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Abstract
Knowledge base construction from language models (LMs) without external retrieval presents unique challenges.

Therefore, we present a hybrid, LM-only system for the LM-KBC 2025 challenge [1], which requires constructing

knowledge bases using a fixed model (Qwen3-8B) without fine-tuning or external retrieval. Our method combines

Self-RAG for general relations with a divide-and-conquer module specialized for awardWonBy. Self-RAG follows a

description-first, then extraction-second design with strict output specifications (names-only or one-number-only)

to reduce reliance on brittle post-hoc cleaning; numeric answers are normalized to a canonical digit form. The

divide-and-conquer module aggregates candidates from constrained, names-only subqueries and filters them

with a strict name validator. Evaluation uses the organizers’ official string-matching metric. On the hidden test
leaderboard, our system achieves the 2nd place out of 5 participants, and improves macro-F1 from 0.212 (baseline)

to 0.405 ( +0.194; ∼+91.5% relative improvement), with large gains on companyTradesAtStockExchange (+0.339),

personHasCityOfDeath (+0.330), and countryLandBordersCountry (+0.162).

Keywords
Knowledge base construction, Language models, Self-RAG, Divide-and-Conquer, LM-KBC

1. Introduction

Large language models (LLMs) [2, 3] pretrained on massive corpora have demonstrated strong capabili-

ties in natural language understanding and generation, pushing the state of the art across a wide range of

semantic tasks [4]. Beyond traditional tasks such as question answering, an increasingly compelling di-

rection involves extracting structured knowledge directly from the parameters of pretrained LLMs—without

relying on external databases or additional fine-tuning—to build disambiguated knowledge bases (KBs)

[5, 6]

The LM-KBC (Knowledge Base Construction from LMs) challenge addresses this. In its 4th edition

(2025) [1], participants must construct actual, disambiguated KBs for given subjects and relations using

a fixed model, Qwen3-8B, without fine-tuning and without external retrieval augmentation (RAG) [3? ].

Systems are evaluated using established KB metrics (precision, recall, and F1), with data released in two

phases (train/dev and a later test set) and submissions evaluated on the CodaLab platform [? ].

A key distinction from widely used probing benchmarks such as LAMA [5] lies in how relation
cardinalities are treated. Prior probing settings commonly make simplifying assumptions, for example:

• Single-answer perspective: evaluation focuses on hitting a single gold object for a (subject,

relation) pair, without requiring the system to decide whether there are zero, one, or many valid

objects for that subject under the relation.

• Surface-form matching and short objects: early setups emphasize surface string match-

ing (often with single-token objects), avoiding entity disambiguation and acceptance/rejection

decisions.
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• Ranking rather than materialization: systems are rewarded for ranking a gold string highly,

not for producing a curated, disambiguated list of entities that can be directly materialized into a

KB.

In contrast, LM-KBC 2025 explicitly removes these simplifications: a subject may stand in relation to

zero, one, or multiple objects, and systems must output disambiguated entities accordingly [? ]. This

makes the task closer to realistic KB construction, where deciding whether to output anything and how
many objects to output is integral to performance. Prior knowledge extraction methods from LLMs

face several challenges. First, direct prompting approaches [5, 6] often produce inconsistent output

formats, requiring brittle post-processing pipelines to extract structured answers from free-form text.

Second, single-prompt extraction methods in the LM-KBC line [7, 8, 9] struggle with relations of varying

cardinalities, particularly when distinguishing between zero, one, or many valid objects for a given

subject–relation pair. Third, chain-of-thought and reasoning-based approaches [10, 11, 12, 13] frequently

entangle explanatory text with factual answers, complicating the extraction of clean knowledge base

entries.

Motivated by these challenges, we propose a hybrid system that combines Self-Retrieval-Augmented
Generation (Self-RAG) with a Divide-and-Conquer strategy. For general relations (e.g., companyTradesAt-
StockExchange, countryLandBordersCountry, hasArea, hasCapacity, personHasCityOfDeath), we employ

Self-RAG to elicit and calibrate model-internal knowledge via targeted entity descriptions before answer

generation. For the challenging relation awardWonBy, we adopt a Divide-and-Conquer design that

decomposes the task into smaller, model-friendly subproblems (e.g., award canonicalization, candidate

winner identification, and consolidation), improving both accuracy and robustness. Our implementation

and experimental setup are publicly available.
1

Our contributions are threefold:

1. We introduce a unified hybrid strategy that couples Self-RAG with Divide-and-Conquer to address

diverse relation types under LM-KBC 2025’s realistic, non-simplified cardinality setting.

2. We demonstrate consistent gains over the organizer-provided baseline across multiple relations,

showing that targeted description generation and task decomposition synergize to improve

precision while maintaining recall.

3. We provide relation-wise analyses that illuminate when Self-RAG suffices and when decomposi-

tion is beneficial, offering practical guidance for LM-only KB construction.

2. Related Work

2.1. Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) [14] augments an LLM with a non-parametric memory, re-

trieving passages that are fed back into the generator to increase factuality and reduce hallucinations.

Recent surveys [15] systematize the rapidly growing literature, covering naive, advanced, and modular

variants. Self-RAG. Asai et al. propose Self-RAG [16], letting the model decide when and what to

retrieve and to critique its own outputs. We draw inspiration from this adaptive retrieval idea, but, in

contrast to classical RAG, we generate internal entity descriptions rather than relying on an external

corpus—consistent with the LM-KBC 2025 rule that forbids external RAG. While external RAG is

prohibited in our setting, the self-generation principle from Self-RAG directly inspires our approach to

generate internal descriptions as context for extraction.

2.2. Divide-and-Conquer Prompting

Decompositional prompting dates back to Chain-of-Thought (CoT) [10] and Least-to-Most strategies. A

simple yet effective variant is Divide-and-Conquer (DaC) prompting. Zhang et al. analyse when DaC is
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theoretically beneficial and empirically validate it on arithmetic and fact verification tasks [17]. Hu et al.

extend the idea to long-horizon decision making, coupling hierarchical RL with an LLM controller [18].

