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Abstract

RAG and fine-tuning are prevalent strategies for improving the quality of LLM outputs. However, in constrained
situations, such as that of the 2025 LM-KBC challenge, such techniques are restricted. In this work we investigate
three facets of the triple completion task: generation, quality assurance, and LLM response parsing. Our work
finds that in this constrained setting: additional information improves generation quality, LLMs can be effective
at filtering poor quality triples, and the tradeoff between flexibility and consistency with LLM response parsing is
setting dependent.

1. Introduction

Retrieval Augmented Generation is often implemented to improve the performance of LLMs on a
variety of tasks, including those pertaining to knowledge extraction [1, 2]. Automated Knowledge Base
Completion (AKBC) has long been a topic of interest [3], and has more recently seen an increase in
investigations relating to the use of LLMs, not only to create KBs [4, 5], but in some instances to act
in place of them. We adopt one such setting and task, introduced by the 2025 LM-KBC challenge, to
utilise only the given data and Qwen3’s [6] 8 Billion parameter variation without finetuning or RAG to
generate completions for KG triples'. This provided the opportunity to investigate specific facets of
what aspects of generation improve triple completion under such constraints. Therefore, our task was
to generate high quality tail entities to complete a triple, without augmentation to the assigned LLM.
We considered means of emulating aspects of RAG and finetuning without implementing either.

The presence of grounding information when prompting LLMs can influence the quality of the
generated output [7]. As such, even LLM generated supporting information might be able to improve
efficacy of example-supported generation in situations with sparse external data. Moreover, without
external data or a ground truth, evaluation of triple quality lacks a key point of comparison. LLMs have
been utilised as judges [8], which provide a convenient means of checking generated outputs against
the model’s own knowledge. Additionally, handling and formatting of LLM responses are crucial to
avoiding error propagation; while often convenient to use NLP libraries like SpaCy* for parsing, the
LLM could potentially complete the task itself. In our work, we hypothesized that it is possible to
utilise the LLM in a number of ways to holistically replace augmentation like finetuning and external
knowledge sources through handling: grounding information for generation, filtration of poor quality
triples, and cleaning of LLM responses. As such, we present an investigation of the following questions
within the constrained setting of the LM-KBC challenge:

RQ1: What type of information is useful to generating candidate tails with limited access to external data?
RQ2: Without access to the ground truth, what is an effective means for filtering poor quality triples?
RQ3: Is the flexibility of LLM entity extraction worth the tradeoff of inconsistency?
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Our primary findings indicate that within our constrained setting: additional information improves
generation quality, LLMs are effective at filtering poor quality triples if not a bit strict, and the tradeoff
between flexibility and consistency in LLM response parsing varies based on the setting.

2. Related Work

In recent years, LLMs have been more commonly used for the task of automatic knowledge base
completion. Hu et al. [4], for instance, employed LLM-generated information about a given topic in
the form of triples to retrieve new entities, applying the same technique to the newly returned entities.
He et al. [9] meanwhile, focused on a setting with few available example triples, and determined that
few-shot examples can improve one and two-hop relations. Cohen et al. [5] created a knowledge graph
from a seed entity through the generation of potential relations and subsequent tails. The creation of
the knowledge graph relied entirely on the knowledge of the chosen LLM to provide candidates in
this approach, introducing paraphrasing of the entities during the relation generation and relations
during tail generation to increase quantity and diversity of the candidates. In our work, we adapted the
paraphrasing concept to be a brief factual explanation of the entity and used the same format as [5] for
the examples provided at generation.

Masked Language models, such as BERT, have also been employed for this task. For example, in the
original LAMA Probe, Petroni et al. [10] investigated BERT for answering fill-in-the-blank style queries.
Jiang et al. [11] improved the SOTA on the LAMA task by over 8 percent by utilising more effective
prompts through mining and paraphrasing-based methods. Additionally Veseli et al. [12] found that
BERT had good generalization ability and that prompt formulation and vocabulary expansion could
significantly improve its capability. Though in a different format, we apply a similar concept of eliciting
the LLM to fill in the blank, of completing the given format rather than a sentence.

