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Abstract
Knowledge graph construction is a critical task in natural language processing, providing structured information
that supports downstream applications such as recommendation systems and question answering. To ensure the
accuracy and completeness of the information stored in knowledge graphs, it is essential to continuously update
them based on new textual data while maintaining consistency with the existing knowledge graph architecture.
To this end, constructing knowledge graphs from text based on a predefined ontology schema is crucial. However,
existing benchmark only considers simplistic schema, lacking subsumptions. A new task shall be constructed,
that requires not only accurate extraction of factual triples, but also structural alignment between the constructed
knowledge graph and the predefined hierarchical ontology schema. For benchmarking this task, we introduce
OSKGC, a benchmark dataset specifically designed for ontology schema-based knowledge graph construction,
along with a new evaluation metric that measures the structural similarity between the constructed knowledge
graphs and the predefined ontology schema. Compared to existing datasets, OSKGC ensures alignment between
textual data, triples, and the ontology schema, provides fine-grained ontology annotations, and incorporates
hierarchy within the ontology schema. To validate the utility of OSKGC, we propose two baseline methods under
joint extraction and pipeline settings and conduct experiments using several mainstream large language models.
Source Repo: https://github.com/HeraclesWang/OSKGC
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1. Introduction

In recent years, the task of extracting triples from text to construct knowledge graphs has garnered
significant attention in the field of information extraction [1, 2]. Despite containing rich semantic
information, text is challenging to use directly for complex tasks, such as automated reasoning and
question answering [3, 4]. Knowledge graphs, in contrast, provide structured means of storing in-
formation, typically representing facts in the form of triples, where each triple consists of a subject,
predicate, and object. For instance, the triple (Alabama, country, United States) represents the fact that
Alabama belongs to the country United States. Numerous studies have demonstrated that knowledge
graphs effectively support downstream tasks, including question answering [5, 6], decision-making
[7, 8], recommendation systems [9, 10, 11], and search engines [12, 13]. However, knowledge graphs
often suffer from issues of incompleteness due to their collaborative or semi-automatic construction
processes [14]. Researchers have long sought to use newly retrieved information to augment existing
knowledge graphs [15, 16]. A critical step in bridging unstructured text with structured knowledge
involves extracting triples that align with the schema of existing knowledge graphs. This task has
become a research hotspot, especially with the increasing demand for precise and consistent knowledge
representation [17].

Current tasks for constructing knowledge graphs from text can be categorized into two main settings:
Open information extraction (OIE) setting and ontology-driven, as shown in Figure 1. The OIE setting
takes text as input and produces triples as output. For example, given the input text "The capital
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of France is Paris," the output would be the triple (France, capital, Paris). To evaluate this setting,
benchmark datasets such as WebNLG [18] and NYT [19] have been widely used. However, they only
provide text-triple pairs without offering an ontology-based schema for constraint, which we refer
to as "ontology schema" in this paper, to constrain the extracted triples. While suitable for open
triple extraction, these datasets often fail to ensure the consistency and standardization of constructed
triples, making them less applicable for tasks requiring domain-specific knowledge graph updates. In
contrast, the ontology-driven setting takes both text and a predefined ontology as input and output
triples. TEXT2KGBENCH [20] represents one of the few works in this domain, introducing an ontology-
driven dataset to evaluate the performance of large language models in constructing knowledge graphs.
However, its ontology schema is critically simple, primarily exhibiting a single star-shaped structure
that inadequately captures the hierarchical information of fine-grained entity types. This limitation
reduces its effectiveness for handling complex tasks requiring precise distinctions between entity types.
Additionally, mismatches between the ontology schema and the text-triple data undermine its utility,
highlighting the need for a high-quality dataset with better alignment.

To address these gaps, we propose a novel task setting for constructing knowledge graphs from text
based on an ontology schema. In our setting, the input consists of the text and a predefined ontology
schema, and the output includes both triples and their corresponding schemas. We evaluate not only
the factual extraction performance but also the alignment between the schema of the constructed
knowledge graph and the predefined ontology schema. This aims to extract structured information from
new texts to expand the knowledge graph without altering its existing architecture. To support this
task, we propose a benchmark dataset, OSKGC, along with an evaluation metric tailored to our setting.
Considering the need to design distinct ontology schemas for different thematic domains, we selected
WebNLG, which characterized by its clear topic separation, as the foundation. We provide fine-grained
annotations for entities, such as subdividing "politician" into categories like president, vice president,
and mayor, to better reflect the types of entities in the text. Furthermore, we introduce a subsumption
hierarchy derived from DBpedia [21] to support fine-grained entity type recognition. Through these
enhancements, OSKGC spans multiple domains, features fine-grained annotations, and ensures well-
aligned ontology schemas. Furthermore, we adopt several mainstream LLMs as baselines and conducted
experiments using joint extraction and pipeline settings to confirm OSKGC as a challenging benchmark.

