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Abstract

Recent advances in Large Language Models (LLMs) have catalyzed significant research into automated knowledge
graph (KG) construction from text, a fundamental challenge at the intersection of natural language processing and
semantic web technologies. However, the reliability of evaluating model performance is hindered by limitations
in existing benchmarks like Text2KGBench, which exhibit shortcomings in data quality, ontological consistency,
and structural design. To address these issues, this paper introduces Text2KGBench-LettrIA, a substantially
revised and curated benchmark derived from the DBpedia-WebNLG portion of Text2KGBench. Our primary
contributions include: (1) the systematic refinement of 19 domain ontologies to enforce hierarchical structure and
formal typing; (2) a complete re-annotation of 4,860 sentences, yielding over 14,000 high-fidelity triples under a
strict set of annotation guidelines; and (3) the introduction of an enriched data format with enhanced metadata to
ensure reproducibility and support multifaceted evaluation. We demonstrate the utility of our benchmark by
evaluating a suite of both proprietary and open-weights LLMs in zero-shot and fine-tuned settings, respectively.
Our results reveal a key finding: smaller, fine-tuned open-weights models can achieve superior F1 accuracy
compared to their larger, proprietary counterparts, underscoring the critical role of high-quality, schema-aligned
training data.

1. Introduction

The recent proliferation of Large Language Models (LLMs) and foundation models has catalyzed sig-
nificant advancements in Natural Language Processing (NLP). A key area of impact is the automated
construction and completion of Knowledge Graphs (KGs), where the synergy between LLMs and struc-
tured knowledge is pivotal. This relationship underpins emerging applications such as the generation of
explainable AI (XAI) outputs and the development of robust neuro-symbolic fact-checking systems. A
significant contribution in this domain is Text2KGBench [1], a benchmark designed to evaluate the capac-
ity of language models to generate KGs from text under ontological guidance. The framework assesses
a model’s ability to extract relational triples that both conform to a predefined ontology and remain
grounded in the source text. Text2KGBench is composed of two datasets: Wikidata-TekGen, derived
from the TekGen corpus [2], containing 13,474 sentences across 10 ontologies; and DBpedia-WebNLG,
based on the WebNLG corpus [3], with 4860 sentences across 19 ontologies. Both split in training
and test set. Despite its foundational role, a detailed analysis of Text2KGBench reveals several critical
limitations that hinder reliable model evaluation and impede progress. Our investigation, which focuses
on the DBpedia-WebNLG component, identifies the following principal flaws:

« Ontological: The ontologies are semantically imprecise. They suffered from a flat, non-
hierarchical design, contained ambiguous and out-of-domain concepts, and lacked the formal
rigor needed for robust knowledge representation, making it difficult to use for precise model
evaluation and knowledge extraction.
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« Annotation and Data Quality: The data annotations in the original benchmark were incon-
sistent and unreliable. This was caused by a lack of standardization for entity names and literal
values, a failure to strictly limit annotations to textual evidence, and the presence of grammatical
errors in the source sentences.

« Structural and Technical: From a technical perspective, the original dataset was difficult to use
and lacked features essential for reproducibility. Its data structure was missing key information
and contained formatting errors, while the ontologies themselves was undocumented and used
an overly complicated URI scheme.

To address these shortcomings, this work makes the following primary contributions:

« We introduce Text2KGBench-LettrIA, a rigorously corrected and enriched benchmark for
ontology-guided KG construction. This new version rectifies annotation errors, ensures ontolog-
ical compliance, and improves overall data quality to facilitate more accurate and meaningful
model evaluation. The benchmark is available upon request to the authors.

+ We conduct an extensive empirical evaluation of diverse language models, including pro-
prietary APIs and open-weights models, on Text2KGBench-LettrIA. Our findings reveal that
fine-tuned open models can consistently outperform larger, proprietary models in zero- or few-
shot settings, demonstrating their effectiveness for structured information extraction.

The remainder of this paper is organized as follows. Section 2 reviews related work on KG construction
from text. Section 3 details our methodology for revising the benchmark. Section 4 presents our
experimental setup and comparative results. Finally, Section 5 concludes with a summary of our
findings and outlines directions for future research.

2. Related Work

The task of automatically constructing Knowledge Graphs (KGs) from unstructured text, commonly
known as Text-to-Knowledge-Graph (Text2KG), has become a central challenge in natural language
processing and semantic web research. This process facilitates the transformation of textual information
into structured, machine-readable knowledge representations. It is a composite task that typically
integrates sub-problems such as Named Entity Recognition (NER), Relation Extraction (RE), and Entity
Linking (EL), which are orchestrated within either pipeline or end-to-end architectures. For a compre-
hensive formalization of the problem and an extensive literature review, we direct the reader to the
systematic survey by Regino et al. [4].

The growing interest in this field is evidenced by sustained community efforts, including the Text2KG
workshop series, held annually since 2022 and approaching its fifth edition in 2025 [5], and the yearly
Knowledge Base Construction from Pre-trained Language Models (LM-KBC) challenge [6].

These efforts are supported by the development of standardized datasets. One of the earliest and
most influential is WebNLG [3], which pairs textual descriptions with RDF-style triples. WebNLG
inspired subsequent work like TekGen [2], which expanded the corpus with synthetically generated
data. More recently, Text2KGBench [1] established a benchmark to evaluate the generation of ontology-
compliant triples grounded in source text. However, as we will detail, Text2KGBench exhibits limitations
concerning data quality and ontological rigor, which directly motivates the development of our proposed
benchmark. Another significant contribution in this domain is the REBEL dataset [7], which was
specifically designed to advance the task of open relation extraction from unstructured text. REBEL
introduces a large-scale, fine-grained benchmark that captures a wide range of relations and entities,
enabling more comprehensive evaluations of models’ ability to extract structured knowledge from
natural language.



Methodologies for relation extraction have evolved significantly. Early approaches progressed from
rule-based systems to feature-engineered machine learning and subsequently to deep learning architec-
tures. Seminal neural models introduced sequence labeling and multi-task learning frameworks [8].
More advanced architectures like Seq2RDF [9] later framed the task as a sequence-to-sequence problem
to translate natural language directly into RDF triples. The advent of transformer-based encoders led to
powerful models for joint entity and relation extraction [10]. A critical shortcoming of many of these
models, however, is their frequent lack of explicit integration with ontological constraints, limiting
their utility for constructing semantically coherent KGs.