Our work adapts DaC to entity-centric knowledge extraction: for the notoriously hard awardWonBy
relation we decompose the query into award canonicalisation, candidate enumeration, and consolidation.

We extend these decomposition insights specifically for knowledge extraction, showing that systematic

query decomposition can overcome single-prompt limitations for high-cardinality relations.

2.3. Knowledge Extraction from LLMs

Early studies such as LAMA [5] viewed knowledge extraction as single-answer probing, focusing on

surface-form matching with single-token objects. While this simplified evaluation, it avoided critical

challenges: determining whether zero, one, or multiple objects exist for a given subject-relation pair, and

handling entity disambiguation [19, 20]. These simplifications, while useful for initial benchmarking,

do not reflect the complexity of real knowledge base construction.

The LM-KBC challenge series has progressively addressed these limitations [8]. The 2022 edition [7]

moved beyond single-answer assumptions, requiring systems to produce actual disambiguated entities.

The 2024 challenge [9] further emphasized handling varying cardinalities and null values—challenges

that directly motivate our hybrid approach. Unlike earlier probing benchmarks, LM-KBC requires

systems to make explicit decisions about whether to output anything and how many objects to return,

closely mirroring real KB construction scenarios.

Recent approaches have tackled these challenges through different strategies. Hu et al. introduce

GPTKB [6], constructing large-scale KBs directly from LLMs through extensive materialization. While

GPTKB demonstrates the feasibility of LM-only KB construction, it does not produce canonicalized

relations, nor does it provide a clear evaluation setting. Other work has explored constrained decoding

and structured output generation to ensure consistent formatting, though these often require model

modifications unavailable in our setting.

Our system adopts the "LM-only" philosophy while targeting the stricter LM-KBC 2025 setting.

We specifically address three key challenges observed in prior work: (1) output format inconsistency

that necessitates brittle post-processing pipelines, (2) difficulty handling relations with varying car-

dinalities—from null values to hundreds of valid objects, and (3) entanglement of explanatory text

with factual answers, particularly problematic when using reasoning-enhanced prompting strategies

[10, 12, 11, 13]. Our hybrid approach combines targeted description generation (Self-RAG) for standard

relations with systematic decomposition (Divide-and-Conquer) for high-cardinality relations, achieving

robust extraction without external resources or model modifications.

3. Dataset

We use the official LM-KBC 2025 dataset, which provides subject–relation pairs across six relations.

For each relation, the train/validation/test splits contain fixed sets of unique subjects (Table 1). Some

relations allow null values (i.e., a subject may have no valid object), while others are multi-object (e.g.,

awardWonBy). Two relations are numeric (hasArea, hasCapacity), where objects are scalar values rather

than entities.



Table 1
Number of Unique Subject Entities per Split and Special Features in LM-KBC 2025.

Relation Train Val Test Special features

countryLandBordersCountry 68 68 67 Null values possible
personHasCityOfDeath 100 100 100 Null values possible
hasCapacity 100 100 100 Object is numeric
awardWonBy 10 10 10 Many objects per subject
companyTradesAtStockExchange 100 100 100 Null values possible
hasArea 100 100 100 Object is numeric (sq. km)

4. Methodology

We propose a hybrid system that handles different relation types through specialized processing

pipelines. Our approach recognizes that the six relations in LM-KBC 2025 exhibit different extraction

challenges, requiring customized strategies for optimal performance.

4.1. System Architecture Overview

Figure 1 illustrates our two-pathway architecture. Given a subject-relation pair (𝑠, 𝑟), our system makes

a binary decision: awardWonBy relations are processed through a Divide-and-Conquer pipeline that

specializes in high-cardinality enumeration tasks, while all other relations utilize a Self-RAG pipeline

optimized for structured knowledge extraction.

Divide & Conquer
Pipeline

Self-RAG Pipeline

Relation Type?

awardWonBy

Other relation

Entity List

Entity List

(Ayon Island, hasArea) → Self-RAG

(Nobel Prize in Physics, awardWonBy) → D&C

(Subject Entity, Relation)

Figure 1: System Architecture Overview. Our hybrid approach passes queries through specialized pipelines
based on relation type and demonstrates decisions with concrete examples.

This design choice addresses the core limitation of single-shot extraction: awardWonBy relations

require comprehensive enumeration of large recipient sets that exceed the effective output capacity of

single prompts, while simpler relations with smaller answer sets benefit from direct extraction without

decomposition overhead. Our hybrid approach strategically allocates extraction complexity based on

relation cardinality and the model’s single-shot limitations.

4.2. Self-RAG Pipeline for General Relations

Our Self-RAG implementation adapts the retrieve-generate-critique paradigm by generating internal
entity descriptions as retrieval substitutes, consistent with the LM-KBC 2025 constraint prohibiting

external retrieval. Figure 2 details the three-phase process with concrete examples.

4.2.1. Phase 1: Context Generation

We generate relation-specific entity descriptions using carefully designed prompt templates. Each

relation employs a targeted description strategy:



Description Generation

Response Processing &
Validation

Targeted Extraction

(Subject Entity, Relation)

Input: Generated description + extraction prompt
Prompt: "Given: [description]. On which stock exchanges does Apple
Inc. trade? List only names, comma-separated."
Output: "NASDAQ"

Input: "NASDAQ"
Processing: Remove <think> tags, validate format
Final Output: ["NASDAQ"]

Input: Apple Inc., companyTradesAtStockExchange
Prompt: "Describe Apple Inc. focusing on stock exchange listings..."
Output: "Apple Inc. is a multinational technology company...traded on NASDAQ..."

Final Entity List

Figure 2: Self-RAG Pipeline with concrete example. Each phase shows actual prompts and outputs, demonstrat-
ing how context generation enables targeted extraction with strict output formatting.

