their predictive capability, NLP-derived metrics have proven sensitive to 
subclinical differences and generalize across tasks and settings: they discriminate SSD 
from controls even when clinician-rated scores do not [15], and they can be computed 
from open-ended verbalizations and short free-speech samples collected online, 
enabling scalable remote assessment [20-22]. Cross-linguistic studies indicate both 
shared and language-specific patterns in coherence and syntax, underscoring the need 
for language-aware tokenization/normalization and domain adaptation [23-25].  State-



of-the-art approaches integrate automated speech recognition (ASR) with semantic 
NLP to improve scalability in naturalistic settings [26]. Longitudinal work shows that 
composite NLP markers track within-person change in disorganization and negative 
symptom burden, supporting measurement-based care [15;27]; cluster analyses 
before/during/after onset reveal divergent trajectories in discourse features, with 
implications for early warning and personalized intervention [28]. Real-world 
deployments in Electronic Health Records demonstrate population-scale phenotyping 
(e.g., negative/cognitive symptoms extraction, duration of untreated psychosis 
timelines), while observational studies on social media reveal reduced coherence in 
naturalistic posts [29-33]. 

Despite decades of “proof-of-concept,” clinical translation has lagged due to 
psychometric blind spots and fairness concerns. Criterion/content validity is often 
shown, but test–retest reliability, divergent validity (to address generalized-deficit 
concerns), and bias from demographics/context are under-evaluated. A comprehensive 
psychometric agenda—explicitly argued and exemplified in recent work—shows that 
model performance depends on contextual moderators (e.g., at home vs. away, alone 
vs. around strangers) and that systematic racial/sex biases can emerge if covariates are 
not modeled [34]. Accordingly, next-generation frameworks should adopt 
psychometrics-by-design (reliability, validity, measurement invariance), harmonized 
data-collection and preprocessing, and transparent reporting, with human-in-the-loop 
safeguards for high-stakes outputs [10; 34]. 

In sum, converging evidence from psycholinguistics, computational semantics, and 
deep NLP supports language as a quantitative phenotype for schizophrenia. Classical 
constructs (TLC positive vs. negative thought disorder) map onto measurable features 
(coherence, complexity, density). Foundational LSA-based studies established 
feasibility and validity [10;11;13;14] transformer-based models extend sensitivity to 
context-dependent disruptions [15-17], and longitudinal/cross-linguistic/real-world 
analyses demonstrate scalability and clinical relevance [20-25;27-33]. Nonetheless, 
artificial intelligence methods have been widely applied to support differential 
diagnosis across heterogeneous mental disorders and to predict disease trajectories. 
However, despite the substantial potential clinical impact of these applications, the 
reliability of such digital biomarkers remains uncertain, owing to the marked 
phenotypic and neurobiological heterogeneity of the underlying constructs they seek 
to measure. Some authors have leveraged artificial intelligence methods to predict 
symptom severity by correlating speech alterations, as assessed through NLP 
techniques, with scores on established clinical rating scales. However, the direct 
computation of psychopathology scores—through algorithm-based detection and 
quantification of speech and thought disturbances—has received little attention, likely 
due to the challenges of capturing the complexity and contextual nuances of clinical 
rating criteria via automated approaches.  



Taken these elements together with our previous findings on the clinical and 
neurobiological salience of the disorganization/formal thought disorder (FTD) 
dimension [5; 6], these considerations strongly motivate the search for objective, 
scalable language markers as potential schizophrenia-related biomarkers—including 
digital biomarkers—within a harmonized, psychometrically rigorous framework. Here, 
we present a fully automated ASR + NLP pipeline specifically designed to directly 
quantify the level of formal thought disorder in patients by generating both item-level 
and total scores on the Thought and Language Disorder (TALD) Scale [35], achieving 
high consistency and reliability when compared with ratings from trained human 
evaluators. We propose that this pipeline could serve as a foundation for developing 
more refined systems aimed at enhancing model performance while preventing or 
mitigating inherent biases. We further anticipate that this pipeline could yield a more 
robust digital biomarker by anchoring measurement to a well-defined, homogeneous 
clinical phenotype—such as formal thought disorder—tightly linked to specific genomic 
and neurobiological substrates. 
 

