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Abstract

Pretrained language models (LMs) have significantly advanced a variety of semantic tasks and have shown promise
as sources of knowledge elicitation. While prior work has studied this ability through probing or prompting, the
potential of LMs for large-scale knowledge base construction remains underexplored. The fourth edition of the
LM-KBC Challenge invited participants to build knowledge bases directly from LMs, given specific subjects and
relations. Unlike existing probing benchmarks, the challenge imposed no simplifying assumptions on relation
cardinality—allowing a subject entity to be linked to zero, one, or multiple object entities. To ensure accessibility,
the challenge featured a single track based the same LLM to be used by all participants. Five submissions were
received, which explored a variety of ideas from self-consistency, self-RAG, reasoning, and prompt optimization.

1. Introduction

Large language models (LLMs) such as Qwen [1], Llama [2], and ChatGPT [3] are optimized for masked
language modeling or text completion and have achieved remarkable success on a wide range of
downstream NLP tasks, including question answering, information retrieval, and machine translation.
More recently, LLMs have attracted attention for their potential to directly produce structured knowledge
from their parameters. This is promising, as current knowledge bases (KBs) such as Wikidata [4] and
ConceptNet [5], though central to the Semantic Web ecosystem, remain inherently incomplete [6].
KB construction is particularly challenging due to the optional nature of many relations (e.g., place
of death, cause of death, parent organization) and the presence of multiple correct objects for a single
subject-relation pair (e.g., shares border, employer, speaks language). Moreover, KBs must be materialized
for trustworthy and consistent downstream usage [7].

Traditional approaches to knowledge base construction (KBC) have leveraged unstructured
text [8, 9], crowdsourcing [10, 11], and semi-structured resources [12, 13, 14]. Automated KBC has
long been a core topic in the Semantic Web community, spanning decades of research on knowledge
extraction, consolidation, and schema matching. The seminal LAMA paper [15] demonstrated that
language models could rank correct object tokens highly when prompted with a subject-relation query.
While subsequent work has reported both progress [16, 17] and criticism [18, 19, 20], the potential
of LMs for KBC remains underexplored. Importantly, the LAMA benchmark and its variants are not
designed for true KB construction. Although LLMs are increasingly studied in Semantic Web tasks
such as entity recognition, relation extraction, and reasoning, most evaluations of factual knowledge
extraction remain rooted in NLP-style benchmarks with simplified assumptions.

This challenge seizes the opportunity to bridge the gap by exploring how LLMs can contribute
to practical KB construction. Continuing previous efforts [21, 22, 23, 24], the 4th edition focuses
on leveraging a single locally runnable LLM to construct KBs without prior knowledge of relation
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cardinalities. Specifically, given a subject-relation pair, participants were asked to design an LLM-based
system that generates candidate subject-relation—object triples, and decides whether to accept or reject
each one. The predictions were evaluated using F1-score.

2. Task Description

In the LM-KBC Challenge, the knowledge base construction task is defined as follows: given a subject
entity s and a relation r, the goal is to generate all correct object entities [01, 09, ..., 0x| by probing
language models. For example, given the tuple (Greece, countryLandBorderCountry), a participant
might query the language model with a prompt such as “Greece shares a border with [MASK]”. The
system should then output country entities like [Albania, North Macedonia, Bulgaria, Turkey], in any
order. Similarly, for numeric-answer relations, such as (Wembley Stadium in London, hasCapacity),
the expected output would be [“900007].

Participants are required to build LM-based systems that produce entity labels without relying on
external resources (e.g., web search engines, retrieval-augmented generation), i.e., submitted systems
had to be fully self-contained. For comparison, we released a baseline method based on prompt templates,
covering both question-style prompts and fill-in-the-blank templates.