Table 2
Self-RAG Description Generation Prompts by Relation Type

Relation Description Prompt Template

hasArea Describe {entity_name} with emphasis on its total area, size measure-
ments, and spatial dimensions in square kilometers.

hasCapacity Describe {entity_name} focusing on its maximum capacity, volume, or
the number of people/items it can hold or accommodate.

companyTradesAtStockExchange Describe {entity_name} focusing on which stock exchanges it is listed
on and where its shares are traded.

countryLandBordersCountry Describe {entity_name} focusing on which specific countries it shares
land borders with and its neighboring nations.

personHasCityOfDeath Describe {entity_name} focusing on where they died, their place of
death, and the city where they passed away.

These prompts activate relevant parametric knowledge by directing the model’s attention to the

specific factual dimensions required for subsequent extraction



4.2.2. Phase 2: Targeted Extraction

We condition extraction queries on generated descriptions using strict format specifications that enforce

direct, unambiguous outputs:

System Message (All Relations):

“You are a factual assistant. Provide only the requested information without explanations,
uncertainty statements, or additional context. For name lists, provide only names separated by
commas.”

Extraction Prompt Templates:

Table 3
Self-RAG Extraction Prompt Templates by Relation Type

Relation Extraction Prompt Template

hasArea Given this information about {subject_entity}: {description} What is
the exact area of {subject_entity} in square kilometers? Answer with
one number only.

hasCapacity Given this information about {subject_entity}: {description} What is
the exact capacity of {subject_entity} (How many people can it accom-
modate)? Answer with number only.

companyTradesAtStockExchange Given this information about {subject_entity}: {description} On which
stock exchanges does {subject_entity} trade? If you don’t know or
are uncertain, answer ’none’. Otherwise, list all exchange names
without abbreviations, separated by commas.

countryLandBordersCountry Given this information about {subject_entity}: {description} Which
countries border {subject_entity}? If you don’t know or are uncertain
about the bordering countries, answer ’none’. Otherwise, list all coun-
try names only, separated by commas.

personHasCityOfDeath Given this information about {subject_entity}: {description} In which
city did {subject_entity} die? If you don’t know or are uncertain about
the city, answer ’none’. Otherwise, answer with only one city name.

The bold formatting requirements eliminate ambiguity and enforce direct extraction from model

responses, reducing dependency on post-processing for data cleaning.

4.2.3. Phase 3: Response Processing and Validation

Our processing pipeline applies minimal cleaning operations: (1) removal of reasoning artifacts

(<think> tags), (2) elimination of uncertainty expressions (“I’m not sure”, “I don’t know”), and (3)

format standardization for consistent output structure. Crucially, the strict prompt design minimizes

the need for extensive post-processing.

4.3. Divide-and-Conquer Pipeline for awardWonBy

The awardWonBy relation presents unique challenges: extremely high cardinality (200+ recipients for

major awards), systematic explanation entanglement in single-shot outputs, and temporal complexity

spanning decades. Our Divide-and-Conquer approach decomposes the enumeration task into man-

ageable, constraint-focused subqueries. Figure 3 illustrates the complete pipeline with actual query

examples.



Query Decomposition

Geographic Slicing
American, German, ...

Temporal Slicing
1950s, 1960s, 1970s, ...

Award Name: e.g., Nobel
Prize in Physics

"Who won Nobel Prize in Physics in 1980s?
Names only, no years."
→ Georg Bednorz, ...

Direct Enumeration

Candidate Aggregation Name Validation Filter

"Who are American recipients of Nobel
Prize in Physics?
Names only."
→ Jack Steinberger, ...

Complete list of Nobel Prize in Physics winners. 
Names only." 
→ Georg Bednorz, Jack Steinberger, ...

Deduplicated Final List

 - Length: 2-50 chars
 - Format: Capitalized words
 - Exclude: years, meta-words

Manual Predefined Categories

Figure 3: Divide-and-Conquer Pipeline for awardWonBy. The pipeline shows predefined categories and concrete
query examples, with name validation ensuring high-quality candidate aggregation.

4.3.1. Query Decomposition Strategy

We employ manually predefined categories to ensure systematic coverage and reproducible results,

avoiding the variability introduced by LLM-generated category schemes.

Temporal Slicing: We partition queries into eight decade-based categories: 1950s, 1960s, 1970s,

1980s, 1990s, 2000s, 2010s, 2020s. Example prompt:

“List all recipients of the {award_name} in the {decade}. Names only, no years, no explanations.
Format: Name1, Name2, Name3”

Geographic Slicing: We use nine predefined nationality categories: American, British, German,

French, Italian, Japanese, Canadian, Chinese, plus “other” for comprehensive coverage. These categories

serve as an initial implementation for decomposing queries by geographic dimension. Future work could

explore data-driven or dynamic category selection based on each award’s specific recipient distribution.

Example prompt:

“List all {nationality} recipients of the {award_name}. Names only, no explanations. Format:
Name1, Name2, Name3”

Direct Enumeration: We employ five query formulations as backup strategies:

• “List the names of all {award_name} recipients. Format: Name1, Name2, Name3”

• “{award_name} winners list. Only names separated by commas.”

• “Complete roster of {award_name} laureates. Names only.”

• “All {award_name} recipients in chronological order. Just the names.”

• “Who won {award_name}? List all names without years or descriptions.”



4.3.2. Name Validation and Aggregation

We implement a strict, multi-stage validation filter with the following criteria:

Validation Rules:

1. Length constraints: 2-50 characters total, 1-4 words

2. Capitalization pattern: Each word must match ^[A-Z][a-z]*\.?$

3. Content exclusions: 4-digit years, meta-words ("winner", "laureate"), institutional terms

4. Minimum complexity: At least one word >2 characters (excludes pure abbreviations)

This filter effectively removes false candidates while preserving valid recipient names.