1. Methods 

2.1 Populations. 
We included 33 patients: 19 with a diagnosis of Schizophrenia (SCZ), and 14 with 

Treatment-resistant schizophrenia (TRS), recruited from July 2025 until August 2025. 
All subjects were enrolled at the Outpatient Unit for Neurodevelopmental Disorders 

and treatment-resistant psychoses, Department of Neuroscience, Reproductive 
sciences and Dentistry, of the University of Naples Federico II. This study was part of 
the Supporting schizophrenia PatiEnts Care wiTh aRtificiAl intelligence (SPECTRA) 
project, a Research Projects of Significant National Interest (PRIN) 2022 PNRR, which 
the local Ethics Committee approved with protocol number 146/2025. All patients 
provided written informed consent before the study. All the study procedures were 
conducted following the principles of the 1975 Declaration of Helsinki, revised in 2008. 
The inclusion criteria were: i) age > 18; ii) capacity of giving written informed consent; 
iii) diagnosis of schizophrenia according to the Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition (DSM-5) [36]. Exclusion criteria were: i) a diagnosis of 
intellectual disability or other neurodevelopmental conditions; ii) neurological 
disorders or cognitive decline; iii) current substance abuse. The schizophrenia diagnosis 
was performed by two trained clinicians, under the DSM-5 edition criteria. The 
definition of drug resistance was based on the indications of the American Psychiatric 
Association, subsequently redefined by the Treatment Response and Resistance in 
Psychosis (TRRIP) guidelines [37]. 



All the participants underwent a clinical interview conducted by two trained 
psychiatrists. The interview was recorded with the Tascam DR-05X digital audio 
recorder. After the interview, the two clinicians completed the TALD (Thought and 
Language Disorder Scale) scoring. The recordings were also rated by a Large Language 
Model (LLM), which was trained for TALD scoring according to predefined metrics, 
and produced independent TALD ratings for each participants. 

 
 
 

2.3 Statistical analysis. 

Statistical analyses were performed using R Studio (2.4.2024 version). Descriptive 
statistics were used to examine the TALD mean scores from clinicians and LLM ratings. 
For the descriptive statistics, the TALD total scores assigned by clinicians and by LLM 
for each group (all patients together, SCZ group, and TRS group) were reported as the 
mean and standard deviation (SD). To provide additional information on data 
distribution, the median and interquartile range are presented in boxplots. A mixed-
design repeated measures ANOVA was performed to evaluate the differences within 
clinicians and LLM scoring and between SCZ and TRS groups, with Rater (clinicians 
vs. LLM) as the within-subjects factor and Group (SCZ vs. TRS) as the between-
subjects factor. Partial eta squared (η²p) was reported as a measure of effect size. 
Subsequently, a concordance analysis was performed. For each item of the TALD, the 
weighted Cohen’s kappa (quadratic weights), with 95% confidence intervals and raw 
agreement percentages.  For total TALD scores, intraclass correlation coefficients (ICC, 
model A,1) were computed. A p-value <0.05 was considered statistically significant, and 
the False Discovery Rate (FDR) adjustment was applied to account for multiple 
comparisons. 

2. Results 

3.1 Descriptive statistics 
Clinicians and LLM produced similar TALD scores across groups (Table 1). For all 

patients, the TALD mean total score was 26.42 ± 10.67 for clinicians and 28.03 ± 7.96 for 
LLM. For the SCZ group, mean scores were 24.73±10.75 (clinicians’ scores) vs. 28.21 ± 
8.65 (LLM’scores), while in the TRS group, scores were 24.00 ±10.96 (clinicians’ scores) 
vs. 27.78 ± 7.38 (LLM’scores).  

 
 
 



Table 1. Descriptive statistics. Mean TALD scores for each patient group. SCZ = 
schizophrenia; TRS = Treatment-resistant schizophrenia; LLM = Large Language Model. 