To address this gap, the paradigm of schema-aware extraction has emerged, where generated triples
must conform to a predefined ontology. Recent studies have explored leveraging external schema
constraints during training, for example through few-shot perspective transfer [11] or knowledge-
driven synthetic data generation for zero-shot extraction [12]. Others have investigated the use of
structured prompts or ontology-guided decoding to improve the alignment of LLM outputs with a target
schema. For instance, Ding et al. [13] proposed model collaboration strategies to mitigate hallucinations
and enhance recall.

Large Language Models (LLMs) such as GPT-4 and Claude have demonstrated impressive in-context
learning capabilities for information extraction. Nonetheless, their application to Text2KG is hampered
by a propensity for factual hallucination and inconsistent adherence to structured output formats [14, 5].
While efforts to evaluate and mitigate these issues are ongoing, existing benchmarks often lack the
ontological precision required for a fair and rigorous assessment. The benchmark introduced in this
paper is specifically designed to fill this void.

3. Revision of Text2KGBench

This section details the revision and re-annotation of the Text2KGBench benchmark, undertaken to
address critical limitations in its original version and enhance its utility for evaluating modern text-
to-graph models. Our efforts focused on two key areas: a comprehensive revision of the underliying
ontologies and a complete re-annotation of the corpus based on a new, rigorous set of guidelines. A team
of four experts specializing in knowledge representation and natural language processing conducted
both activities. The process began with an independent pass by each expert, followed by a reconciliation
phase to resolve disagreements by discussing and finding majority consensus on a particular solution.
Once all individual annotations were complete, the team convened to review the entire set, discuss any
discrepancies, and reach a final consensus.

3.1. Ontologies Refinement

The original Text2KGBench ontologies, while extensive, suffered from structural and semantic issues that
limited its precision. It was organized into 19 ontologies, one for each domain, but lacked hierarchical
depth and formal consistency. We conducted a thorough revision to address these limitations, focusing
on improving its coherence, structural integrity, and semantic expressiveness.

Semantic Coherence and Granularity A primary objective was to ensure each domain ontology
was self-contained and conceptually coherent. We systematically identified and pruned concepts and
relations not directly relevant to their specified domains. For example, within the Film ontology,
entities such as Club and Station, and relations like spokenIn, were removed as they are better
situated in other contexts. This curation ensures that each domain ontology accurately models its core
concepts, improving the benchmark’s overall focus. The reason behind this decision is because we are
internally using ontologies that are focus on a specific client domain or use-case and we do not want
extract informations that are not related to this specific client domain or use-case.

To reduce ambiguity and improve clarity, we harmonized property names. For instance, the property
campus was renamed to address to more accurately reflect its semantic role, and staff was specified



as academicStaffSize for explicitness. Similarly, the generic location property was refined into
more specific relations such as city or country, depending of the context, thereby increasing the
precision of the knowledge graph.

Structural and Formal Enhancements A significant structural enhancement was the introduc-
tion of a formal class hierarchy using rdfs : subClassOf relationships. In the original flat structure,
University was anisolated class. It is now explicitly defined as a subclass of AcademicInstitution,
which itself is a subclass of Organization. This hierarchical structure is not merely a formal improve-
ment; it enables more nuanced evaluation metrics. For instance, we can now measure hierarchical
precision, rewarding a model for predicting a correct superclass (e.g. AcademicInstitution even if
the specific subclass University) is missed.

Further, properties were rigorously typed as either ObjectProperty (linking two entities) and
DatatypeProperty (linking an entity to a literal value), with explicit domains and ranges defined for
each. Datatype ranges were specified using standard XML Schema types (e.g. xsd:string, xsd:date,
or xsd: integer), enforcing data consistency and aiding downstream processing. To improve usability,
we added rdf's : comment annotations for all properties and classes and simplified the URIs by removing
the intermediate relations and /concepts path segments. The rdfs: comment annotations have
been generated by the authors altogether with our own words to define each annotations.

Finally, to support reproducibility and tracking, the new ontology includes metadata for contributors
and is explicitly versioned as version 2.0 using owl:versionIRI. A comprehensive comparison of
these changes is presented in Table 4, in the Appendix.

In the appendix, Table 2 presents an overview of the main statistics for each ontology in
Text2KGBench-LettrIA and Text2KGBench. The Text2KGBench-LettrIA dataset is significantly lighter,
with approximately 21.80% fewer classes and approximately 37.81% fewer properties. Additionally,
datatype properties are exclusively present in Text2KGBench-LettrIA.

3.2. Re-annotations Guidelines

A robust benchmark requires annotation guidelines that are consistent, unambiguous, and computa-
tionally tractable. We established a comprehensive rulebook for the re-annotation process to ensure
high-quality, reproducible data.

Normalization of Literals To ensure uniformity, we normalized literal values. Dates are standard-
ized to the ISO 8601 format (yyyy-mm-dd). Ambiguous formats like xx/xx/xxxx are interpreted as
mm/dd/yyyy, a common default in digital systems; if the first value exceeds 12, it is interpreted as
dd/mm/yyyy. Partial dates (e.g. only a year, or only month plus year) associated to the xsd: gYear or
xsd:gYearMonth datatypes. Durations are also standardized to the XSD notation (e.g. 20 minutes
is turned into PT20M).

Entity and Relation Extraction

+ Location Handling: Our guidelines for locations proritize capturing geographical containment.
When a text lists a hierarchy of locations (e.g. “Caen, Normandy, France”), we extract each as
distinct entity. We then generate isPartOf relations to model their relationship of inclusion
(e.g. caen isPartOf Normandy, Normandy isPartOf France, and Caen isPartOf France). Even
though, we take the full string "Caen, Normandy, France" to define a location. For example,
Antoine livesAt "Caen, Normandy, France". Finally, definite articles are omitted from place
names (e.g., "the Philippines" becomes Philippines).