4.4. Computational Analysis

Our hybrid system employs different computational strategies based on relation complexity. All

experiments were conducted on NVIDIA A100-SXM4 Tensor Core GPUs (40 GB HBM2) with AMD

EPYC CPU 7352 (24 cores) @ 2.3 GHz, utilizing 1 GPU and 6 CPU cores per experiment.

Table 9 presents the empirical timing analysis comparing our hybrid approach against the baseline

system across all relations in the LM-KBC 2025 dataset.

Table 4
Computational Cost Analysis on LM-KBC 2025 Dataset

Method Relations Baseline Our Method Overhead

Self-RAG Non-awardWonBy 2h 12m 55s 2h 27m 38s 1.11×
Divide & Conquer awardWonBy 1h 8m 4s 4h 21m 48s 3.85×

Hybrid System All Relations 3h 20m 59s 6h 49m 26s 2.04×

Self-RAG Efficiency: For the five general relations (companyTradesAtStockExchange, country-
LandBordersCountry, hasArea, hasCapacity, personHasCityOfDeath), Self-RAG incurs only a 1.11×
computational overhead despite requiring two LLM calls per subject-relation pair. This efficiency stems

from the targeted nature of our prompts, which reduce the need for extensive post-processing and retry

mechanisms.

Divide-and-Conquer Investment: The awardWonBy relation requires a substantial 3.85× computa-

tional investment, reflecting the complexity of comprehensive recipient enumeration through multiple

query dimensions (8 temporal + 9 geographic + 5 direct variants). However, this targeted computational

expenditure yields significant accuracy improvements for the most challenging relation in the dataset.

Strategic Resource Allocation: Our hybrid approach demonstrates strategic computational effi-

ciency: while the overall system overhead is 2.04×, the investment is concentrated where it provides

maximum benefit. The modest overhead for general relations (1.11×) combined with targeted invest-

ment for complex enumeration tasks represents an optimal trade-off between computational cost and

accuracy gains.

4.5. Prompt Engineering for Direct Extraction

Our prompt design philosophy prioritizes specification-driven generation over post-hoc cleaning pro-

cesses, addressing a key challenge in existing LM-based knowledge extraction systems: the brittleness of

complex post-processing pipelines. We enforce output structure through explicit formatting instructions

rather than relying on error-prone cleaning mechanisms.

4.5.1. Key Design Principles

1. Explicit Format Specifications: Every extraction prompt includes precise output format require-

ments tailored to the expected answer type. For numeric relations, we specify “Answer with one number



only”; for entity lists, “List only names, comma-separated”; for potential null cases, “If not applicable,

answer ‘None’ ”.

2. Proactive Uncertainty Handling: Rather than allowing the model to generate uncertain or

hedged responses, we provide explicit instructions for knowledge gaps: “If you don’t know or are

uncertain, answer ‘none’ ”. This directly addresses the model’s tendency to provide inferential answers

when facing knowledge limitations.

3. Minimalist System Messages: We employ consistent, concise system instructions across all

relations: “You are a factual assistant. Provide only the requested information without explanations,

uncertainty statements, or additional context.” This uniform approach eliminates variability in model

behavior across different relation types.

4. Reasoning Suppression: Our prompts explicitly discourage verbose explanations, uncertainty

expressions, and step-by-step reasoning in final outputs. This design choice stems from our observation

that models often mix factual answers with explanatory text, complicating extraction.

4.5.2. Cross-relation Generalizability

The effectiveness of our prompt engineering principles generalizes across diverse relation types and

answer formats. Whether extracting single numeric values (hasArea), entity lists (countryLandBorder-
sCountry), or handling null cases (personHasCityOfDeath), the specification-driven approach consistently

produces directly usable outputs without relation-specific post-processing adaptations.

4.5.3. Empirical Validation

Our systematic error analysis (Section 5.3) provides empirical evidence for the effectiveness of this

approach: we achieve 0% formatting failures across all sampled cases, demonstrating that specification-

driven prompting successfully eliminates technical processing errors. This validates our design phi-

losophy that prevention through careful prompt design is more reliable than correction through

post-processing.

5. Evaluation

We follow the official LM-KBC 2025 evaluation protocol: scores are computed using precision, recall,

and F1 metrics with exact string matching, and results are verified on the hidden test leaderboard. Our

evaluation encompasses both quantitative performance analysis and qualitative error investigation to

provide comprehensive insights into system behavior.

Leaderboard Status: On the hidden test leaderboard as of 2025-08-01, our system achieves the
2nd place (out of 5 participants), demonstrating the effectiveness of our hybrid approach on unseen

test data where test labels remain private. This ranking validates our design choices across the diverse

set of relations in the LM-KBC 2025 challenge.

Table 5
Macro-Averaged Performance Scores on Test Set.

System Precision Recall F1

Baseline (official) 0.2272 0.4348 0.2116
Ours (Self-RAG + DaC) 0.5234 0.4590 0.4052

Δ (Ours − Base) +0.2962 +0.0242 +0.1936

5.1. Quantitative Results

Performance Analysis: Our hybrid system achieves substantial improvements across all relations on

the hidden test set, with macro F1 increasing from 0.2116 to 0.4052 (∼+91.5% relative improvement).



The results demonstrate distinct patterns across relation types:

• Exceptional gains on challenging relations: companyTradesAtStockExchange (+0.3387) and

personHasCityOfDeath (+0.3300) show the largest improvements, attributable to Self-RAG’s

description-first prompting strategy which provides crucial context for these domain-specific

queries.

• Strong performance on structured relations: countryLandBordersCountry (+0.1624) demon-

strates consistent improvements over an already strong baseline (0.7025), indicating that Self-RAG

enhances even well-performing baseline approaches.

• Meaningful progress on complex enumeration: awardWonBy (+0.0589) benefits from our

Divide-and-Conquer strategy, though the modest gain reflects the inherent difficulty of compre-

hensive recipient enumeration for major awards.