 
 Clinicians LLM 
All patients 26.42 +- 10.67 28.03 +- 7.96 
SCZ group 24.73 +- 10.75 28.21+- 8.56 
TRS group 24.00 +- 10.96 27.78+-7.38 

 
3.2 Mixed design ANOVA 
We used a mixed-design repeated measures ANOVA to examine differences 

between raters (clinicians and LLM, within-subjects factor) and between diagnostic 
groups (SCZ and TRS groups, between-subjects factor) in TALD total scores. This 
allowed us to examine both whether the LLM systematically differed from clinicians 
across score attribution, and whether the effect varied between patient groups. 

The mixed-design repeated measures ANOVA revealed a significant Rater main 
effect (F(1,31) = 12.67, p = 0.001, η²p = 0.29), indicating that the LLM provided higher 
TALD scores compared to clinicians. No significant Group main effect (F(1,31) = 0.03, p 
= 0.861, η²p = 0.001) or Group × Rater interaction (F(1,31) = 0.04, p = 0.836, η²p = 0.001) 
was found (Table 2). Boxplots of TALD total scores (median and IQR) are presented in 
Figure 1 and Figure 2 to display SCZ and TRS group distribution of the scores, 
separately for clinician and LLM ratings.  

 
Table 2. Results of the mixed-design repeated measures ANOVA comparing TALD total 

scores between raters (clinicians VS LLM) and groups (SCZ vs TRS). SCZ = schizophrenia; TRS 
= Treatment-resistant schizophrenia; LLM = Large Language Model;  η²p = partial eta squared. 

 
 F(1,31) p-value η²p 
Status (SCZ vs 

TRS) 
0.03 0.861 0.001 

Rater 12.67 0.001 0.290 
Interaction 

(Status:Rater) 
0.04 0.836 0.001 

 
 
 
 
 
 
 
 



Figure 1. Boxplot displayed median and IQR for TALD scores across each group of patients 
(SCZ vs TRS) by the clinician’s ratings. No significant differences were found between the 
groups. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 2. Boxplot displayed median and IQR for TALD scores across each group of patients 
(SCZ vs TRS) by LLM ratings. No significant differences were found between the groups. 

 
3.3 Concordance on total TALD scores 
Agreement on total TALD scores was evaluated using the ICC with a two-way mixed 

effects model, absolute agreement, single measures (ICC, 1, A), comparing the LLM 
scoring with clinician’scoring. The level of agreement was assessed for all patients and 
for each specific group (SCZ and TRS) to evaluate any differences in scoring that could 
depend on the group to which the patients belonged. The ICC indicated a good overall 
agreement between clinician ratings and LLM ratings (ICC = 0.84, 95% CI 0.42–0.94, p = 
0.001). Good concordance was also observed separately within the SCZ group (ICC = 
0.86, 95% CI 0.44–0.95, p = 0.001) and the TRS group (ICC = 0.83, 95% CI 0.33–0.95, p = 
0.002) (Table 3). 

 
 
 
 
 
 
 



Table 3. Intraclass correlation coefficient (ICC) for total TALD scores between clinicians 
and LLM for all patients, SCZ group, and TRS group. (SCZ schizophrenia; TRS = Treatment-
resistant schizophrenia, LLM = Large Language Model). 

 
Measure ICC (A,1) 95% CI 

 
p-value Interpretation 

Total TALD 
scores- all 
patients 

0.842 0.424-0.941 0.001 Good 
agreement 

Total TALD 
scores- SCZ 
group 

0.858 0.444-0.954 0.001 Good 
agreement 

Total TALD 
scores- TRS 
group 

0.828 0.327-0.950 0.002 Good 
agreement 

 
 
3.4 Item-level agreement between clinicians and LLM 
Since the individual items of the TALD scale are ordinal variables, Cohen's weighted 

kappa was used to assess the agreement between clinicians and LLMs on each item. 
Weighted Cohen's kappa coefficients (quadratic weights) indicated variable agreement 
across items of the TALD. Blockage, interference of thought, and receptive speech 
dysfunction exhibited almost-perfect agreement (κ ≈ 0.94), while numerous others 
showed substantial to moderate agreement (κ = 0.60–0.80). Scores were lower for 
logorrhea (κ ≈ 0.25) and dissociation of thinking (κ ≈ 0.33) (Table 4). 