+ Strict Adherence to Textual Evidence: Annotations are strictly confined to information
explicitly present in the source text, avoiding reliance on external world knowledge. For example,
in “Lettria was founded in Paris, France,” Paris is typed as Place. However, in “Lettria was



founded in the city of Paris, France,’, the explicit mention allows for the more specific type City.
This principle ensures that the benchmark evaluates a model’s ability to extract information from
the provided context alone. This rule ensures that the text-2-graph task can be solved relying on
the sole information in the benchmark.

Entity Scoping

9«

« Organization names: Corporate suffixes (“Inc”, “Co.”) are preserved as part of the entity name
to maintain fidelity to the source text (e.g. Caterpillar Inc.).

« Pronoun Resolution: We resolve pronouns to their antecedent entity within the extracted
triple. For ambiguous pronouns like “which,” we employ a heuristic of selecting the immediately
preceding noun phrase as the antecedent. For example, in “..beef kway teow which comes from
the region of Indonesia,” the pronoun “which” is resolved to beef kway teow.

« Multiple Entities: When a single statement applies to multiple entities, we create a separate
triple for each. “Huseyin Butuner and Hilmi Guner designed..” yields two distinct designer
relations, one for each person.

3.3. The Resulting Benchmark: Curation and Structural Enhancement

The culmination of the re-annotation process, guided by the revised ontology and the new annotation

principles,

is a benchmark of significantly higher quality and consistency. The resulting dataset

comprises a total of 4860 sentences, which correspond to 14882 extracted triples.

In addition to the primary re-annotation, the benchmark underwent a comprehensive data curation
and enhancement phase to address artifacts present in the original version and to enrich its structure
for more rigorous model evaluation. These post-processing enhancements are detailed as follows:

« Data Sanitization and Canonicalization: A systematic normalization process was applied to
entity and literal values to ensure uniformity and eliminate parsing inconsistencies. This included
several key transformations:

Entity Name Normalization: Underscores used as word separators in entity
names were replaced with spaces to form canonical, human-readable identifiers (e.g.,
"AWH_Engineering_College" was corrected to "AWH Engineering College").

Literal Value Cleaning: Superfluous quotation marks that erroneously encapsulated object
values in the original data were removed (e.g., {"obj": "\"Kuttikkattoor\""} was
corrected to {"obj": "Kuttikkattoor"}).

Numeric Data Typing: String representations of numbers were parsed into their correct
numeric types (e.g., "2000" became 2000). Numerical Values are stripped of punctuation;
for example, “18,527” is annotated as 18527 (distinguishing the cases in which the comma
was used as thousand or decimal separator).

Textual Harmonization: Spelling inconsistencies and diacritical variations in names were
corrected to ensure a true reproduction of what is in the text (e.g., "Hiiseyin Butiner"
in the text is kept as it is and not turned into "Huseyin Butuner").

« Explicit Ontological Typing: To improve the formal alignment between data instances and
the ontology, each triple was enriched with new keys. The subType and objType fields now
explicitly declare the ontological class of the subject and the datatype of the object, respectively.
This structural addition is critical for enabling type-aware evaluation metrics and enforcing
semantic consistency.

+ Corpus and Linguistic Refinement: The source text corpus itself was subject to a final review.
Minor grammatical and punctuation errors were corrected to improve linguistic quality.



The cumulative effect of these enhancements is illustrated in Figure 1 in the Appendix, which presents
a side-by-side comparison of a data entry before and after the revision process. Table 3 in the Appendix
presents a comparison between the original and new datasets. Text2KGBench-LettrIA maintains the
same number of sentences as Text2KGBench, while the number of triples varies, showing both additions
and reductions respect to Text2KGBench.

4. Experimental Evaluation with LLMs

Our study evaluates the performance of contemporary Large Language Models (LLMs) on the Text-to-
Knowledge-Graph (Text2KG) task, which involves extracting knowledge graph triples from unstructured
text. The evaluation is conducted using the Text2KGBench-LettrIA benchmark. We assess two distinct
categories of models under different conditions.

First, we assessed a comprehensive suite of proprietary models in a zero-shot setting, where models
perform the task without any specific fine-tuning. The evaluated models, grouped by provider, included
several from Anthropic, such as the Claude 3 family (Haiku, Sonnet, Opus) [15], the Claude 3.5 series
(Haiku, Sonnet V1, Sonnet V2), the Claude 3.7 Sonnet, and the Claude 4 series (Sonnet, Opus). From
Google, we evaluated the Gemini 2.0 family (Flash-Lite, Flash, Pro) and the Gemini 2.5 family (Flash-Lite,
Flash, Pro) [16]. Our assessment also covered OpenAl’s GPT-4.1 series (Full, Mini, Nano) [17] and
GPT-4o series (Full, Mini) [18]. Finally, from Mistral Al, we included the Mistral Medium 2505 model'.

In parallel, we fine-tuned and subsequently evaluated a selection of prominent open-weights models
to gauge their performance after task-specific adaptation. This set comprised Gemma 3 (4B-IT, 12B-IT,
27B-IT) [19]?, Mistral Small 3.2 (24B-Instruct)’, Phi-4 (14B) [20], and Qwen 3 in several parameter sizes
(0.6B, 1.7B, 4B, 8B, 14B, 32B) [21]. We have decided to go with these models because they were at that
moment the best instructed pre-trained models on the huggingface leaderboard.

4.1. Fine-Tuning Methodology

We employed a Supervised Fine-Tuning (SFT) methodology to adapt the selected Large Language
Models (LLMs) for the relation extraction task, utilizing the Unsloth* framework for efficient training.
The fine-tuning process is based on Low-Rank Adaptation (LoRA) [22] and involved providing each
model with an input prompt containing two components: (1) a natural language sentence and (2) a
compact representation of the relevant ontology. To mitigate the verbosity of the standard Turtle
syntax and ensure the input fits within the models’ context windows, we adopted a format inspired
by Manchester syntax for representing the ontology schema. The target output for the SFT process
was a JSON object containing the knowledge graph triples extracted from the sentence, mirroring the
ground-truth annotations in our dataset.