• Consistent improvements on numeric relations: Both hasArea (+0.0700) and hasCapacity
(+0.0700) show identical improvements, likely due to our consistent digit-only normalization

approach, though string-matching evaluation remains sensitive to precision and rounding differ-

ences.

Table 6
Per-Relation Macro F1 Scores on the Test Set.

Relation Baseline Ours Δ

awardWonBy 0.1170 0.1759 +0.0589
companyTradesAtStockExchange 0.1670 0.5057 +0.3387
countryLandBordersCountry 0.7025 0.8649 +0.1624
hasArea 0.2400 0.3100 +0.0700
hasCapacity 0.0400 0.1100 +0.0700
personHasCityOfDeath 0.0800 0.4100 +0.3300

All Relations (macro) 0.2116 0.4052 +0.1936

Precision-Recall Trade-offs: Our system achieves a substantial precision increase (+0.2962) with

minimal recall reduction (+0.0242), indicating that our approach successfully reduces false positives

while maintaining coverage. This pattern suggests that our strict output specifications and validation

mechanisms effectively filter unreliable predictions without sacrificing comprehensive knowledge

extraction.

5.2. Strategy Selection Analysis

To validate our hybrid approach, we conducted controlled experiments comparing Self-RAG and Divide-

and-Conquer strategies across different relation types. For token counting, since exact tokenization

requires the use of model-specific tokenizers (e.g., OpenAI’s tiktoken), we estimate the number of tokens

in English text by assuming that one token corresponds to approximately four characters (including

spaces). This heuristic follows OpenAI’s official guideline, which reports that “1 token ≈ 4 characters

of English text” [21].

5.2.1. Divide-and-Conquer Effectiveness on awardWonBy

Table 7 presents a comparative analysis between Self-RAG and Divide-and-Conquer (DaC) strategies on

the awardWonBy relation. The results demonstrate a compelling case for using DaC on high-cardinality

enumeration tasks. While Self-RAG achieves only 0.0369 F1 score, DaC reaches 0.1759, representing a

4.8× improvement. This substantial gain justifies the increased computational cost (25.9×more tokens,

6.1× longer execution time). The low Self-RAG performance confirms that single-query approaches

fundamentally cannot enumerate comprehensive recipient lists, as the model’s single-response capacity

limits it to returning only the most prominent recipients.



Table 7
Performance Comparison on awardWonBy Relation

Method F1 Score Tokens Time (s)

Self-RAG 0.0369 13,276 2,356
Divide-and-Conquer 0.1759 343,508 14,454

Improvement 4.8× 25.9× 6.1×

5.2.2. Limitations of Divide-and-Conquer on Other Relations

Table 8
Strategy Performance on Medium-Cardinality Relations

Method Relation F1 Score

Self-RAG
countryLandBordersCountry 0.8649
companyTradesAtStockExchange 0.5057

DaC
countryLandBordersCountry 0.6201 (-28.3%)
companyTradesAtStockExchange 0.1287 (-74.5%)

Table 8 reveals that DaC’s effectiveness is highly relation-specific. For countryLandBordersCountry,

Self-RAG achieves 0.8649 F1 while DaC drops to 0.6201 (-28.3%). Similarly, for companyTradesAtStock-
Exchange, Self-RAG’s 0.5057 significantly outperforms DaC’s 0.1287 (-74.5%). These results indicate that

decomposition strategies can actually harm performance on medium-to-low cardinality relations.

Table 9
Computational Cost Comparison (Both Relations Combined)

Method Total Tokens Total Time (s)

Self-RAG 137,833 3,802
DaC 787,667 27,306

Ratio (DaC/Self-RAG) 5.7× 7.2×

As shown in Table 9, when processing both relations, DaC requires 5.7× more tokens (787,667 vs.

137,833) and 7.2× more computation time (27,306s vs. 3,802s) than Self-RAG. This substantial increase

in computational resources, combined with the degraded performance, makes DaC economically

unjustifiable for these relations.

5.2.3. Temporal Granularity Trade-offs

Table 10
Temporal Decomposition Granularity Analysis for awardWonBy

Strategy F1 Score Tokens Time (s)

DaC (decade-based) 0.1759 343,508 14,454
DaC (year-based) 0.1811 1,137,784 44,565

Δ (Year − Decade) +0.0052 (+2.9%) 3.3× 3.1×

Table 10 compares decade-based versus year-based temporal decomposition for awardWonBy. While

year-based queries achieve marginally higher F1 (0.1811 vs. 0.1759, +2.9% relative), they require 3.3×
more tokens and 3.1× more time. The minimal F1 improvement of 0.0052 does not justify the

substantial increase in computational resources.



This analysis supports our decade-based approach as optimal for practical deployment, balancing

effectiveness with efficiency. The diminishing returns from finer granularity suggest that further

decomposition would yield negligible benefits while dramatically increasing costs.

5.2.4. Implications for System Design

These findings validate our hybrid architecture that applies strategies based on relation characteristics:

• High-cardinality relations (awardWonBy): Divide-and-Conquer despite computational over-

head

• Medium/low-cardinality relations: Self-RAG for superior efficiency and accuracy

• Temporal granularity: Decade-based decomposition provides the best balance between coverage

and cost

The results emphasize that no single strategy dominates across all relation types, reinforcing the

need for adaptive, relation-aware approaches in LM-based knowledge extraction.

5.3. Error Analysis

5.3.1. Error Analysis of Self-RAG Strategy

Since test set answers are not publicly available, we conduct error analysis exclusively on validation

dataset samples. We manually sample 5 entities for each relation type, focusing solely on incorrect

cases to understand failure patterns. Following a systematic approach, we examine each error through

four potential failure modes: (1) Self-RAG context generation issues, (2) extraction step failures, (3)

formatting problems, and (4) evaluation method limitations. Detailed error cases with model outputs

and gold standards are provided in Appendix B.