 
Table 4. Item-level agreement between clinician and AI (LLM) ratings on the TALD, 

reported as weighted Cohen’s kappa coefficients (quadratic weights), 95% confidence intervals, 
p-values, and raw agreement percentages. 

 
 

 
      TALD item 

 
Observations 

Weight 
kappa 

(quadratic) 

   
    95% CI 

 
p-value 

p-value 
adjusted 

(FDR) 

%Raw 
Agreement 

Blockage 33 0.942 0.881-0.991 <0.001 0.001 87.87% 
Circumstantiality 33 0.822 0.662-0.972 <0.001 0.001 75.76% 
Perseverance 33 0.658 0.378-0.938 <0.001 0.001 78.81% 
Concretism 33 0.903 0.800-1.00 <0.001 0.001 87.88% 
Derailment 33 0.864 0.733-0.993 <0.001 0.001 84.85% 
Crosstalk 33 0.592 0.201-0.984 <0.001 0.001 84.85% 



Manneristic 
speech 

33 0.716 0.368-1.062 <0.001 0.001 87.88% 

Pressured speech 33 0.585 0.222-0.946 <0.001 0.001 81.82% 
Dysfunction of 

Thought Initiative 
and Intentionality 

33 0.895 0.809-0.981 <0.001 0.001 81.82% 

Expressive 
speech dysfunction 

33 0.893 0.845-0.939     <0.001 0.001 66.66% 

Receptive speech 
dysfunction 

33 0.940 0.894-0.987     <0.001 0.001 84.85% 

Dissociation of 
thinking 

33 0.326 -0.066-0.719      0.042 0.041 54.55% 

Echolalia 33 0.449 -0.020-0.918 0.003 0.003 72.73% 
Thought 

interference 
33 0.942 0.898-0.985    <0.001 0.001 84.85% 

Logorrhea 33 0.251 -0.164-0.666     0.148 0.148 75.76% 
Neologism 33 0.539 0.040-1.030     0.001 0.001 81.82% 
Fonemic 

paraphasia 
33 0.547 -0.004-1.140   <0.001 0.001 90.91% 

Semantic 
paraphasia 

33 0.521 -0.044-1.087   <0.001 0.001 81.82% 

Inhibited 
thinking 

33 0.895 0.817-0.917   <0.001 0.001 78.79% 

Slowed thinking 33 0.852 0.752-0.951   <0.001 0.001 72.73% 
Restricted 

thinking 
33 0.893 0.761-1.024   <0.001 0.001 87.88% 

Perseverance 33 0.658 0.378-0.937   <0.001 0.001 72.73% 
Poverty of 

content of speech 
33 0.905 0.802-0.988   <0.001 0.001 81.82% 

Poverty of speech 33 0.892 0.788-0.996   <0.001 0.001 81.82% 

Poverty of 
thinking 

33 0.536 0.237-0.833     0.001 0.001 66.67% 

Pressure/rush of 
thoughts 

33 0.870 0.755-0.985   <0.001 0.001 78.79% 

Rupture of 
thought 

33 0.441 0.147-0.734     0.009 0.009 69.70% 

Rumination 33 0.871 0.765-0.986   <0.001 0.001 78.79% 
Tangentiality 33 0.628 0.353-0.902   <0.001 0.001 66.67% 



Verbigeration 33 0.593 0.0453-1.191 <0.001 0.001 90.91% 
 
 

4. Discussion 
Our study compared clinician and LLM ratings on the Thought and Language 

Disorder (TALD) scale in patients with SCZ and TRS. Although there have been 
previous attempts in the literature to identify FTDs in SCZ using LLM [13-22; 38], to 
our knowledge, this is the first study to propose a trained model for scoring an entire 
scale routinely applied in clinical practice. 