To assess model performance under different data conditions, we designed and evaluated three
distinct fine-tuning configurations:

Classic Models were fine-tuned on the complete, original training dataset. This configuration serves
as our performance baseline.

Extended This configuration incorporates data augmentation. The original training set was sup-
plemented with synthetic data generated by the Gemini 2.5 Pro model. The objective of this
augmentation was to enrich the training data for each ontology, ensuring a number of 500 training
examples per ontology, bringing the training set to 9500 examples in total.

Generalization This configuration evaluates the models’ zero-shot generalization capabilities to
unseen ontologies using a leave-one-out strategy. Models were trained on a dataset comprising

'Model details available at: https://mistral.ai/news/mistral-medium-3

*Model card: https://huggingface.co/google/gemma-3-12b-it

*Model card: https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506
*https://unsloth.ai/
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18 of the 19 ontologies. The held-out ontology (the City ontology) was then used exclusively for
testing. The final test set for this scenario was composed of all examples (both original training
and test splits) associated with the unseen City ontology.

All the fine-tuning runs® for each model have been conducted on a Nvidia H100 GPU.

4.2. Evaluation

To provide a multifaceted evaluation of our relation extraction approach, we introduce a suite of metrics
that extends beyond the traditional F1-score. Our methodology first categorizes the components of the
knowledge graph into four distinct types:

Entities (E) The classes that serve as the domain and range for object properties, or as the domain for
datatype properties.

Attributes (A) The literal values that constitute the range of datatype properties.
Properties (P) The datatype properties that link entities to attributes.

Relations (R) The object properties that link entities to other entities.

Based on this categorization, we assess model performance across six key dimensions:

+ F1-Score: The macro-averaged F1-score for the correct identification and classification of each
extracted entity, attribute, property, and relation.

+ Ontological Fidelity: A measure to quantify hallucinations, defined as the generation of types,
properties, or relations that are not present in the reference ontology.

« Domain/Range Adherence: Assesses whether the model’s outputs respect the domain and
range constraints defined in the ontology for all properties (datatype properties) and relations
(object properties). This metric accounts for subclass hierarchies; for instance, if an ontology
specifies a domain of Place and the model predicts City, the prediction is considered valid
provided City is a subclass of Place.

« Structural Validity: Measures whether the generated output conforms to the required JSON
schema, ensuring it is well-formed and parseable.

« Latency: The average inference time in seconds required to generate a response, calculated
across all examples in the test set.

« Cost: The average monetary cost per query. For proprietary models, this is the API cost. For
open-weights models, we estimate the cost based on the hourly price of the required hardware
from a cloud provider (e.g., a OVH Cloud instance at 2.80 €/hour).

4.3. Performance and Insights

Performance was evaluated using three distinct fine-tuning configurations. The first two configurations
were tested on our "full benchmark," a revised and comprehensive version of the new benchmark. The
third configuration was subsequently tested on a single ontology in a "generalization" scenario. All
experiments involving closed models utilized the most recent, optimized prompt from our internal
text-to-graph production framework.