Figure 1: Task settings for constructing knowledge graph from text.

2. Related Work

Constructing knowledge graphs from unstructured text typically involves extracting entities and their
relations and organizing them into structured triples. In this field, several benchmark datasets have



been proposed for model training and evaluation, which are summarized in Table 1. CoNLL04 [22] as an
early representative benchmark, employed manual annotation, clearly defining entity types and relation
categories, providing a solid experimental platform for named entity recognition (NER) and relation
extraction (RE). However, it lacks fine-grained entity type classification and does not incorporate a
formal ontology schema, focusing primarily on general-domain relation extraction task.

With the integration of large-scale textual resources and knowledge bases, distant supervision has
been adopted to automatically construct training data. This approach assumes that if two entities have
a certain relation in a knowledge base, they also express the same relation when they co-occur in the
same sentence. Typical datasets such as NYT [19] and REBEL [23] were constructed using distant
supervision, automatically annotating large volumes of triple data, significantly improving the efficiency
of construction. However, this method also introduces considerable noise, such as incorrect entity
pairings or missing relation labels. Moreover, such datasets typically do not define entity types or build
extensible ontology schemas, which limits their support for canonicalization of extracted triples and
knowledge graph expansion.

Table 1
Overview of related benchmark datasets

Dataset
Defined

Entity Types
Fine-Grained

Typing
Ontology
Schema

Ontology
Hierarchy

Build
Method

Thematic
Distinction

CoNLL04 [22] ✓ ✗ ✗ ✗ human annotation ✗

WebNLG [18] ✗ ✗ ✗ ✗ human annotation ✓

TekGen [24] ✗ ✗ ✗ ✗ distant supervision ✗

NYT [19] ✗ ✗ ✗ ✗ distant supervision ✗

REBEL [23] ✗ ✗ ✗ ✗ distant supervision ✗

TEXT2KGBENCH [20] ✓ ✗ ✓ ✗ human annotation ✓

Ours ✓ ✓ ✓ ✓ human annotation ✓

Other works attempt to generate corresponding text directly from structured data to construct
training data, such as WebNLG [18] and TekGen [24]. These datasets pair triples with natural language
descriptions, aiming to train models to generate factual text or recover triples from text. The WebNLG
dataset uses manual annotation and covers multiple thematic domains, providing good topic differen-
tiation. In contrast, TekGen was built using distant supervision, lacking entity type definitions and
the design of ontology schema. Furthermore, the recently proposed TEXT2KGBENCH [20] introduced
a more systematic ontology design for ontology-driven triple extraction. However, the constructed
ontology schema is overly simplistic, with each category forming a star-shaped structure centered
around a core ontology, which makes it incapable of handling associations between entities with deep
hierarchical structures. In addition, the ontology schema does not align well with the text and triples,
because the context of the text was not fully considered during construction, resulting in low data
quality.

Overall, most mainstream datasets today focus primarily on triple extraction itself, with limited
attention to ontology schema construction and fine-grained entity typing. These limitations hinder
the ability of current datasets to support incremental updates and structural alignment within existing
KG resources, thereby restricting the scalability of KGs in practical applications. In contrast, OSKGC
provides fine-grained entity annotations along with an explicitly ontology schema with hierarchy,
filling the gap left by existing datasets.

3. Benchmark Construction

In this section, we present the construction method of the OSKGC dataset, consisting of 57 categories,
where each category has two main components: The ontology schema and the corresponding text-triple
pairs. To ensure alignment among the text, triples, and ontology schema in the dataset, we construct the



ontology schema from scratch based on WebNLG [18] and cleaned the text-triple pairs. Additionally,
we introduce an evaluation metric designed to assess the alignment between the knowledge graph
constructed by the model and the predefined ontology schema.

Figure 2: Overview of the ontology schema construction process for OSKGC.