Three main findings emerged. First, the mixed-design ANOVA showed a significant 
main effect of Rater, indicating that the LLM systematically assigned higher TALD 
ratings than human raters. Importantly, this difference was consistent across both 
diagnostic groups, as neither a Group effect nor a Group × Rater interaction was 
detected. This suggests that the LLM tends to overestimate (or, alternatively, that 
clinicians tend to underestimate) TALD severity in both diagnostic subgroups. 

Second, despite this systematic shift in absolute values, agreement between 
clinicians and the LLM was good. ICCs for total TALD scores indicated good 
concordance for the overall sample as well as for the SCZ and TRS groups, confirming 
the stability of the automated scoring system. At the item level, weighted Cohen’s 
kappa values ranged from moderate to almost perfect for most TALD items, with the 
highest concordance observed for blockage, thought interference, and receptive speech 
dysfunction. However, for some items (logorrhea, dissociation of thinking, echolalia, 
rupture of thought, paraphasias, verbigeration, pressured speech, crosstalk) the kappa 
values ranged from low to modest agreement, and broad confidence intervals. This 
trend likely reflects the rarity of these phenomena in our data: when things are 
uncommon, kappa estimates are volatile and even slight disagreements between raters 
inordinately lower the coefficient. That is, these findings may not reflect a systematic 
problem of the model, but rather the need for larger datasets with sufficient instances 
of rare phenomena to allow for more stable training and testing. 

Third, at the group level, the machine-scored TALD mirrored the pattern of clinician 
ratings. Both clinicians and the LLM failed to detect differences in total TALD scores 
between SCZ and TRS groups, indicating that the automated system reproduced 
human judgment in relative terms. While TRS patients are generally considered more 
severe and higher scores would have been expected, this absence of difference can be 
explained in two ways: first, all patients included had been clinically stable for at least 
six months and individuals with acute exacerbations were excluded; second, SCZ and 
TRS may not differ in total TALD scores but only in qualitative aspects of formal 
thought disorder assessed by the scale. These aspects were not further investigated as 



they were beyond the scope of this study. Importantly, however, the model did not 
introduce bias related to subgroup status, supporting its reliability. 

Overall, these findings suggest that an NLP-based TALD rating can approximate 
experienced clinicians’ ratings with high reliability. The consistent elevation of LLM 
scores may be due to the absence of an “emotional calibration” that clinicians implicitly 
apply when rating disorganized speech. Psychometrically, this upward shift could 
represent a strength, making the system more sensitive to subtle disturbances and less 
prone to underestimation due to clinical habituation or subjective thresholds. 
Conversely, calibration may be required if the tool is to be adopted in clinical decision-
making based on predefined cutoffs. 

From a clinical perspective, having an objective tool to assess thought disorder in 
psychosis would represent an important support for clinical practice. An LLM-based 
system can capture subtle and nuanced psychopathological alterations, providing a 
standardized assessment that is less influenced by emotional factors or socio-cultural 
knowledge of the patient. Future developments of similar tools could allow trained 
models to detect early exacerbations or subtle psychopathological changes, enable 
remote monitoring, and facilitate the identification of individuals at risk of developing 
psychosis. 

Nevertheless, our study has limitations. The most relevant is the small sample size, 
which calls for cautious interpretation of the results. A modest clinical sample may lead 
to overestimation, as suggested by the wide confidence intervals despite strong 
statistical significance. Furthermore, the use of a single language and clinical context 
raises the risk of cultural bias. Moreover, the model itself could overestimate the 
results. Therefore, methodological transparency, interpretability of results, and clinical 
supervision of the outputs are still indispensable. 
 