inati i Latenc
Run ID F1 Hallucinations Respect Valid y  Cost

Entities  Attributes Properties Relations Types Relations Properties Relations Properties Outputs (%) © ®
Closed - 1-shot
claude-3.5-haiku 0.5732 0.693 0.6836 0.5649  0.0041  0.0003 0.0364 0.9637 0.9105 93.44%  14.8537 0.0038
claude-3.5-sonnet-v1 0.5804 0.8471 0.8336 0.6182  0.0052 0.0 0.0082 0.978 0.9826 97.12%  14.3797 0.0139
claude-3.5-sonnet-v2 0.6059 0.8789 0.8675 0.6697  0.0047 0.0 0.0065 0.9886 0.9935 99.30%  15.6948 0.0136
claude-3-haiku 0.5206 0.3373 0.3523 0.4389  0.0198  0.0254 0.2038 0.8429 0.6808 90.66% 8.6447 0.0014
claude-3.7-sonnet 0.6082 0.8903 0.88 0.6625  0.004 0.0 0.0053 0.9859 0.9943 99.70%  13.0294 0.0128
claude-opus-4 0.6289 0.8702 0.8532 0.6944  0.0051 0.0 0.0034 0.9977 0.9962 99.20%  37.4454 0.1682
claude-sonnet-4 0.6487 0.8657 0.8498 0.7126  0.0011 0.0 0.0065 0.9908 0.9848 99.35%  10.4307 0.0111
gemini-2.0-flash-lite 0.5276 0.6885 0.679 0.5456  0.0028  0.0014 0.0109 0.9466 0.9714 83.95% 2.3805 0.0002
gemini-2.0-flash 0.3539 0.4311 0.4195 0.3864  0.0017 0.0 0.0137 0.9626 0.9799 57.36% 1.9308 0.0004
gemini-2.5-flash-lite 0.6014 0.2542 0.4930 0.2335  0.0088  0.0221 0.3439 0.8553 0.4993 97.51% 1.9086  0.0010
gemini-2.5-flash 0.5501 0.7463 0.7339 0.6062  0.0055 0.0 0.0113 0.9736 0.9848 86.43% 2.0842 0.0013
gemini-2.5-pro 0.6595 0.8762 0.8627 0.7076  0.0014 0.0 0.0022 0.9925 0.9966 99.80% 3.9886  0.005
gpt-4.1-2025-04-14 0.6472 0.8742 0.863 0.6565  0.0014  0.0004 0.0146 0.9798 0.9843 97.27% 3.9289  0.0058
gpt-4.1-mini-2025-04-14  0.6866 0.8584 0.8471 0.6114  0.0042  0.0023 0.0324 0.9442 0.9512 98.86% 5.9905 0.0012
claude-3-opus 0.6159 0.7589 0.7492 0.6621  0.0072  0.0032 0.0753 0.9532 0.8627 97.12%  27.2936  0.068
gpt-4.1-nano-2025-04-14  0.4831 0.5148 0.4875 0.1911  0.0303  0.1238 0.4698 0.5689 0.4081 82.75% 2.5785 0.0003
gpt-40-2024-11-20 0.6032 0.7971 0.7879 0.6021  0.0055  0.0011 0.0292 0.9527 0.9472 94.14% 3.5076  0.0086
gpt-40-mini-2024-07-18  0.5951 0.4703 0.5082 0.3379  0.0083  0.0121 0.2745 0.8708 0.666 91.95% 9.1931  0.0005
mistral-medium-2505 0.6095 0.5524 0.564 0.6003  0.0061  0.0004 0.1141 0.9622 0.7137 99.11% 6.4915 0.0014
claude-3-sonnet 0.5869 0.7303 0.7246 0.5583  0.0088  0.0026 0.17 0.9068 0.7604 96.82%  12.6952 0.0113
Open Weights (Finetuned)
gemma-3-4b-it 0.8294 0.9080 0.8799 0.7248  0.0065  0.0195 0.0555 0.9178 0.8667 99.35% 0.0094 12.0294
gemma-3-4b-it (ext.) 0.8329 0.9344 0.9089 0.7647  0.0069  0.0124 0.0290 0.9438 0.9143 99.70% 0.0092 11.7466
gemma-3-12b-it 0.8606 0.9211 0.9001 0.7942  0.0066  0.0118 0.0335 0.9570 0.8904 99.95% 0.0129 16.5804
gemma-3-12b-it (ext.) 0.8592 0.9437 0.9302 0.8149  0.0069  0.0091 0.0155 0.9620 0.9320 99.95% 0.0130 16.6987
gemma-3-27b-it 0.8680 0.9301 0.9038 0.8027  0.0064  0.0119 0.0275 0.9533 0.9097 99.95% 0.0165 21.1579
gemma-3-27b-it (ext.) 0.8588 0.9439 0.9225 0.8121  0.0069  0.0099 0.0162 0.9635 0.9304 100.00% 0.0166 21.2861
Mistral-Small-3.2 0.8837 0.9497 0.9351 0.8294  0.0070  0.0106 0.0163 0.9542 0.9258 99.90% 0.0096 12.2700
Mistral-Small-3.2 (ext.) 0.8764 0.9474 0.9287 0.8307  0.0072  0.0089 0.0245 0.9641 0.9185 100.00% 0.0096 12.2708
phi-4 0.7420 0.8451 0.8112 0.6359  0.0161  0.0329 0.0549 0.8946 0.8548 93.69% 0.0080 10.2748
phi-4 (ext.) 0.7656 0.8802 0.8432 0.6810  0.0091  0.0178 0.0364 0.9300 0.8838 96.37% 0.0079 10.0703
Qwen3-0.6B 0.8272 0.8980 0.8653 0.7059  0.0118  0.0222 0.0425 0.9150 0.9100 99.65% 0.0064 8.2034
Qwen3-0.6B (ext.) 0.8238 0.9282 0.8947 0.7365  0.0076  0.0157 0.0268 0.9357 0.9090 100.00% 0.0063 8.0859
Qwen3-1.7B 0.8302 0.8969 0.8687 0.7193  0.0072  0.0212 0.0806 0.9180 0.8448 99.55% 0.0063 8.1014
Qwen3-1.7B (ext.) 0.8303 0.9264 0.8985 0.7559  0.0073  0.0110 0.0267 0.9478 0.9149 99.65% 0.0064 8.1866
Qwen3-4B 0.8482 0.9095 0.8881 0.7778  0.0051  0.0153 0.0443 0.9436 0.8800 99.40% 0.0083 10.6227
Qwen3-4B (ext.) 0.8447 0.9378 0.9194 0.7987  0.0067  0.0102 0.0228 0.9610 0.9230 99.75% 0.0081 10.3798
Qwen3-8B 0.8512 0.9137 0.8875 0.7758  0.0069  0.0143 0.0411 0.9512 0.8960 99.80% 0.0084 10.8296
Qwen3-8B (ext.) 0.8412 0.9351 0.9190 0.7949  0.0067  0.0095 0.0254 0.9583 0.9228 99.90% 0.0082 10.5739
Qwen3-14B 0.8688 0.9278 0.9014 0.8067  0.0074  0.0109 0.0339 0.9556 0.9084 99.80% 0.0094 12.0514
Qwen3-14B (ext.) 0.8610 0.9461 0.9227 0.8155  0.0068  0.0110 0.0198 0.9608 0.9260 100.00% 0.0092 11.7774
Qwen3-32B 0.8677 0.9288 0.9024 0.8016  0.0077  0.0115 0.0311 0.9498 0.9057 99.90% 0.0146 18.7284
Qwen3-32B (ext.) 0.8521 0.9358 0.9177 0.8138  0.0074  0.0112 0.0222 0.9593 0.9282 99.90% 0.0146 18.6875

Table 1

This table compares the performance of various models on the full test set. The first section evaluates closed-
source models using a 1-shot prompting strategy. The second section presents results for open-weights models
after two finetuning variants: "Classic" (unmarked) and "Extended" (marked with (ext.)).

4.3.1. Full Benchmark

Performance The most striking finding is the significant performance gap between the two groups.
Fine-tuned models operate in a different league, with most achieving an Entity F1 score exceeding
0.80. This underscores the immense power of specialization. The top performer, Mistral-Small-3.2
(ext.), achieved an outstanding Entity F1 of 0.8837, with other models from the Qwen3 and gemma-3
families clustering in the impressive 0.85-0.87 range. In contrast, the proprietary models, which
test general-purpose reasoning without task-specific training, top out with an Entity F1 below 0.70.
Within this group, a clear performance hierarchy emerges. gemini-2.5-pro stands out as the best all-
rounder, with consistently high F1 scores across all categories (E=0.6595, A=0.8762, P=0.8627, R=0.7076).
Other models act as high-performing specialists: claude-sonnet-4 excels at understanding com-
plex connections with the highest Relations score (R=0.7126), while gpt-4.1-mini-2025-04-14
is best at identifying discrete items (E=0.6866). Meanwhile, models like gemini-2.0-flash and
claude-3-haiku struggle with the task’s complexity, proving unsuitable for this type of detailed
extraction.