3. Dataset Construction

Relation Train Validation Test Special features
awardWonBy 10 10 10 Many objects per subject
companyTradesAtStockExchange 100 100 100 Null values possible
countryLandBordersCountry 68 68 67 Null values possible
hasArea 100 100 100  Object is numeric (unit: km?)
hasCapacity 100 100 100 Object is numeric
personHasCityOfDeath 100 100 100 Null values possible

Table 1
Dataset statistics. The numbers indicate the count of subject-relation pairs.

The dataset was built by querying Wikidata and manually refining the results to reduce errors and
improve quality. Compared with previous editions [21, 22], the 2025 version focuses on six challenging
relations with distinctive characteristics, enabling participants to design approaches tailored to specific
problem types. These relations fall into the following categories:

1. Relations with many missing objects (e.g., a person’s place of death, or the stock exchange
where a company is listed).

2. Relations with long object lists (e.g., the list of award winners in a given field).
3. Standard relations carried over from the previous edition.

For each relation, up to 100 subject entities are provided for the training, validation, and hidden test
sets used in challenge evaluation. The relations were carefully selected to ensure diversity, with subject
entities spanning different types such as persons, countries, and organizations. The subject—object pairs
were automatically sampled from Wikidata under the following constraints:

1. Balanced object list lengths: Longer lists were oversampled to avoid dominance by single-object
examples.

2. Balanced subject popularity: Using proxies such as total Wikidata statements or web hits, we
ensured roughly a 50/50 split between popular and long-tail subject entities for each relation.

3. Balanced object complexity: Both single-token and multi-token object entities were included.



Codalab Average

Rank Method Cite
Username F1-score
1 edarsem Relation-Wise Self-consistency 0.4439  Albert-Roulhac and Zouagq, 2025
2 JingboHe Self-RAG and DaC 0.4052 He and Razniewski, 2025
3 acmc Soft Thinking 0.3977 Creo et al., 2025
4 isam LLM-as-a-Judge 0.2406 Sam, 2025
5 aclay Prompt optimization 0.2159 Clay et al., 2025
Table 2

Leaderboard ranking of participating systems, including CodalLab usernames, methods, and citations.

The 2025 dataset is publicly available on GitHub'. Participating systems submit their predictions on the
CodaLab platform? [25], where final scores are computed on the hidden test set.

4. Comparison with Previous Editions

Compared with previous editions of the LM-KBC challenge [21, 22], the 4th edition introduced the
following characteristics:

1. More diverse relations: As in the 3rd edition, we continue to use a smaller, representative set of
relations grouped into topical categories, enabling participants to better tailor their approaches.
Compared with the 3rd edition, the numeric-answer relations were replaced by two new ones.

2. Single parameter-bounded track: The challenge continues to follow a single-track format.
Building on last year’s fixed limit of 10 billion parameters for LLMs, we further standardized the
setting by requiring participants to use Qwen3-8B [1].

3. High data quality: As before, substantial manual effort was invested to ensure the dataset meets
the highest quality standards.

5. Results of Submissions

Table 2 presents the final ranking of the five participating systems, all of which outperformed the
baseline pipeline.

The top-performing system, Relation-Wise Self-consistency (ReWiSe) by Albert-Roulhac and Zouaq,
achieved the highest average F1-score of 0.4439. Their method generates synthetic chain-of-thought
reasoning paths and applies relation-wise self-consistency to aggregate multiple LLM outputs. The
other systems employed distinct strategies:

He and Razniewski proposed a hybrid system that combines two specialized pipelines. It processes
general relations using a Self-RAG approach with a description-first, extraction-second design. For the
complex awardwonBy relation, it uses a divide-and-conquer module to aggregate and filter candidates
from decomposed subqueries.

Creo et al. proposed Soft Thinking, which inserts soft prompt embeddings within the chain-of-
thought reasoning section.

Clay et al. implemented a multi-stage pipeline where the LLM acts as both as generator and judge.
Their method generates multiple candidate triples, iteratively judges and re-runs low-scoring ones,
filters the results by consensus, and applies a final multi-pass quality judge to select the final outputs.