Acknowledgments 
The authors thank the anonymous participants. 
This research has been financially supported by the European Union 
NEXTGenerationEU project and by the Italian Ministry of University and Research 
(MUR), through a Research Project of Significant National Interest (PRIN) 2022 PNRR, 
project no. D53D23017290001 entitled "Supporting schizophrenia Patients’ Care with 
Artificial Intelligence (SPECTRA)", Principal Investigator: Rita Francese. 

Declaration on Generative AI 
During the preparation of this work, the authors used Grammarly to perform 
grammar and spelling checks. 



 
References 

[1] Legge SE, Cardno AG, Allardyce J, Dennison C, Hubbard L, Pardiñas AF, Richards A, Rees 
E, Di Florio A, Escott-Price V, Zammit S, Holmans P, Owen MJ, O'Donovan MC, Walters JTR. 
Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive 
Ability in Schizophrenia. JAMA Psychiatry. 2021 Oct 1;78(10):1143-1151. doi: 
10.1001/jamapsychiatry.2021.1961. PMID: 34347035; PMCID: PMC8340009. 
 
[2] Meyer L, Lakatos P, He Y. Language Dysfunction in Schizophrenia: Assessing Neural 
Tracking to Characterize the Underlying Disorder(s)? Front Neurosci. 2021 Feb 22;15:640502. 
doi: 10.3389/fnins.2021.640502. PMID: 33692672; PMCID: PMC7937925. 
 
[3] Compton MT, Ku BS, Covington MA, Metzger C, Hogoboom A. Lexical Diversity and Other 
Linguistic Measures in Schizophrenia: Associations With Negative Symptoms and 
Neurocognitive Performance. J Nerv Ment Dis. 2023 Aug 1;211(8):613-620. doi: 
10.1097/NMD.0000000000001672. Epub 2023 May 31. PMID: 37256631; PMCID: PMC11140903. 
 
[4] Hinzen, W., & Rosselló, J. (2015). The linguistics of schizophrenia: Thought disturbance as 
language pathology across positive symptoms. Frontiers in Psychology, 6, Article 971. 
 

[5] Barone A, De Prisco M, et al. Disorganization domain as a putative predictor of Treatment 
Resistant Schizophrenia (TRS) diagnosis: A machine learning approach. J Psychiatr Res. 2022 
Nov;155:572-578. doi: 10.1016/j.jpsychires.2022.09.044.  
 
[6] Iasevoli F, D'Ambrosio L, et al. Altered Patterns of Brain Glucose Metabolism Involve More 
Extensive and Discrete Cortical Areas in Treatment-resistant Schizophrenia Patients 
Compared to Responder Patients and Controls: Results From a Head-to-Head 2-[18F]-FDG-
PET Study. Schizophr Bull. 2023 Mar 15;49(2):474-485. doi: 10.1093/schbul/sbac1 

[7] Andreasen NC, Grove WM. Thought, language, and communication in schizophrenia: 
diagnosis and prognosis. Schizophr Bull. 1986;12(3):348-59. doi: 10.1093/schbul/12.3.348. PMID: 
3764356. 
 
[8] Andreasen NC (1979a) Thought, language, and communication disorders. I. Clinical 
assessment, definition of terms, and evaluation of their reliability. Arch Gen Psychiatry 
36:1315–1321 
 
[9] Andreasen NC (1979b) Thought, language, and communication disorders. II. Diagnostic 
significance. Arch Gen Psychiatry 36:1325–1330 

[10] Corcoran CM, Cecchi GA. Using Language Processing and Speech Analysis for the 
Identification of Psychosis and Other Disorders. Biological Psychiatry: Cognitive Neuroscience 



and Neuroimaging. 2020;5(8):770-779. doi:10.1016/j.bpsc.2020.06.004. 
 
[11] Elvevåg B, Foltz PW, Weinberger DR, Goldberg TE. Quantifying incoherence in speech: An 
automated methodology and novel application to schizophrenia. Schizophrenia Research. 
2007;93(1-3):304-316. doi:10.1016/j.schres.2007.03.001. 