°Fine-Tuning Hyper-Parameters: Lora Rank: 128 Lora Alpha: 512 Batch Size: 1 Gradient Accumulation: 8 Epochs: 3
Warmup Steps: 5 Learning Rate: 2¢° Optimisation: AdamW-8bit Weight Decay: 0.01 Learning Rate Scheduler:
Linear



Safety and Reliability Beyond raw performance, fine-tuning proves to be a profound method for
ensuring safety and reliability. Nearly all fine-tuned models achieved over 99% validly formatted outputs—
with several reaching a perfect 100%—demonstrating that specialization is an exceptionally effective
way to guarantee adherence to a specific output format. Furthermore, we observed an "extended effect”
in fine-tuned variants: these models often trade a slight dip in Entity F1 for improved scores in other
categories and, crucially, lower hallucination rates and better adherence to the ontology. This suggests
the -extended process prioritizes overall robustness and safety. Among the proprietary models, the
top performers also demonstrate strong reliability. gemini-2.5-pro and claude-opus-4 lead in
producing validly formatted outputs (99.80% and 99.20%, respectively) and show superior adherence to
the ontology. However, safety is not a given in this category. While models like claude-3.7-sonnet
and gemini-2.5-pro boast extremely low hallucination scores, gpt -4 . 1-nano exhibits a catastrophic
failure with a hallucination precision of just 0.4698, making it a high risk for generating false information.

Efficiency The efficiency profiles of the two groups present starkly different trade-offs. For the
API-based proprietary models, the balance is between performance, latency, and cost-per-call. The
gemini-flash models are the fastest, with response times around 2 seconds, while the power-
ful claude-opus-4 is the slowest at a substantial 37.4 seconds. A similar trade-off exists in cost:
gemini-2.0-flash-1lite (0.0002¢) is one of the cheapest, whereas claude-opus-4 (0.1682¢) is by
far the most expensive, illustrating the classic balance between capability and operational cost. This
dynamic shifts entirely with the fine-tuned models, which run on dedicated local hardware. Latencies
are astonishingly low, with all models completing the task in under 0.02 seconds—orders of magnitude
faster than API calls. The trade-off here is the high, amortized cost of the fine-tuning process and
hosting the model on powerful GPU infrastructure. This cost scales directly with model size, making
larger models like gemma-3-27b and Qwen3-32B the most expensive to operate.

4.3.2. Generalization Benchmark

The Generalization Benchmark results are displayed in Table C in the Appendix.

Robust Generalization to Unseen Ontologies The fine-tuned models demonstrate a remarkable
capacity for generalization, adeptly applying their learned skills to novel ontologies with only a minimal
drop in performance. A direct comparison reveals that the top-performing models maintain their
elite status even on unfamiliar schemas. For instance, gemma-3-12b-it achieves an outstanding
Entity F1 of 0.8376 on the generalization set, a marginal decrease from its 0.8606 score on the full
benchmark. Crucially, this level of performance significantly surpasses that of the best closed-source
models on the same generalization task, with gemma-3-12b-it outperforming the top proprietary
model, claude-sonnet-4 (0.7829), by a substantial margin. This robustness extends beyond raw F1
scores to safety and reliability; the fine-tuned models maintain their near-zero hallucination rates and
high adherence to ontological constraints (e.g., gemma-3-27b-1it scores 0.9325 for relations respect),
with valid output rates remaining at or near 100%. This indicates that the fine-tuning process instills a
deep, transferable understanding of the text-to-graph task structure, creating models that are not only
specialized but also highly adaptable and reliable when faced with new, unseen challenges.

4.3.3. Lessons Learned

This comprehensive benchmark reveals a clear and instructive dichotomy between specialized, fine-
tuned models and general-purpose, proprietary models, offering several key lessons for practitioners.

First, specialization is paramount for peak performance and reliability. The fine-tuned open-
weights models operate in a separate, higher-performance tier, unambiguously demonstrating that
for complex, structured tasks like text-to-graph conversion, task-specific training is the most effective
strategy. This superiority is not confined to accuracy metrics like F1 scores; it extends crucially to



output reliability, where fine-tuned models achieve near-perfect adherence to formatting and ontological
constraints, effectively eliminating structural errors and minimizing hallucinations.

Second, effective fine-tuning teaches generalization, not just memorization. A critical finding
is that fine-tuned models maintain their performance advantage even when confronted with entirely
unseen ontologies. Their ability to robustly generalize the underlying task structure surpasses even the
most advanced proprietary models on the same out-of-domain test set. This proves that the fine-tuning
process instills a deep, transferable understanding of the task’s logic, making it a viable strategy for
building adaptable and scalable systems.

Finally, the choice between the two approaches hinges on a fundamental trade-off between
accessibility and efficiency. Proprietary models offer an invaluable, zero-setup solution for rapid
prototyping and tasks where the overhead of fine-tuning is prohibitive. Within this group, a clear
hierarchy exists, with models like gemini-2.5-pro and the claude-4 family providing a strong
baseline of general reasoning. However, this convenience comes at the cost of higher latency and
a pay-per-call model. In contrast, fine-tuned models represent a strategic investment. While they
require significant upfront and ongoing infrastructure costs for training and hosting, they deliver
inference speeds that are orders of magnitude faster and are economically superior for high-volume,
production-level applications, all while providing unparalleled performance and safety.

5. Conclusion and Future Work

In this paper, we introduced Text2KGBench-LettrIA, a rigorously revised benchmark for evaluating
ontology-guided Text-to-Knowledge-Graph systems. By systematically overhauling the DBpedia-
WebNLG portion of Text2KGBench, we addressed critical limitations in its ontological design, annotation
quality, and structural consistency. The resulting benchmark features 19 refined ontologies with enforced
hierarchical relationships and strict typing, alongside over 14,000 high-fidelity triples re-annotated
under stringent guidelines to ensure textual grounding and reproducibility. This work provides the
community with a resource that enables a more precise and nuanced evaluation of model capabilities in
structured knowledge extraction.

Our experiments yield a significant finding: smaller, open-weights language models, when properly
fine-tuned on our high-quality benchmark, can outperform larger, proprietary models in terms of
F1-score for triple extraction. This result underscores the pivotal role that task-specific data quality
and model adaptation play in achieving state-of-the-art performance. Nevertheless, our analysis also
highlights a persistent challenge: even high-performing models exhibit a tendency to hallucinate or
deviate from ontological constraints, indicating that high accuracy on individual components does not
guarantee perfect schema adherence.