In order to derive understanding of LLMs as knowledge bases, many have investigated the information
inherently possessed in an LLM’s parameters. Hu et al. [4] noted that availability bias is a crucial issue
as, essentially, only surface information is being reached, and that which is beyond the benchmarking
or user-induced information is not being adequately explored. Moreover, LLMs can be sensitive to
perturbations as the naming of entities can impact ‘model cognition’ [13] and that LLMs are not terribly
adept at relating new knowledge with knowledge they already possess. Moreover, Berglund et al.
[14] found that LLMs typically do not learn to reverse relationships unless something like "A is B"
appears in-context. When utilising LLMs, the information presented with and the prompt itself greatly
influence the generated response. Chen et al. [15] indicated the importance of model-specific prompt
adaptation, something avoided by Wu et al. [16]’s promptless knowledge estimator where they instead
utilise similarly related entity and tail pairs. We utilise a similar promptless strategy in our approach, to
more directly assess the impact of different information in eliciting generation of tail candidates.

3. Methodology

Our task, as with the LM-KBC challenge®, was to complete a set of given initial entity and relation pairs,
and to elicit the designated LLM, Qwen3 8B, to provide a correct tail entity for each pair. A triple is
the underlying structure in a knowledge graph with the format of two entities with a relation between
them, the later of which is a ’tail’ entity. Some of the entity/relation pairs might have one, multiple,
or no actual tail entity. Our research questions address three crucial aspects of this task generation,
evaluation, and parsing; and how to successfully address it within the provided limitations. To address
the task, we constructed a three step program: firstly an initial generation, then re-generation, and
completing with a filtration process. We present an illustration in Figure 1 showing the linear process
and filtration variations.

We follow a general approach to generate an initial set of tail entities for the dataset, using the same
example based prompt as Cohen et al. [5]. This initial set of candidates could then be sent to the
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re-generation component based on the experiment. The re-generation component was introduced to
provide an opportunity for poor quality triples to be improved with the intention of reducing the number
of candidates removed during filtering. Each triple was evaluated with a call to the LLM to judge its
quality and regenerated on failure. This process could happen up to 3 times, if the candidate triple was
continually rejected. The candidate triples then reached the filtration step, and either encountered the
judge, consensus, or translation approach before formatting for evaluation. Following each component,
the LLM response was cleaned into a candidate tail before proceeding (ie. "The answer is Isla Nublar’
becomes ’Isla Nublar’), a process which itself provided means for comparing cleaning techniques. Each
of these components contributes to both the completion of the task and investigation of our research
questions.

Judge
3x

Initial Qgeneration
Generation

Translate

Consensus

(I

Figure 1: The component flow for the experiments.

RQ1 In order to address the question of what information is useful to generation (RQ1), we modified
the examples and additional information at the initial and re-generation points. Firstly, we investigated
the introduction of LLM-generated supporting information about the target entity, gained through
prompting the LLM to return facts about it. This information was provided in combination with the
examples at initial generation and re-generation to determine if it could act similarly to RAG grounding
in improving the efficacy. Another type of information we investigated was the addition of a guide
sentence to indicate the expected output type (such as a name or country) in place of the LLM generated
grounding. Many approaches, such as the baseline approach for the challenge®, utilised relation-
specific methods, in that each different type of relation had a specific type of prompt. We adapted this
concept into this guide sentence to determine if it aided the LLM in producing the correct output. We
also investigated variation in the example triples provided, comparing that of relation-specific and
entity/relation pair specific examples. The relation specific examples were the same relation type as the
target entity/relation pair, whereas the specific examples were selected on a pair by pair basis through
using the LLM to select the three most similar examples of the same relation type from the LM-KBC
validation dataset. The intention was to determine if having more similar examples might ground the
generation in more similar information to that of the target, such as potentially returning examples with
other islands if the target entity was an island. We aimed for the information grounding and specific
examples to potentially act as a simulacra of RAG, and for the relation specific guides and previous
errors to emulate fine tuning.