[12] Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic 
analysis. Discourse Processes, 25(2-3), 259–284. https://doi.org/10.1080/01638539809545028 

[13] Elvevåg B, Foltz PW, Rosenstein M, DeLisi LE. An automated method to analyze language 
use in patients with schizophrenia and their first-degree relatives. Journal of Neurolinguistics. 
2010;23(3):270-284. doi:10.1016/j.jneuroling.2009.05.002. 
 
[14] Corcoran CM, Mittal VA, Bearden CE, et al. Language as a biomarker for psychosis: A 
natural language processing approach. Schizophrenia Research. 2020;226:158-166. 
doi:10.1016/j.schres.2020.04.032. 
 
[15] Tang SX, Kriz R, Cho S, et al. Natural language processing methods are sensitive to sub-
clinical linguistic differences in schizophrenia spectrum disorders. npj Schizophrenia. 2021;7(25). 
doi:10.1038/s41537-021-00154-3. 
 
[16] Iter D, Yoon J, Jurafsky D. Automatic Detection of Incoherent Speech for Diagnosing 
Schizophrenia. Proceedings of the Annual Conference of the North American Chapter of the 
Association for Computational Linguistics (NAACL). 2018; lines 146–152. doi:10.18653/v1/N18-
2023. 
 
[17] Hoffman RE, Hampson M, et al. Theory-driven language analysis in schizophrenia. 
Schizophrenia Bulletin. 2011;37(3):431-439. doi:10.1093/schbul/sbq094. 
 
[18] Tanaka H, Chen H, Nagai T, et al. Automatic detection of disorganized speech in 
schizophrenia: Development and evaluation of a web-based system. JMIR Mental Health. 
2020;7(8):e16829. doi:10.2196/16829. 
 
[19] Rezaii N, Walker E, Wolff P. A machine learning approach to predicting psychosis using 
semantic density and latent content analysis. npj Schizophrenia. 2019;5(9). doi:10.1038/s41537-
019-0077-9. 
 
[20] Jeong L, Lee M, Eyre B, et al. Exploring the Use of Natural Language Processing for 
Objective Assessment of Disorganized Speech in Schizophrenia. Psychiatry Research: Clinical 
Practice. 2023;5(2):84-92. doi:10.1176/appi.prcp.20230003. 
 
[21] Valverde-Albacete FJ, Peláez-Moreno C, et al. Detecting mental illness from short 
utterances on the web: Feasibility study. JMIR Formative Research. 2021;5(3):e24179. 
doi:10.2196/24179. 
 

https://psycnet.apa.org/doi/10.1080/01638539809545028


[22] Min MJ, Park S, Kim Y, et al. Automated detection of psychosis and at-risk mental state 
from short free-speech audio using deep learning. Frontiers in Psychiatry. 2022;13:818808. 
doi:10.3389/fpsyt.2022.818808. 
 
[23] Parola A, Simonsen A, Bliksted V, Fusaroli R. Voice patterns in schizophrenia: A cross-
linguistic systematic review and meta-analysis. Schizophrenia Research. 2020;216:17-24. 
doi:10.1016/j.schres.2019.11.031. 
 
[24] Çabuk M, Altintas E, et al. Speech graph measures in Turkish patients with schizophrenia. 
Clinical Linguistics & Phonetics. 2021;35(10):915-930. doi:10.1080/02699206.2021.1884835. 
 
[25] Arslan B, Öztürk A, et al. Coherence measures in Turkish schizophrenia speech: An NLP 
approach. BMC Psychiatry. 2022;22:447. doi:10.1186/s12888-022-04148-4. 

[26] Tanaka S, Maezawa Y, Kirino E. Classification of schizophrenia patients and healthy 
controls using p100 event-related potentials for visual processing. Neuropsychobiology. 
2013;68(2):71-8. doi: 10.1159/000350962. Epub 2013 Jul 19. PMID: 23881066. 
 
[27] Carrillo F, Cecchi GA, Sigman M, et al. Language patterns before and after onset of 
psychosis: A longitudinal case study. Schizophrenia Research. 2018;197:627-633. 
doi:10.1016/j.schres.2018.01.003. 
 