3.1. Construction of Ontology Schema

The construction of the ontology schema serves two primary objectives: (1) to generate a schema label
for each text-triple pair, which is used for training and evaluation; and (2) to build a predefined ontology
schema for each category, which serves as a structural guide for knowledge graph construction. In
WebNLG, the data are presented as pairs of text and corresponding triples, without explicit entity type
information. We selected data entries that contain one, two, or three triples as the basis for constructing
our ontology schema. To ensure alignment between the ontology schema and the text-triple data, we
first annotate the entities in each triple with their corresponding entity types, thereby transforming
each triple into a type-level schema that serves as the label for the associated data entry. Subsequently,
based on the subsumption hierarchy of the DBpedia ontology, we enrich each annotated entity type by
recursively adding more general types, thus constructing a subsumption hierarchy. Finally, for each
category, we aggregate all schema labels associated with the data entries. For every entity type in the
head and tail positions of these schema labels, we identify its corresponding root-level general type
within the subsumption hierarchy. Using the relations from the schema labels, we link these root-level
types to form a core structural schema in the form of triples. By summarizing the core structural
schemas and their associated hierarchical structures, we construct a predefined ontology schema for
each category. The complete ontology schema construction process is illustrated in Figure 2, consisting
of three main steps: annotating entity types, constructing the subsumption hierarchy, and constructing
relations.

3.1.1. Annotating Entity Types

In this step, we annotate the entity types in the triples of each data entry. For each entity in the triples,
we query DBpedia to find the deepest level type of the entity and use it as the initial type for the entity.
We manually reviewed the queried entity types to ensure the accuracy of the annotations. On this
basis, we performed fine-grained annotation manually for each entity. Specifically, we used external
knowledge sources including Wikipedia and Wikidata [25] as references to assign more precise entity
types to each entity. For example, for the entity "Rome," the initial type obtained from DBpedia was



Figure 3: An example of a portion of the predefined ontology schema. The purple nodes represent general entity
types located at the root level, which are connected via category-specific relations to form the core structure. The
blue nodes denote fine-grained entity types in the subsumption hierarchy and are linked to the core structure
through the root nodes.

"City." After manual annotation, it was refined to "CapitalCity." In this process, we also referred to the
context of each entity in the text to ensure that the annotated entity type aligns with the content in
the text. This is crucial due to the polysemy of entities. For example, the entity "Christian Panucci"
was a soccer player during his early career and later became a soccer manager. For such polysemous
entities, we annotate them with the type that aligns with the context of the text, ensuring that the
constructed ontology schema remains consistent with the textual content. After this step, we obtain
the corresponding entity type for each entity in different text contexts.

3.1.2. Constructing Hierarchy

In this step, we add a subsumption hierarchy to all entity types. The goal is to effectively categorize
the annotated entity types into a hierarchy. Specifically, we use the hierarchy of DBpedia ontology
classes as a reference. For each entity type, we query its hierarchical path to the root node. For example,
for the entity type "President," the obtained path is "President → Politician → Person → Animal →
Eukaryote → Species → Thing". For these paths, we removed the nodes that do not contribute to
effective classification. Specifically, we remove overly general nodes that are close to the root and retain
the nodes starting from the most general node in the path that can identify the annotated entity type.
For example, for the entity type "President", the most general entity type that can identify it is "Person".
Therefore, the retained path is "President → Politician → Person", with overly general nodes above the
"Person" level removed. In addition, some nodes in the hierarchy of DBpedia have sibling nodes that do
not have instantiated entities in OSKGC. These nodes not only fail to contribute to effective classification
but also add unnecessary complexity to our hierarchy. Therefore, we consider them redundant and



remove them from the paths where they appear. For example, for the entity type "FormulaOneRacer",
its path is "FormulaOneRacer → RacingDriver → MotorsportRacer → Athlete → Person". Since the
sibling nodes of "MotorsportRacer" and "RacingDriver" do not have instantiated entities in OSKGC,
these siblings are removed. Since we have performed fine-grained annotation of entity types, not all
entity types are included in DBpedia. For these entity types, we add them to appropriate positions
within the hierarchy.

In OSKGC, not all entity types have a hierarchy. Since the purpose of introducing the hierarchy is to
classify the finely annotated entity types, we did not build additional hierarchies for entity types that
can be distinct on their own. For instance, entity types like "EthnicGroup" and "Language", which are
inherently easy to distinguish, do not need additional hierarchy for classification. For all entity types
with a hierarchy, we define the manually annotated entity type in the schema label as the golden label,
and all the higher-level nodes in the hierarchy as silver labels. For example, for the type "President,"
the golden label is "President," while the silver labels include "Politician" and "Person". The golden
label represents the fine-grained and precise entity type, whereas the silver labels correspond to more
general entity types. These silver labels are used to evaluate the structural similarity of the constructed
knowledge graph.