RQ2 Due to the constrained setting, it was necessary to implement a means of quality control that did
not rely on external verification, the focus of RQ2. Inspired by Wiland et al. [17], who used an approach
which leveraged the LLM’s ability to predict the log-likelihood of a statement to rank answer options,
we utilised the LLM to indicate the quality of the triples. We compared three variations of filtration
based off of different concepts: LLM as a judge [8], consensus similar to the duplicate reduction and
minimum instances in Cohen et al. [5], and a comparison of translation between formats. For the judge
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filter, the LLM was prompted to return a value between 0 and 100 indicating the quality of the triple.
This was done 3 times, and if the average score was 50 or more, the candidate triple was accepted. We
use the same judge for the re-generation and filter, though increase the calls to 3 times and take the
average, to better handle nonsensical answers and increase confidence of the ruling. The consensus
filter required any predicted tail to appear twice or more to be accepted, as more frequent appearances
might indicate higher confidence in a candidate tail. For the translation filter, the LLM was prompted to
convert the candidate triple into a natural language sentence. The sentence and candidate triple were
then provided in another LLM call to determine if they had the same meaning, with the intention of
nonsensical candidate tails translating poorly into a sentence and therefore not matching the original
meanings.

RQ3 For question three, to understand the tradeoff between the flexibility and inconsistency of an
LLM, we further conducted an ablation to compare the regex with LLM fallback we had been utilizing
throughout to understand the degree to which the LLM was usefully handling what the regex could not.
We similarly compared a configuration of the consensus without the LLM to equally understand if the
LLM was successfully extracting and consolidating the candidate entities.

4. Experiments and Results

For our experiments we used a stratified subset of 100 samples from the LM-KBC 2025 training dataset,
with examples extracted from the validation set. The sample was equivalent to about 1/5th of the entire
dataset, and selected to due the long computation time of the re-generation component. The sample
was randomly selected, maintaining a representative proportion for each relation type. For all LLM use,
we employed Qwen3 8B through the transformers library ° without any fine tuning or RAG. The scores
we present in the following portions are the values for F1, macro precision, and macro recall. For the
purpose of this investigation, we take information to mean any additional data and examples supplied
alongside a prompt to the LLM. Full details of our implementation & prompts can be found in our code.

4.1. RQ1: What type of information is useful to generating candidate tails with
limited access to external data?

For our first question, we began by investigating the impact of introducing LLM generated facts about
the target entity. We found that the introduction of such information was not useful to the re-generation
component, as the performance decreased from the base version without information, as shown in Table
1. As the primary difference between the initial generation and the re-generation was the use of examples
instead of previous incorrect attempts, this is likely the reason that the initial generation improved
with additional information while the re-generation did not. Therefore, the additional information
may have acted primarily as noise when introduced with incorrect attempts but acted as a form of
grounding with correct examples. In our next experiment, we evaluated the efficacy of positive and

Approach F1 Precision Recall
Base 148 .096 .320
Intial Generation .151 .097 .338
Re-generation 136 .085 .340

Table 1
Addition of information describing the target entity prior to examples at generation time.

negative examples during the re-generation component. The re-generation component allows the
unique opportunity to investigate whether the LLM is able to self-correct through the use of previous
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attempts. We find that within our setting, such information does improve precision more than examples,
both of which display improvement over format-only elicitation as shown in Table 2. Despite a lower
precision, the correct examples yields a slightly higher F1, likely due to differing performance on certain
relations, which is highlighted through the use of macro evaluation scoring. To determine the value

Approach F1 Precision Recall
Base 126 .078 .325
w/ Correct Examples 51 .097 .338
w/ Incorrect Examples (previous) .158 .103 .338

Table 2
Re-generation experiments. The base version provides only the format without examples or additional informa-
tion.

of entity/relation pair specific examples and that of relation guides, we used a baseline of relation
specific examples with additional LLM generated information. We compared this base with custom
examples for the entity/relation pair, and a version where a relation guide was used in place of the
background information. The relation guide provided a sentence stating the expected type, for instance,
for awardwonBy it requested a list of names, and countryLandBordersCountry a list of countries.

As anticipated, both the custom examples and relation guide improved on the original score as shown
in Table 3. It is likely that as the examples were already specific to the relation type, there was reduced
variance when introducing the specially selected examples. Had the base been relation unspecific it
would likely have been possible to see a larger impact. The relation guide likely fulfilled its purpose in
reducing some type irrelevant answers, which otherwise might have been difficult to achieve without
additional processing.

Approach F1 Precision Recall
Relation Specific 152101 .310
Custom for Entity/Relation .162 .107 .335
With Relation Guide 183 128 .320

Table 3
Comparison of additions to initial generation. Relation specific acts as the baseline.