[28] López-Jaramillo C, Vargas C, et al. Longitudinal analysis of speech disorganization in first-
episode psychosis. Schizophrenia Research. 2020;215:211-218. doi:10.1016/j.schres.2019.11.038 

[29] Viani N, Pellizzer G, et al. Automatic detection of negative symptoms in schizophrenia 
from clinical records. Journal of Biomedical Informatics. 2020;110:103531. 
doi:10.1016/j.jbi.2020.103531. 

[30] Chandran D, Radhakrishnan B, et al. Using NLP to identify obsessive-compulsive 
symptoms in serious mental illness. BMC Psychiatry. 2019;19:372. doi:10.1186/s12888-019-2365-
6. 
 
[31]Low DM, Rumker L, et al. Natural language processing reveals vulnerable mental health 
support groups and heightened COVID-19 anxiety on Reddit. Internet Interventions. 
2020;20:100315. doi:10.1016/j.invent.2020.100315 

[32] Reilly S, Planner C, et al. Negative symptoms and healthcare use in schizophrenia: Using 
NLP to investigate service use. BMC Psychiatry. 2021;21:119. doi:10.1186/s12888-021-03128-8. 
 
[33] Fernandes AC, Dutta R, et al. Identifying first-episode psychosis in clinical records: An 
NLP approach. BMJ Open. 2013;3:e002764. doi:10.1136/bmjopen-2013-002764. 
 
[34] Cohen AS, Rodriguez Z, Warren KK, et al. Natural Language Processing and Psychosis: 
On the Need for Comprehensive Psychometric Evaluation. Schizophrenia Bulletin. 
2022;48(5):939-948. doi:10.1093/schbul/sbac051. 



 
[35] Kircher T, Krug A, Stratmann M, Ghazi S, Schales C, Frauenheim M, Turner L, Fährmann 
P, Hornig T, Katzev M, Grosvald M, Müller-Isberner R, Nagels A. A rating scale for the 
assessment of objective and subjective formal Thought and Language Disorder (TALD). 
Schizophr Res. 2014 Dec;160(1-3):216-21. doi: 10.1016/j.schres.2014.10.024. Epub 2014 Nov 17. 
PMID: 25458572. 
 
[36] American Psychiatric Association. (2013). Diagnostic and statistical manual of mental 
disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 

[37] Howes OD, McCutcheon R, Agid O, de Bartolomeis A, van Beveren NJ, Birnbaum ML, 
Bloomfield MA, Bressan RA, Buchanan RW, Carpenter WT, Castle DJ, Citrome L, Daskalakis 
ZJ, Davidson M, Drake RJ, Dursun S, Ebdrup BH, Elkis H, Falkai P, Fleischacker WW, Gadelha 
A, Gaughran F, Glenthøj BY, Graff-Guerrero A, Hallak JE, Honer WG, Kennedy J, Kinon BJ, 
Lawrie SM, Lee J, Leweke FM, MacCabe JH, McNabb CB, Meltzer H, Möller HJ, Nakajima S, 
Pantelis C, Reis Marques T, Remington G, Rossell SL, Russell BR, Siu CO, Suzuki T, Sommer 
IE, Taylor D, Thomas N, Üçok A, Umbricht D, Walters JT, Kane J, Correll CU. Treatment-
Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working 
Group Consensus Guidelines on Diagnosis and Terminology. Am J Psychiatry. 2017 Mar 
1;174(3):216-229. doi: 10.1176/appi.ajp.2016.16050503. Epub 2016 Dec 6. PMID: 27919182; 
PMCID: PMC6231547. 
 
[38] Pugh SL, Chandler C, Cohen AS, Diaz-Asper C, Elvevåg B, Foltz PW. Assessing dimensions 
of thought disorder with large language models: The tradeoff of accuracy and consistency. 
Psychiatry Res. 2024 Nov;341:116119. doi: 10.1016/j.psychres.2024.116119. Epub 2024 Aug 3. 
PMID: 39226873. 