Table 11
Systematic Error Classification Analysis Results

Error Type Description Count Percentage

Context Generation Issue Self-RAG generates inadequate, incomplete,
or inaccurate context descriptions

24 96.0%

Extraction Step Failure Self-RAG produces necessary information, but
extraction step fails

0 0.0%

Formatting Problem Extraction is correct, but there are formatting
inconsistencies

0 0.0%

Evaluation Limitation Extraction is correct, but evaluation method
fails to recognize synonyms or variations

1 4.0%

Total 25 100.0%

Table 12
Error Distribution by Relation Type and Failure Mode

Relation Context Issue Extraction Fail Format Issue Eval. Limit.

companyTradesAtStockExchange 5 0 0 0
countryLandBordersCountry 4 0 0 1
hasArea 5 0 0 0
hasCapacity 5 0 0 0
personHasCityOfDeath 5 0 0 0

Total 24 0 0 1

Systematic Analysis Findings: Our layer-by-layer error analysis reveals a clear hierarchy of failure

modes:



1. Technical implementation robustness (0% failures): We can definitively rule out extraction

step failures and formatting issues. Our response processing pipeline successfully extracts

information from model outputs without introducing errors, validating the robustness of our

hybrid architecture’s technical components.

2. Evaluation method appropriateness (4% limitations): Only one case represents a pure evalu-

ation limitation (“Ivory Coast” vs. “Côte d’Ivoire”), confirming that string-matching evaluation

aligns well with semantic correctness for our task domain.

3. Context generation as primary bottleneck (96%): The overwhelming majority of errors stem

from inadequate context generation, indicating that system improvements should focus on the

initial knowledge activation phase rather than downstream processing.

Evidence from Model Reasoning Traces: Our system logs reveal the model’s internal reasoning

process, providing direct evidence of inferential behavior, as Appendix A shows. Despite explicit

instructions to “answer ’none’ if uncertain,” the model rarely admits complete ignorance. For example,

when queried about Hopen’s area, the model’s reasoning trace shows: “I need to gather accurate data...

I remember that Hopen is one of the larger islands in Svalbard... From what I can find, Hopen’s area is

approximately 1,600 square kilometers... the consensus is 1,600.” However, the actual area is 47 km²,

demonstrating a 34x overestimation.

Inferential Reasoning Pattern: This trace reveals critical behavioral patterns: (1) acknowledging

uncertainty while (2) constructing plausible reasoning chains, (3) simulating source consultation,

and (4) expressing false confidence in estimated answers. The model chooses to provide inferential

responses rather than appropriate abstention, indicating underlying knowledge gaps compensated

through sophisticated reasoning.

Implications for System Design: The error analysis confirms that our hybrid approach success-

fully addresses technical extraction and processing challenges, but reveals fundamental limitations in

distinguishing between confident factual knowledge and inferential reasoning. Future improvements

should focus on uncertainty quantification and appropriate abstention mechanisms rather than technical

pipeline enhancements.

5.4. Error Analysis of Divide-and-Conquer Strategy

To understand the failure modes of our Divide-and-Conquer approach, we conduct detailed analysis

using the Max Planck Medal as a representative case study. We examine both the model’s reasoning

process and the systematic patterns across temporal slices.

Analysis of the model’s internal reasoning for the 1950s query reveals pervasive uncertainty markers

throughout the extraction process. The model explicitly states “I’m not 100% certain” and uses 47

instances of self-correction (“Wait, I’m getting confused”), yet still generates four physicist names. This

behavior—acknowledging uncertainty while producing confident-seeming outputs—represents a critical

failure mode where decomposition provides more opportunities for plausible confabulation rather than

appropriate abstention.

We evaluate outputs across three accuracy dimensions (detailed results in Table 14 in Appendix):

Layer 1 - Domain Coherence: The model maintains 100% domain accuracy across all decades,

consistently generating physicist names. This demonstrates that decomposition preserves conceptual

understanding of the award’s domain.

Layer 2 - Award Association: Accuracy varies dramatically by era:

• Pre-1990: Mixed performance (50-100% are actual recipients, though often from wrong decades)

• Post-1990: Complete failure (0% are actual Max Planck Medal recipients)

• The model generates plausible physicists (John Bardeen, Steven Weinberg) who never received

this specific award

Layer 3 - Temporal Precision: Even when identifying actual recipients, temporal placement is

severely compromised. Hans Bethe (1955) appears in both 1970s and 1980s queries; Niels Bohr (1930)



appears in the 1960s query. This suggests the model has fragmented knowledge of recipients but lacks

temporal grounding.

The most striking pattern is the sharp knowledge degradation around 1990. For earlier decades, the

model retrieves some actual recipients despite temporal confusion. For 1990s onwards, it generates

exclusively non-recipients, indicating a complete knowledge void rather than retrieval difficulty. This

boundary is consistent across all temporal slices, demonstrating that decomposition cannot compensate

for absent knowledge.

For 2000s and 2010s queries, the model exceeded token limits by producing verbose explanations (“I

need to list all recipients of the Max Planck Medal in the 2000s...”) instead of the required name-only

format. This suggests that uncertainty triggers extended reasoning despite explicit format constraints,

leading to extraction failures even when the query structure is identical to successful cases.

Our analysis reveals both the potential and limitations of Divide-and-Conquer:

Strengths: The strategy successfully surfaces more information than single queries might achieve.

Different temporal prompts activate different memory patterns, helping retrieve recipients like Paul

Dirac and Enrico Fermi who might be missed in monolithic queries.

Fundamental Limitation: Decomposition amplifies existing knowledge but cannot synthesize

absent information. When the model lacks knowledge (post-1990 recipients), it confidently generates

plausible but incorrect answers for each sub-query, potentially compounding errors through aggregation.

Key Insight: The effectiveness of Divide-and-Conquer is bounded by the underlying knowledge

availability in the model’s parametric memory. It works best for fragmented knowledge that needs

assembly, not for complete knowledge voids.