Building on this work, we identify several key directions for future research.

+ Post-Hoc Alignment: The prevalence of schema violations and hallucinations, even after
supervised fine-tuning (SFT), suggests the need for a subsequent alignment phase. Investigating
reinforcement learning-based techniques such as Proximal Policy Optimization (PPO) or Direct
Preference Optimization (DPO) could further refine model outputs to improve ontological fidelity.

« Explainability and Reasoning: Future work could focus on developing a reasoning layer
atop the extraction models. Such a component would not only extract triples but also generate
explanations for its predictions, thereby increasing the transparency and trustworthiness of the
KG construction process.

« Context Window Extension: A current limitation of many open-weights models is their
relatively small context window compared to proprietary counterparts. Future experiments
should explore methods to extend the effective context size of fine-tuned models, enabling them
to process larger and more complex documents and ontologies.



+ Ontology: The ontologies have only binary relations (they cannot describe complex entities
such as event), an improvement would be to create n-ary relations with reification, in order to
have more realistic ontologies, and see if the LLMs, even fine-tuned, can properly handle such
complex ontologies.
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A. Dataset Statistics

Ontology Name Text2KGBench-LettrlA Text2KGBench

Classes | Object Prop. | Datatype Prop. | Classes | Object Prop.
airport 11 15 5 13 39
artist 12 16 7 19 39
astronaut 18 10 11 15 38
athlete 10 18 9 14 37
building 9 11 12 14 38
celestialbody 5 1 17 8 27
city 13 10 10 11 23
comicscharacter 8 8 4 10 18
company 9 13 6 10 28
film 5 10 5 18 44
food 12 13 2 12 24
meanoftransportation 12 20 28 20 68
monument 10 10 4 14 26
musicalwork 15 22 3 15 35
politician 17 25 9 19 40
scientist 12 15 5 15 47
sportsteam 9 12 3 14 24
university 11 16 11 15 46
writtenwork 10 17 13 10 44
TOTAL 208 262 164 266 685

Table 2

Comparison of ontology statistics for Text2KGBench-LettrlA and Text2KGBench.



Text2KGBench-LettrlA Text2KGBench

Ontology
Sentences Triples Sentences  Triples
airport 79/ 227/ 273 260/ 702/ 989 79/ 227 237/ 714
artist 84/ 302/ 198 256/ 896/ 638 84/ 302 252/ 896
astronaut 68/ 86/ 414 266/ 264/ 985 68/ 86 279/ 241
athlete 107/ 186/ 314 304/ 568/ 811 107/ 186 299/ 575
building 103/ 172/ 328 276/ 593/ 956 103/ 172 309/ 588
celestialbody 72/ 122/ 378 203/ 329/ 885 72/ 122 223/ 373
city 217/ 131/ 369 1289/ 479/ 1038 217/ 131 651/ 398
comics 36/ 66/ 434 92/ 165/ 934 36/ 66 107/ 215
character
company 56/ 97/ 403 174/ 314/ 928 56/ 97 157/ 300
film 127/ 137/ 363 368/ 369/ 622 127/ 137 378/ 398
food 153/ 245/ 255 473/ 683/ 681 153/ 245 532/ 734
mean of 92/ 222/ 278 271/ 646/ 745 92/ 222 276/ 647
transportation
monument 19/ 73/ 427 64/ 343/ 1365 19/ 73 55/ 293
musicalwork 209/ 81/ 419 842/ 285/ 912 209/ 81 604/ 221
politician 135/ 184/ 316 415/ 688/ 1089 135/ 184 424/ 550
scientist 149/ 110/ 390 387/ 259/ 559 149/ 110 411/ 300
sportsteam 110/ 125/ 375 375/ 369/ 1294 110/ 125 401/ 375
university 71/ 85/ 415 337/ 228/ 749 71/ 85 283/ 248
writtenwork 127/ 195/ 305 267/ 628/ 861 127/ 195 381/ 557
TOTAL 2014/2846/6654 6919/8808/17101 2014/2846 6259/8623
Table 3

Number of sentences and triple per dataset version: test / train / train ext for T2KB-LettrlA and test /
train for T2KGBench



B. Ontology and Annotation Comparison

{
"id": "ont_1_university_train_37",
"sent": "The University of Burgundy employs 2900
staff members with 1299 doctoral students",
"triples": [{
"sub": "University_of_Burgundy",
"rel": "staff",
"obj": "2900"
IERt
"sub": "University_of_ Burgundy",
"rel": "numberOfDoctoralStudents",
"obj": "1299"
1
}

{

"id": "ont_1_university_train_37",

"sent": "The University of Burgundy employs 2900
staff members with 1299 doctoral students",

"triples": [{

"sub": "University of Burgundy",
"subType": "University",
"rel": "academicStaffSize",
"obj": "2900",
"objType": "integer"

b A
"sub": "University of Burgundy",
"subType": "University",
"rel": "numberOfDoctoralStudents",
"Obj"i "1299"
"objType": "integer"

1]

Figure 1: Comparison of the same dataset entry in Text2KGBench (left) and Text2KGBench-LettrlA (right).

Aspect Text2KGBench Text2KGBench-LettrlA
Domain Coherence | Included out-of-domain concepts Strictly domain-specific concepts.
Property Semantics | Ambiguous or overly generic properties | Properties renamed and specified for clarity.
Class Structure Flat, non-hierarchical Hierarchical using subClassOf
. Strict distinction between ObjectPropert
All properties treated as ; opery
Property Types , and DatatypeProperty with specified do-
ObjectProperty .
mains and ranges.
- -/<domain>/<type># where Simplified to .../<domain>#. E.g.
URI format <types> is relations or concepts. Eg. ) .
. . . .../ont_19_film#director
.../ont_19_film/relations#director
Documentation Absent rdfs:comment for all classes and properties.
Metadata Absent Contributor list and owl:versionIRI
onto:University a owl:Class ;
rdfs:subClassOf
onto:AcademicInstitution ;
rdfs:label "University" ;
rdfs:comment "A higher education..."
onto:University a owl:Class ; onto:AcademicInstitution a owl:Class ;
Exanuﬂe rdfs:label "University" rdfs:subClassOf onto:Organization ;
rdfs:label "AcademicInstitution"
rdfs:comment "An institution for..."
onto:0rganization a owl:Class ;
rdfs:label "Organization" ;
rdfs:comment "A formal structure..."
Table 4

Comparison of the original and revised ontologies, highlighting key structural and semantic enhancements.