4.2. RQ2: Without access to a ground truth, what is an effective means for filtering
poor quality triples?

In question 2 we focus on the addition of a filter to the process to remove poor quality triples. The
addition of any filter showed significant improvement in precision over the base version, as displayed
in Table 4. The consistent temperature judge preformed best overall in F1, over that of the judges using
an average of three different temperatures, possibly due to the reduced variance of the consistent judge
and non-number or nonsensical responses from the differing temperature version. Despite having good
precision, the translation filter also had the lowest recall, implying that it may have been very strict in
its reduction of answers, and highlighting a precision/recall tradeoff. Moreover, it involved two calls to
the LLM, the first to convert the triple into a natural language sentence, and the second to compare the
meaning of the two. This two step process may have introduced errors with propagated across, and
decreased the number of retained candidates as a result.

Interestingly, the recall is reduced as expected across all versions with the exception of the consensus.
It would be expected that in filtering out candidates the recall would decrease, however due to the use
of an LLM for the consensus, it is possible that it introduced new candidates during consolidation.



Approach F1 Precision Recall

Base (Initial only) .152  .101 .310
Judge 360 438 .305
Judge Alt. Temps 290 .286 .295
Translate 313 340 .290
Consensus 205 147 .341

Table 4

Comparison of filtering approaches. The candidate triples were identical for each and immediately following the
initial generation.

4.3. RQ3: Is the flexibility of LLM entity extraction worth the tradeoff of
inconsistency?

Finally, we conduct an ablation over the initial generation to determine the efficacy of the LLM in
handling the entity extraction, and a comparison of the consensus using an LLM approach and a
deterministic counter approach. In order to more thoroughly process the LLM responses, regular

Approach F1 Precision Recall
Regex w/ LLM Fallback .152  .101 .310
Regex only .283  .268 .300
LLM only 133 .088 270

Table 5
Comparisons of the different processing of the LLM responses. We used the combination as default.

expression based extraction of numbers and capitalized sets of words, ideally proper nouns, initially
was used with a fallback to an LLM if nothing was returned. We anticipated that the combination would
be more effective than the regular expression alone, as the LLM might be able to extract additional
valid answers. However, as the LLM only approach preformed poorly, and the version utilizing both
also saw a reduction in score from the regex only version, as shown in Table 5 we hypothesize that the
LLM’s involvement may have contributed poor quality answers rather than simply catching differing
format. Additionally, when constructing the implementation, we noticed that when the LLM generated a
candidate: the phrasing, punctuation, and capitalization was often consistent each time it was generated.
As such, the regex version’s removal of such responses may not have actually been undesirable. When

Approach F1 Precision Recall
LLM Consensus 205 147 341
Regex Consensus .147  .098 .290

Table 6
Variations in consensus method.

evaluating the difference between LLM and Python counter approaches for the consensus filter, we
anticipated that due to the variability of responses, the LLM approach would yield a lower score.
However as can be seen in Table 6, the LLM actually yielded the highest scores. It is likely that this is
due to the LLM being more flexible with it’s answers and accommodating more values with the same
meaning, whereas the Python counter function uses restrictive string matching.

As such, the tradeoff in between flexibility and consistency ultimately may be dependent on the
setting. While cleaning answers for extraneous content may be consistent in the sorts of patterns
encountered, there is a higher degree of variability in what candidate tails might be the ‘same’. For
instance, a regex can consistently extract a variety of proper nouns, likely better than an LLM can
extract an entity without finetuning; conversely the counter function cannot handle any instances of



the same phrase with different punctuation while the LLM could recognize that both NYC and New
York City are the ‘same’.

5. Conclusion

Our work provides a preliminary investigation utilizing an LLM for generation, filtration, and parsing
for the task of triple completion. While this work focused on the addition of information, it is important
to note that variations in prompt structure could yield better use of the information, as opposed to
our usage which maintained a ‘promptless’ approach for generating candidate tails wherever possible,
with the exception of the information provided. Additionally, exploration of whether these findings are
consistent across different model types and sizes could prove beneficial in future work. Our findings
show, within our constrained setting, even without RAG or finetuning it is possible to improve the
efficacy of LLM based AKBC. Both the introduction of additional LLM-provided information and LLM
based filtration improved precision beyond simple LLM calls for completion. Additionally, we found
LLM based consensus to be more effective than in-built python methods. However, we determined that
a regex is more useful in handling the outputs despite the flexibility an LLM might provide.
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