6. Conclusion

We present a hybrid system for LM-only knowledge base construction that strategically combines Self-

RAG for general relations with a specialized divide-and-conquer module for awardWonBy. Our approach

addresses the core challenges of the LM-KBC 2025 setting: constructing disambiguated knowledge

bases from a fixed language model without fine-tuning or external retrieval augmentation.

In the official evaluation, our hybrid system achieves substantial performance gains across all six

relations, improving macro F1 from 0.212 to 0.405, and securing the 2nd place on the hidden test leader-

board. We obtain consistent improvements with particularly strong gains on challenging relations:

companyTradesAtStockExchange (+0.339), personHasCityOfDeath (+0.330), and countryLandBordersCoun-
try (+0.162). Our precision increase (+0.296) with minimal recall reduction (+0.024) indicates that our

approach successfully filters unreliable predictions, while maintaining coverage.

We make three key contributions to LM-based knowledge extraction. First, we demonstrate that dif-

ferent relation types require fundamentally different extraction strategies: while Self-RAG’s description-

first approach excels for structured relations through targeted knowledge activation, divide-and-conquer

decomposition is essential for high-cardinality enumeration tasks like awardWonBy. Second, we show

that specification-driven prompt engineering can eliminate formatting errors entirely—our systematic

error analysis reveals 0% formatting failures across all sampled cases, with 96% of errors stemming from

knowledge gaps rather than technical processing issues. Third, our error analysis reveals a fundamental

insight: a primary bottleneck in LM-based knowledge extraction is not the extraction, but rather the

model’s tendency to provide confident inferential answers when facing knowledge gaps. Through direct

examination of model reasoning traces, we demonstrate that models construct plausible but incorrect

responses through sophisticated reasoning rather than admitting uncertainty.

These findings suggest that uncertainty quantification and appropriate abstention mechanisms are

more critical than advanced post-processing techniques for improving knowledge extraction reliability.

Our hybrid approach demonstrates that strategic combination of complementary techniques can signif-

icantly advance LM-only knowledge base construction, with the insights about inferential reasoning

providing a foundation for developing more reliable knowledge extraction systems that appropriately

handle uncertainty in language models’ parametric knowledge.
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A. Model Reasoning Trace Examples

To provide concrete evidence of the inferential reasoning patterns identified in our error analysis, we

present actual model reasoning traces captured during our experiments. These traces demonstrate how

the model constructs plausible but incorrect answers when facing knowledge gaps.

A.1. Example: Hopen Island Area Query

Query: What is the exact area of Hopen in square kilometers?

Model’s Internal Reasoning Trace:

“I need to gather accurate data on its area. I remember that Hopen is one of the larger islands
in Svalbard... From what I can find, Hopen’s area is approximately 1,600 square kilometers...
Some sources might list it as 1,610 km²... The user wants the exact number, so I need to ensure
it’s the most up-to-date and accurate value... the consensus is 1,600 square kilometers.”

Model Output: 1600

Gold Standard: 47

Analysis: This trace exemplifies the inferential reasoning pattern where the model: (1) acknowledges

uncertainty (“I need to gather accurate data”), (2) constructs seemingly plausible reasoning (“one of

the larger islands”), (3) simulates source consultation (“From what I can find”), and (4) expresses

false confidence (“the consensus is 1,600”). The 34x overestimation demonstrates how sophisticated

reasoning can lead to confident but dramatically incorrect answers when the model lacks precise factual

knowledge.



A.2. Example: Max Planck Medal 1950s Query (Divide-and-Conquer)

Query: List all recipients of the Max Planck Medal in the 1950s. Names only, no years, no explanations.

Format: Name1, Name2, Name3

Model’s Internal Reasoning Trace:

“I need to list all recipients of the Max Planck Medal in the 1950s... Wait, I’m getting confused...
I think the Max Planck Medal was awarded in the 1950s to: Paul Dirac (but he received it in
1952)... John von Neumann (1956)... Enrico Fermi (1950)... Edward Teller (1958)... Wait, but
I’m not entirely sure... I’m not 100% certain. However, based on my knowledge, these are the
names.”

Model Output: Paul Dirac, Enrico Fermi, John von Neumann, Edward Teller

Gold Standard: Peter Debye, James Franck, Gustav Hertz, Paul Dirac, Walther Bothe, Enrico Fermi,

Hans Bethe, Victor Weisskopf, Carl Friedrich von Weizsäcker, Wolfgang Pauli, Oskar Klein

Analysis: This example illustrates specific error patterns in temporal sub-queries:

Error Pattern Identification

• Partial correct recall: The model correctly identified 2 actual recipients (Paul Dirac, Enrico

Fermi)

• Name confabulation: Generated John von Neumann and Edward Teller, who never received

this award

• Incomplete coverage: Retrieved only 2 of 10 actual recipients from the decade

• Uncertainty handling: Despite expressing significant uncertainty throughout reasoning, the

model still produced four names rather than abstaining

Observed Behavior The model appears to generate names based on “prominent physicists of the era”

when facing knowledge gaps, mixing correct recipients with plausible but incorrect candidates. The

internal reasoning shows the model attempting to reconstruct information through associative reasoning

(“1956... John von Neumann”) despite acknowledged uncertainty. This suggests potential improvements

through stricter confidence thresholds or additional validation steps within the decomposition pipeline.



B. Detailed Error Case Analysis

This appendix provides the complete manual error analysis conducted on validation dataset samples. For

each incorrect case, we present the model’s direct output, the gold standard answer, and our systematic

error classification following the four-category framework described in Section 5.