3.1.3. Constructing Relations

In this step, we construct relations between entity types based on the instantiated triples from the
WebNLG corpus. Specifically, we connected annotated entity types and their root-level types within the
hierarchy using relations derived from the triples, which allowed us to generate the schema label for the
text-triple data and the predefined ontology schema. For example, given the triple (United States, leader,
Joe Biden), where the type of "United States" is "Country" and the type of "Joe Biden" is "President," the
schema label for the data entry is (Country, leader, President). Subsequently, based on the hierarchy, we
determined that the root nodes corresponding to the entity types "Country" and "President" are "Place"
and "Person", respectively. Thus, we derived (Place, leader, Person) and included it in the predefined
ontology schema. Figure 3 illustrates a portion of the predefined ontology schema we constructed as
an example. Since the entity types connected by relations in the ontology schema are root nodes in
the hierarchy, which represents the most general classification of the entity types, the schema labels
specific to each data instance are not directly reflected here. We followed the classification standards
of the WebNLG and divided the data into three groups based on the number of triples they contain.
These were further subdivided into 19 thematic categories, resulting in a total of 57 categories. For each
category, we independently summarized a predefined ontology schema.

Table 2
Issues on the text-triple pairs in WebNLG and corresponding examples. The problematic parts are
highlighted in bold.

Issue Text Label
Entity inconsistency In Indiana, the language spoken is American English. (Indiana, language, English Americans)

Semantic inconsistency
Bacon and sausage are the main ingredients in a Bacon
Explosion, which comes from the United States.

(Bacon Explosion, ingredient, Bacon); (Bacon
Explosion, mainIngredient, Sausage)

Irrelevant triple
The comic character Asterix, was created by René Goscinny
and Albert Uderzo.

(Asterix, creator, René Goscinny); (Asterix,
alternativeName, Astérix); (Asterix, creator,
Albert Uderzo)

3.2. Cleaning Text-Triple Pairs

Apart from the ontology schema, another crucial component of OSKGC is the text-triple pairs. This
portion of the data is sourced from WebNLG. To ensure consistency and alignment between the text
and the triples, we conducted a thorough review and validation of the text-triple pairs. As shown in
Table 2, the issues we found in WebNLG primarily include inconsistencies between entities in the text
and those in the triples, mismatches between the semantics of the text and the triples, and triples in
the labels containing information not present in the text. For entity inconsistency, an example is such
that the text mentions "American English" as a language, while the tail entity in the triple is "English



Algorithm 1: Compute Structural Similarity (SS)
Input: Ontology hierarchyℋ, Golden schemas 𝐺, Predicted schemas 𝑃
Output: Structural similarity score 𝑆𝑆 ∈ [0, 1]
Initialize 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒← 0
foreach triple (ℎ𝑝, 𝑟𝑝, 𝑡𝑝) in 𝑃 do

Find (ℎ𝑔, 𝑟𝑔, 𝑡𝑔) in 𝐺 such that 𝑟𝑝 = 𝑟𝑔 ;
𝑠𝑐𝑜𝑟𝑒ℎ ← ComputeSS(ℋ, ℎ𝑔, ℎ𝑝), 𝑠𝑐𝑜𝑟𝑒𝑡 ← ComputeSS(ℋ, 𝑡𝑔, 𝑡𝑝);
𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒← 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒+ (𝑠𝑐𝑜𝑟𝑒ℎ × 𝑠𝑐𝑜𝑟𝑒𝑡);

𝑆𝑆 ←

⎧⎨⎩ 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒/|𝐺|, if |𝐺| ≥ |𝑃 |(︂
𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒×

(︁
|𝐺|
|𝑃 |

)︁2
)︂
/|𝐺|, otherwise

return 𝑆𝑆;

Americans," which is an ethnic group. In such cases, we correct the entity in the triple to ensure it
aligns with the text. In cases of semantic inconsistency, the triples may include the correct entities,
but the semantic information they convey does not align with the text. For example, the text states
that both "Bacon" and "Sausage" are the main ingredients of "Bacon Explosion." However, the triples
in the label indicate only that "Sausage" is the main ingredient, while "Bacon" is merely an ingredient.
Such inconsistencies can mislead the model, thereby affecting the evaluation of the results. To resolve
this issue, we modified the triples to ensure they accurately reflect the content of the text. In cases
where the triples in the label contain information not present in the text, for example, the label includes
a triple (Asterix, alternativeName, Astérix), but the text does not mention this information. In such
cases, we removed the triples that were not related to the text. Through the above cleaning process, we
corrected the errors in WebNLG and ensured mutual alignment between the text and the triples, thus
ensuring the quality of OSKGC.