C. Generationzation Results

F1 Hallucinations Respect Valid Latency Cost

Run ID Outputs (%) (s) )

Entities Attributes Properties Relations Types Relations Properties Relations Properties

Closed - 1-shot

mistral-medium-2505 0.7661 0.7875 0.796 0.6444 0.0 0.0 0.0 0.9681 0.7836 99.58 3.2267  0.0033
claude-sonnet-4 0.7829 0.9509 0.9283 0.7179 0.0 0.0 0.0 0.9967 0.9878 99.44 7.5647  0.0297
claude-3-opus 0.7825 0.9405 0.9102 0.7199 0.0 0.0 0.0 0.9836 0.958 99.44 27.9306 0.1635
claude-3.5-sonnet-v2 0.7823 0.9581 0.9333 0.7089 0.0 0.0 0.0 0.9916 0.9818 100.00 14.7003 0.0319
claude-3-sonnet 0.7777 0.876 0.8384 0.6338 0.0 0.0 0.0 0.944 0.8365 99.30 9.9851  0.0296
claude-3.7-sonnet 0.7775 0.9471 0.9278 0.7146 0.0 0.0 0.0 0.9902 0.9854 99.72 11.0482  0.0311
gpt-4.1-mini-2025-04-14  0.7764 0.8906 0.8607 0.6766 0.0 0.0 0.0 0.9839 0.9764 99.86 3.2743  0.0031
gemini-2.5-pro 0.7748 0.958 0.9368 0.7242 0.0 0.0 0.0 0.9913 0.9881 99.86 3.4366 0.0117
gpt-4.1-2025-04-14 0.7731 0.9193 0.9013 0.6773 0.0 0.0 0.0 0.9866 0.9933 99.30 4.351 0.0154
gemini-2.5-flash-lite 0.771 0.2881 0.2503 0.6158 0.0 0.0 0.0 0.9197 0.4166 98.33 2.0679 0.0011
mistral-medium-2505 0.7661 0.7875 0.796 0.6444 0.0 0.0 0.0 0.9681 0.7836 99.58 3.2267  0.0033
claude-3.5-sonnet-v1 0.7539 0.9277 0.91 0.6842 0.0 0.0 0.0 0.987 0.9815 97.77 15.9461 0.0331
claude-3.5-haiku 0.7499 0.8811 0.8489 0.651 0.0 0.0 0.0 0.9729 0.9201 97.77 11.8934  0.0088
gpt-40-2024-11-20 0.7489 0.88 0.8584 0.6539 0.0 0.0 0.0 0.9766 0.9754 95.96 6.3608  0.0203
gemini-2.0-flash-lite 0.6968 0.7877 0.7572 0.5783 0.0 0.0 0.0 0.9105 0.9536 89.54 2.4511 0.0006
claude-3-haiku 0.6898 0.4962 0.4943 0.5257 0.0 0.0 0.0 0.8894 0.758 88.56 9.7084  0.0029
gpt-40-mini-2024-07-18  0.68 0.6632 0.6585 0.438 0.0 0.0 0.0 0.9448 0.7539 88.42 7.3224  0.0012
gpt-4.1-nano-2025-04-14  0.6756 0.6431 0.6315 0.2831 0.0 0.0 0.0 0.7622 0.5021 91.07 3.7023  0.0008
gemini-2.5-flash 0.5572 0.7033 0.676 0.5447 0.0 0.0 0.0 0.9921 0.9824 74.34 1.5099 0.0029
gemini-2.0-flash 0.4522 0.6017 0.5789 0.449 0.0 0.0 0.0 0.9843 0.9837 64.99 1.9098 0.0012
Open Weights (Finetuned)

Mistral-Small-3.2 0.8014 0.9368 0.9105 0.7221 0.0005 0.0019 0.0152 0.9288 0.9704 99.86 10.8891  0.0085
gemma-3-12b-it 0.8376 0.9279 0.8919 0.7219 0.0 0.0 0.0019 0.9468 0.9601 99.30 14.911 0.0116
gemma-3-27b-it 0.8372 0.9315 0.8901 0.7061 0.0 0.0014 0.0051 0.9325 0.9322 100.00 18.9624  0.0148
Qwen3-8B 0.8198 0.9197 0.8904 0.7139 0.003 0.005 0.0025 0.9629 0.9789 100.00 9.4616  0.0074
Qwen3-14B 0.7943 0.936 0.8979 0.7024 0.0011 0.0 0.0243 0.9699 0.9109 99.72 10.8778  0.0085
Qwen3-1.7B 0.7827 0.8951 0.8552 0.592 0.0026 0.017 0.0397 0.8767 0.8937 99.02 7.3623  0.0057
Qwen3-4B 0.7767 0.9147 0.8811 0.6516 0.0015 0.006 0.0228 0.9054 0.9221 98.61 9.599 0.0075
Qwen3-32B 0.7748 0.9203 0.8982 0.7087 0.0 0.0007 0.0 0.9512 0.9272 99.72 16.8119 0.0131
phi-4 0.7727 0.8783 0.8565 0.6375 0.0012 0.0025 0.0194 0.9635 0.9121 97.77 9.0272  0.007
Qwen3-0.6B 0.7659 0.8768 0.8329 0.5129  0.0044  0.0372 0.0601 0.7991 0.8892 99.72 7.2455  0.0057
gemma-3-4b-it 0.7382 0.8757 0.8443 0.6361 0.0 0.0004 0.0244 0.9059 0.9087 99.30 10.6816  0.0083

Table 5

This table compares the performance of various models on the generalization test set. The first section evaluates
closed-source models using a 1-shot prompting strategy. The second section presents results for open-weights
fine-tuned models.
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