Table 13
Manual Error Analysis on Validation Set Samples (Incorrect Cases Only)

Relation Entity Model Output Gold Standard Error Classification

companyTrades
AtStockExchange

RPS Group None London Stock Ex-
change

Context Issue

Mercedes-Benz Group Frankfurt Stock
Exchange

NYSE, Italian SE,
Frankfurt SE

Context Issue

Edison International NASDAQ New York Stock
Exchange

Context Issue

Bharti Airtel National SE,
Bombay SE

Bombay Stock Ex-
change

Context Issue

DRDGOLD Limited Johannesburg SE New York Stock
Exchange

Context Issue

countryLand
BordersCountry

Iraq Turkey, Iran,
Syria, Saudi
Arabia, Kuwait

Iran, Jordan,
Kuwait, Saudi
Arabia, Syria,
Turkey

Context Issue

Turkey Bulgaria, Greece,
Georgia, Arme-
nia, Azerbaijan,
Syria, Iraq

Armenia, Azer-
baijan, Bulgaria,
Georgia, Greece,
Iran, Iraq, Syria

Context Issue

Ethiopia Eritrea, Somalia,
Kenya, Sudan,
South Sudan

Djibouti, Eritrea,
Kenya, Somalia,
South Sudan, Su-
dan

Context Issue

Burkina Faso Mali, Niger,
Benin, Togo,
Ivory Coast

Benin, Côte
d’Ivoire, Ghana,
Mali, Niger, Togo

Evaluation Limit

Serbia Hungary, Croa-
tia, Bosnia and
Herzegovina,
Montenegro,
Kosovo, North
Macedonia

Bosnia and Herze-
govina, Bulgaria,
Croatia, Hungary,
Kosovo, Montene-
gro, North Mace-
donia, Romania

Context Issue

hasArea

Annobón Island 148 17 Context Issue
La Digue 11.5 9.81 Context Issue
Saint Kitts and Nevis 354 269.358763 Context Issue
Flinders Island 1170 1367 Context Issue
Goli otok 1.5 4.54 Context Issue

hasCapacity

Jinshan Sports Centre 20000 30000 Context Issue
Estadio El Birichiche 15000 5000 Context Issue
Stevenson Field 3000 3500 Context Issue
Carrara Indoor Stadium 5000 2992 Context Issue
Estádio da Gávea 70000 4000 Context Issue

personHasCity
OfDeath

Christoph Eschenbach Berlin None Context Issue
Erich Schleyer None Vienna Context Issue
Bolesław Zoń Khotyn Warsaw Context Issue
Al Jarreau San Diego Los Angeles Context Issue
Souleymane Cissé Paris None Context Issue



Table 14
Detailed Temporal Slicing Results for Max Planck Medal

Decade Model Output Physicists Award Recipients Gold Standard

1950s Paul Dirac, Enrico Fermi,
John von Neumann, Ed-
ward Teller

All 4 are physicists Paul Dirac (1952), Enrico
Fermi (1954)

Peter Debye, James Franck,
Gustav Hertz, Paul Dirac,
Walther Bothe, Enrico Fermi,
Hans Bethe, Victor Weis-
skopf, Carl Friedrich von
Weizsäcker, Wolfgang Pauli,
Oskar Klein

1960s Richard Feynman, Julian
Schwinger, Hans Bethe,
Edward Teller, John
Bardeen, Lev Landau,
Wolfgang Pauli, Eugene
Wigner, Niels Bohr, Max
Born

All are physicists Niels Bohr (1930), Max
Born (1948), Hans Bethe
(1955), Wolfgang Pauli
(1958), Lev Landau
(1960), Eugene Wigner
(1961)

Lev Landau, Eugene Wigner,
Ralph Kronig, Rudolf Peierls,
Samuel Goudsmit, George
Uhlenbeck, Gerhart Lüders,
Harry Lehmann, Walter
Heitler, Freeman Dyson

1970s Richard P. Feynman,
Julian Schwinger, Hans
Bethe, Edward Teller,
John Bardeen, Robert
Marshak

All are physicists Hans Bethe (1955) Rudolf Haag, Herbert Fröh-
lich, Nikolay Bogolyubov,
Léon Van Hove, Gregor
Wentzel, Ernst Stueckelberg,
Walter Thirring, Paul Peter
Ewald, Markus Fierz

1980s John Bardeen, Steven
Weinberg, Edward Teller,
Murray Gell-Mann,
Sheldon Glashow, Hans
Bethe

All are physicists Hans Bethe (1955) Kurt Symanzik, Hans-Arwed
Weidenmüller, Nicholas
Kemmer, Res Jost, Yoichiro
Nambu, Franz Wegner,
Julius Wess, Valentine
Bargmann, Bruno Zumino

1990s John Bardeen, Steven
Weinberg, Murray Gell-
Mann, Klaus von Klitz-
ing, Sheldon Glashow,
Abdus Salam, Richard
Feynman, Edward Wit-
ten, Gerardus ’t Hooft

All are physicists None are Max Planck
Medal recipients

Hermann Haken, Wolfhart
Zimmermann, Elliott H.
Lieb, Kurt Binder, Hans-
Jürgen Borchers, Siegfried
Grossmann, Ludwig Fad-
deev, Gerald E. Brown,
Raymond Stora, Pierre
Hohenberg

2000s Format failure: exceeded
token limit

- - Martin Lüscher, Jürg Fröh-
lich, Jürgen Ehlers, Martin
Gutzwiller, Klaus Hepp, Pe-
ter Zoller, Wolfgang Götze,
Joel Lebowitz, Detlev Buch-
holz, Robert Graham

2010s Format failure: exceeded
token limit

- - Dieter Vollhardt, Giorgio
Parisi, Martin Zirnbauer,
Werner Nahm, David Ruelle,
Viatcheslav Mukhanov, Her-
bert Wagner, Herbert Spohn,
Juan Ignacio Cirac, Detlef
Lohse

2020s Klaus Hasselmann,
David J. Thouless, Marti-
nus Veltman, Gerardus
’t Hooft

All are physicists None are Max Planck
Medal recipients

Andrzej Buras, Alexander
Markovich Polyakov, An-
nette Zippelius, Rashid A.
Sunyaev, Erwin Frey, Rein-
hard F. Werner
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