3.3. Evaluation Metric

In our task setting, we aim to extract correct triples from the text while ensuring that the constructed
knowledge graph aligns with the predefined ontology schema. To this end, we propose an evaluation
metric called Structural Similarity (SS) to measure the degree of alignment between the schema of the
constructed knowledge graph and the predefined ontology schema, as shown in Algorithm 1.

The proposed metric begins by evaluating the structural similarity between individual pairs of entity
types, specifically between a gold entity type 𝑔 and a predicted entity type 𝑝. Let 𝐷 denote the path
length from the gold type 𝑔 to the root node of the ontology. Based on the structural relation between 𝑔
and 𝑝 within the ontology hierarchy, we define two types of matching cases: If the predicted type 𝑝 lies
on the ancestral path from the gold type 𝑔 to the root, the match is considered an ancestor match. In
this case, the structural similarity score is computed using Equation 1,

SS = exp

(︂
−𝛼 · 𝑑

𝐷

)︂
(1)

where 𝑑 is the path length from 𝑔 to 𝑝, and 𝛼 is a parameter that controls the decay rate of the score,
which we set to 2. This design reflects the intuitive principle that the closer the predicted type is to
the gold type in the hierarchy, the higher the SS score it receives. If the predicted type 𝑝 is not on the
ancestral path of 𝑔 but they share a lowest common ancestor (LCA), the match is regarded as a lowest
common ancestor (LCA) match. In this case, the similarity score simultaneously considers the distances
from both 𝑔 and 𝑝 to their LCA. Additionally, we introduce local structural entropy as a penalty factor
to model the complexity of the local topological structure around the predicted node. The scoring is
defined by Equation 2,

SS = exp

(︂
−𝛼 · 𝑑

𝐷

)︂
× exp

(︂
−𝛽 · 𝑑′

𝐷 + log2(𝑆𝑝 + 1)

)︂
(2)



where 𝑑 and 𝑑′ denote the path lengths from 𝑔 and 𝑝 to the LCA, respectively; 𝑆𝑝 is the number of
sibling nodes of the predicted type 𝑝; and 𝛽 is a parameter that controls the strength of the entropy
penalty, which we set to 1.5. In graph representation learning, structural entropy is commonly used to
quantify the complexity and uncertainty of graph structures [26]. The local structural entropy term
log2(𝑆𝑝+1) is introduced to capture the branching complexity of the subtree where the predicted node
resides. A larger number of sibling nodes indicates higher local uncertainty and an increased likelihood
of misclassification, thus resulting in a greater penalty. This design is consistent with the principle of
entropy in information theory, which is used to quantify uncertainty and complexity in systems [27]. If
no common ancestor exists between 𝑔 and 𝑝, they belong to different connected components in the
ontology, and the SS score is 0.

For each predicted schema, the final SS score is calculated by multiplying the SS scores of its head and
tail entity types. At the data entry level, where a single entry may contain multiple schemas, the overall
SS is computed by summing the scores of all schemas and dividing by the number of corresponding
golden labels. Notably, when the number of predicted triples exceeds that of the golden triples, we
introduce an additional penalty factor to suppress redundancy in predictions, thereby ensuring that the
metric maintains strong discriminative power and robustness across results of varying scales.

4. Dataset Statistics

In this section, we present the statistical information of OSKGC. OSKGC consists of two components:
text-triple-schema pairs and predefined ontology schema. Each data entry consists of a textual instance
labeled with its corresponding subgraph of the knowledge graph in triple form and the schema label
associated with the subgraph. For each category, we provide its predefined ontology schema. As
shown in Table 3, we divide the data into three groups based on the number of triples contained in the
text: those with one triple, two triples, and three triples. Within each group, the text data is further
categorized into 19 categories based on the topic of the text, resulting in a total of 57 categories. For
each category, although there are overlapping parts in the ontology schema, each also has unique
components. Therefore, we provide a dedicated predefined ontology schema for each category. The
data in each category are divided into a training set, a validation set, and a test set in a 7:1:2 ratio. We
ensured that the test set contains entities that do not appear in the training or validation sets. OSKGC
contains a total of 207 entity types, 382 relations, and 10,183 text entries. The knowledge graph includes
3,446 entities, and the predefined ontology schema consists of 691 edges, 207 of which represent the
subsumption hierarchy. The maximum depth of the hierarchy is 4, with an average of 1.6. Among the
entity types that have descendant nodes, the maximum in-degree is 21, with an average of 4.6.