Sam used a mixed-strategy prompting approach, employing three distinct system prompts based
on relation type and six unique, detailed user prompts for each individual relation, with no
additional post-processing of the model’s output. Detailed descriptions of all systems are provided in
the corresponding papers included in the proceedings.

'https://github.com/Im-kbc/dataset2025
*https://codalab.lisn.upsaclay.fr/competitions/23218


https://github.com/lm-kbc/dataset2025
https://codalab.lisn.upsaclay.fr/competitions/23218

From the detailed per-relation results in Table 3, we observe that no single method consis-
tently outperforms the others across all relations. The ReWiSe system proposed by Albert-
Roulhac and Zouaq achieved the highest Fl-score in three out of six relations. The Self-
RAG and DaC, Soft Thinking, and LLM-as-a-Judge methods achieved the best performance on
awardWonBy, companyTradesAtStockExchange, and hasCapacity, respectively. Overall, the re-
lations awardwonBy, hasArea, and hasCapacity remain particularly challenging. Compared with
the baseline, system improvements on these relations were marginal, and their absolute F1-scores stayed
relatively low.



CodalLab Username Method Precision Recall F1-score

awardwonBy
edarsem Relation-Wise Self-consistency 0.0540 0.1929 0.0825
JingboHe Self-RAG and DaC 0.1639 0.2052 0.1759
acmc Soft Thinking 0.1609 0.0370 0.0573
isam LLM-as-a-Judge 0.1910 0.1591 0.1390
aclay Prompt optimization 0.7000 0.0000 0.0000
baseline - 0.2399 0.0900 0.1170

companyTradesAtStockExchange

edarsem Relation-Wise Self-consistency 0.6700 0.6290 0.5427
JingboHe Self-RAG and DaC 0.6950 0.5440 0.5057
acmc Soft Thinking 0.6667 0.6470 0.5547
isam LLM-as-a-Judge 0.1783 0.6043 0.1708
aclay Prompt optimization 0.8300 0.4300 0.3900
baseline - 0.1850 0.5907 0.1670

countryLandBordersCountry

edarsem Relation-Wise Self-consistency 0.9240 0.8942  0.8900
JingboHe Self-RAG and DaC 0.9480 0.8279 0.8649
acmc Soft Thinking 0.8173 0.7909 0.7711
isam LLM-as-a-Judge 0.7377 0.8172 0.6909
aclay Prompt optimization 0.5821 0.1493 0.1343
baseline - 0.7684 0.8125 0.7025
hasArea
edarsem Relation-Wise Self-consistency 0.3200 0.3200 0.3200
JingboHe Self-RAG and DaC 0.3100 0.3100 0.3100
acmc Soft Thinking 0.1900 0.1900 0.1900
isam LLM-as-a-Judge 0.2600 0.2600 0.2600
aclay Prompt optimization 0.9800 0.0300 0.0300
baseline - 0.2400 0.2400 0.2400
hasCapacity
edarsem Relation-Wise Self-consistency 0.1400 0.0900 0.0900
JingboHe Self-RAG and DaC 0.1900 0.1100 0.1100
acmc Soft Thinking 0.0900 0.0900 0.0900
isam LLM-as-a-Judge 0.1500 0.1500 0.1500
aclay Prompt optimization 0.8200 0.0000 0.0000
baseline - 0.0400 0.0400 0.0400
personHasCityOfDeath
edarsem Relation-Wise Self-consistency 0.8500 0.6400  0.5600
JingboHe Self-RAG and DaC 0.6500 0.6500 0.4100
acmc Soft Thinking 0.9300 0.6000 0.5400
isam LLM-as-a-Judge 0.0900 0.6600 0.0900
aclay Prompt optimization 0.9100 0.5800 0.5200
baseline - 0.0800 0.6500 0.0800

Table 3
Per-relation macro-averaged results. Systems are listed with their CodalLab usernames and methods, ranked
consistently with Table 2.
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