5. Experiment

In this section, we introduce the baseline experiments conducted on OSKGC. To evaluate the performance
of OSKGC, we employed two experimental setups: joint extraction and pipeline, as shown in Figure 4.
We conducted experiments using several current mainstream LLMs, including open-source models
Llama3-8b [28], Phi-3-small [29], Qwen2.5-7b [30], Mistral-7b [31] and proprietary models GPT-4o [32],
Gemini 1.5 pro [33] and Claude 3.5 sonnet [34].
5.1. Joint Extraction Setup

In this part of the experiment, we designed a single prompt to jointly extract entities and relations,
enabling the construction of the knowledge graph in one step, as shown in Prompt 1. The goal is
to evaluate whether the LLM is capable of handling a large amount of complex ontology schema
information. In this experimental setup, the prompt consist of the entity types, relations, and hierarchy
from the ontology schema along with the test text. Additionally, we provide a one-shot example to
assist the model in understanding and specify the format for the output. The input ontology schema
information is raw data without any additional processing, and the ontology schema for data belonging



Table 3
Statistics of OSKGC at the category level, including the number of entity types, the number of relations, and the
count of textual data.

Category
1 triple 2 triples 3 triples

Ont Rel Text Ont Rel Text Ont Rel Text
Airport 44 54 350 42 50 240 39 35 228

Artist 36 44 324 36 34 276 31 30 298

Astronaut 28 37 86 23 30 67 28 36 84

Athlete 46 45 326 39 31 219 32 32 258

Building 47 39 256 47 39 195 47 37 219

CelestialBody 11 27 196 10 25 157 11 25 153

City 23 26 279 19 21 244 22 21 256

ComicsCharacter 20 20 111 18 16 94 17 19 78

Company 33 35 104 21 21 101 21 24 99

Film 25 33 74 18 17 41 19 22 51

Food 48 28 271 45 25 280 43 22 310

MeanOfTransportation 41 72 333 36 66 240 36 63 249

Monument 23 24 38 21 20 39 23 24 49

MusicalWork 16 28 88 12 15 49 17 22 53

Politician 53 46 334 46 38 281 48 39 295

Scientist 29 37 73 20 23 52 25 27 50

SportsTeam 31 29 283 28 26 199 24 23 197

University 29 40 71 25 31 59 29 41 72

WrittenWork 35 49 250 32 42 230 30 40 274

Figure 4: Overview of the baseline experiment setups.

to the same category is constant. We used two methods to select the one-shot example: random selection
and similarity-based selection. For random selection, we randomly choose a fixed data sample from
the training set of each category to serve as the example. All test data within the category share this
example. For similarity-based selection, we used SBERT [35] to find the most similar text in the training
set of the corresponding category for each test data based on text similarity. Each test data entry has its
own unique example. The output includes the triples and their corresponding ontology schema.



Prompt 1: Joint Extraction

Your task is to construct a knowledge graph from the input text based on the given ontology schema. The goal is to extract triples based
on the given ontology schema’s entity types, relations, and hierarchy, and provide the most accurate corresponding ontology schema
possible.
Ontology schema:
entity type: {entity type}
relation: {relation}
hierarchy: {hierarchy}
Example text: {example text}
Example output: {example output}
The output format must strictly follow the example, with no additional text or explanations.
Input text: {text}
Output:

Prompt 2: Entity Recognition

Your task is to find all the named entities in the given text, including numbers, codes, and dates. You need to find at least two entities.
Only focus on named entities and never extract adjectives or numerical units. Please strictly follow the format of the following example
and only provide the named entities you find, without any additional words.
Example text: {example text}
Output: {example output}
Text: {input text}
Output:

Prompt 3: Entity Typing

Please select the appropriate entity type for each given entity from the candidate entity types based on the text and your knowledge.
Text: {text}
Entities: {entities}
Candidate entity types: {candidate types}
Each square bracket in the candidate entity types contains a candidate entity type. If a candidate entity type is followed by a colon, then
each entity type enclosed in square brackets within the subsequent curly brace is a sub-type of that entity type.
Example:
Text: {example text}
Entities: {example entities}
Output: {example output}
Please select only one most appropriate entity type from the brackets for each entity, strictly following the format shown in the example,
without any additional words or explanation.
Output:

Prompt 4: Relation Extraction

Please select relations from the candidates to connect given entities in the text, if they exist.
Example:
Text: {example text}
Given entities: {example entities}
Candidate relations: {example relations}
Output: {example output}
Please strictly follow the output format in the example without any additional words.
Text: {input text}
Given entities: {entities}
Candidate relations: {relations}
Output:

5.2. Pipeline Setup

In addition to the joint extraction method, we also adopted a pipeline experimental setup to construct
the knowledge graph step by step. Specifically, the process is divided into three steps: Entity recognition,
entity typing, and relation extraction, with separate prompts designed for each step. Similar to the
joint extraction experimental setup, we provided a one-shot example in the prompt, using both random
selection and similarity-based selection methods. Entity recognition aims to identify entity names from
the text. As shown in Prompt 2, we input the text into the prompt. To guide the LLM in generating the
expected output, we provided a one-shot example to specify the output format. The entity typing step
involves assigning the corresponding entity types to the extracted entity names. The prompt template
is shown in Prompt 3. The inputs for this step include the entity names output from entity recognition
step, the candidate entity types for the category of the input data, the input text, and a one-shot example.
The output is the corresponding entity type for each entity. The candidate entity types are derived



from the ontology schema of the category to which the input data belongs. Finally, relation extraction
involves identifying the relations between entities to form triples. The prompt template for this step is
shown in Prompt 4. The input for this step includes the entity names, candidate relations, the input text,
and a one-shot example. For the candidate relations, we did not use all the relations from the category
of the input data. Instead, we traced back the entity types obtained in the entity typing step to their
root node types based on the hierarchy. Then, we compiled all the relations existing between these
root nodes as the candidate relations. Through this approach, we eliminated the relations that were
irrelevant to the input data, thereby reducing the number of candidate relations and streamlining the
prompt.

5.3. Experimental Results

Table 4 present the experimental results of open-source LLMs and proprietary LLMs. Precision, recall,
and F1 are metrics used to evaluate the triples extracted by the model. SS is the metric we proposed
to assess the similarity between the ontology schema constructed by the model and the predefined
ontology schema. Regarding the selection of one-shot example, the results from both the pipeline
and joint extraction setups indicate that using examples similar to the input text yields better results
than random selection. Comparing the pipeline and joint extraction experimental setups, we can
observe that the results of the joint extraction setup generally outperform those of the pipeline setup in
terms of the evaluation of the extracted triples. However, when evaluating the similarity between the
constructed knowledge graph’s ontology schema and our predefined ontology schema, the pipeline
approach generally performs better. These baseline results leave room for improvement in future work.

Table 4
Experimental results of open-source and proprietary LLMs onOSKGC. Rand refers to the results obtained
by randomly selecting a one-shot example, while SBERT refers to the results obtained by selecting the
most similar one-shot example to the test data using SBERT.

Method Metrics
Llama3-8b Phi-3-small Qwen2.5-7b Mistral-7b GPT-4o Gemini 1.5 Pro Claude 3.5 Sonnet

Rand SBERT Rand SBERT Rand SBERT Rand SBERT Rand SBERT Rand SBERT Rand SBERT

Pipeline

Precision 0.328 0.464 0.241 0.349 0.417 0.544 0.299 0.464 0.550 0.673 0.465 0.600 0.494 0.602
Recall 0.483 0.683 0.513 0.685 0.660 0.801 0.538 0.758 0.750 0.851 0.617 0.806 0.694 0.835

Micro F1 0.391 0.553 0.328 0.463 0.511 0.648 0.385 0.576 0.635 0.751 0.531 0.688 0.577 0.700
Macro F1 0.347 0.493 0.346 0.460 0.529 0.649 0.403 0.571 0.634 0.745 0.486 0.661 0.576 0.702

SS 0.161 0.264 0.161 0.299 0.351 0.485 0.212 0.381 0.519 0.658 0.433 0.597 0.466 0.584

Joint extraction

Precision 0.274 0.392 0.388 0.485 0.423 0.572 0.353 0.479 0.596 0.694 0.580 0.679 0.601 0.682
Recall 0.693 0.815 0.700 0.812 0.742 0.861 0.677 0.821 0.803 0.893 0.805 0.871 0.838 0.900

Micro F1 0.393 0.530 0.499 0.607 0.539 0.687 0.464 0.605 0.684 0.781 0.674 0.763 0.700 0.776
Macro F1 0.481 0.601 0.551 0.627 0.582 0.701 0.518 0.646 0.693 0.766 0.682 0.763 0.705 0.786

SS 0.107 0.228 0.190 0.423 0.158 0.440 0.259 0.471 0.404 0.627 0.580 0.691 0.482 0.619

5.4. Error Analysis

We examined the responses generated by the baseline LLMs and found that the main issues include
incorrect entity extraction, relation extraction errors, mismatches between the constructed triples and
the semantic meaning of the text, hallucinations, and inconsistencies between the structure of the
triples and the predefined ontology schema. Table 5 presents examples of such errors from Claude.
For relation errors, the model generated "locatedIn," which was not among the candidate relations; the
correct relation should have been "location." Regarding entity errors, the model produced the entity
"Bininigt," which differs from the "Binignit" mentioned in the text. In the case of factual errors, the
output triple (Faversham, IsA, Town) does not align with any semantic evidence in the text. The model
also produced hallucinated entities not mentioned in the input text, such as "A Wizard of Mars." Lastly,
the structure of some output triples violated the predefined ontology schema, for example, the subject
and object were reversed compared to the expected format. In particular, these examples come from
Claude, a proprietary model that generally performed better among the baselines. These types of error
are even more frequent in open-source models with fewer parameters.



Table 5
Errors identified in the response from the baseline LLMs.

Error Type Text Error Triple Comment

Relation Error
Lady Anne Monson was born in
Darlington which is located in Kingdom
of England.

(Darlington, locatedIn, Kingdom
of England)

locatedIn is not among
the candidate relations.

Entity Error
Sago is the main ingredient of binignit
recipes, which also contain sweet
potatoes, and come from the Philippines.

(Bininigt, country, Philippines)
The entity in the text is
Binignit, not Bininigt.

Factual Error
Faversham was the birthplace of Adam
Holloway, who resided in Gravesend.

(Faversham, IsA, Town)
The information in the triple
is not expressed in the text.

Hallucination

Written in English, the book Alcatraz
Versus the Evil Librarians is from The
United States where one of the ethnic
groups is Asian Americans.

(A Wizard of Mars, language,
English)

The entity A Wizard of
Mars does not appear in the
text.

Ontology
Violation

Robert A. M. Stern is the architect of
Alan B. Miller Hall of which The Mason
School of Business is the current tenant.

(Robert A. M. Stern, architect,
Alan B. Miller Hall)

The schema (Person,
architect,
ArchitecturalStructure)
conflicts with the predefined
ontology
(ArchitecturalStructure,
architect, Person).

6. Discussion

The primary task setting described in this paper for OSKGC involves constructing triples and their
corresponding schemas from text based on a predefined ontology schema. However, this is not the
only task applicable to the dataset. OSKGC provides aligned data for text, triples, and schemas, as
well as a predefined ontology schema at the category level. Researchers can define other potential
task settings by using the fine-grained annotations provided in OSKGC. Inverse tasks are also possible,
for example, given an entity type label such as "airport" and a text as context, one could formulate a
question-answering task to predict the specific entity name.

In terms of baseline experiments, we primarily focus on evaluating whether current LLMs, known
for their powerful information processing capabilities, can directly handle our complex knowledge
graph construction task. According to the baseline results, while LLMs demonstrate better performance
than previous similar work [20] under various evaluation metrics, they still suffer from issues such as
incorrect entity extraction, failure to conform to the predefined ontology schema, and hallucinations,
even with high-performing proprietary LLMs. In this work, we did not incorporate multi-model
frameworks, external knowledge graph lookups, or retrieval-augmented generation techniques, which
we consider promising directions for future research.

7. Conclusion

In this paper, we proposed a novel task setting for constructing knowledge graphs from text based
on ontology schema. Additionally, we introduced a corresponding benchmark dataset, OSKGC, and
an evaluation metric. Compared to existing datasets, OSKGC features fine-grained annotations and
incorporates hierarchy. While ensuring quality, OSKGC introduces more complex ontology schemas,
thus increasing the level of challenge. We conducted baseline experiments with joint extraction and
pipeline settings on OSKGC using the current mainstream LLMs. The baseline results indicate that
there is room for improvement on our fine-grained dataset.
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