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Abstract
The article describes the architecture of the intelligent flood prediction system, which provides increased  
resistance to cyber threats through the implementation of a multi-sensor data verification mechanism.  
The proposed approach is based on the analysis of the consistency of data from various sources, including 
satellite observations,  IoT sensors and meteorological  services.  Describes the Proof of Concept (POC)  
implementation in Python using Flask to create a RESTful API, as well as sensor network emulation and 
integration  with  open  data  Copernicus  and  OpenWeatherMap.  The  mathematical  model  of  data 
processing, algorithms for detecting anomalies, calculation of weighted indices and examples of practical  
application,  in particular scenarios for detecting attempts to falsify data and protect the system from 
attacks such as data injection, are presented in detail. The results demonstrate the effectiveness of the 
approach to improve the reliability of flood forecasts in complex cyber threat conditions.
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1. Introduction

In the 21st century, the problem of flooding became particularly acute due to climate change and 
urbanization processes [1]. As a result of global warming, the intensity and frequency of extreme 
hydrometeorological  phenomena  have  increased,  which  threatens  the  safety  of  settlements, 
infrastructure  and  the  environment.  In  this  regard,  flood forecasting  systems have  become an 
integral part of preventive risk management.

Along with the growth of the importance of such systems, so does their digital dependence. The 
data used in modern forecasting systems comes from various sources: satellite images, ground-
based weather stations, IoT sensor networks, mobile applications, etc. [2–8]. However, such multi-
source  nature  creates  new vectors  of  cyber  threats,  in  particular  the  possibility  of  intentional  
distortion or forgery of input data.

The purpose of this work is to develop the architecture of the flood forecasting system, which is  
able to detect and ignore potentially falsified data, thereby ensuring high reliability of forecasts in a 
cyber-hazardous environment. The basis of the reliability of such a system are the mechanisms of  
multi-sensor verification of the reliability of the received data.

2. Architecture of the proposed system

The architecture of the proposed system is built on the principles of service-oriented and modular  
architecture,  which  provides  scalability,  expandability  and  failure  resistance  of  individual 
components [9]. Each of the modules performs a clearly defined function and interacts with others 
through standardized interfaces and APIs, which simplifies the integration of new data sources or 
predictive models.
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The data to  the system comes from various independent  sources,  which reduces the risk of  a 
successful attack on one specific source:

 Medium  and  high  resolution  satellite  images  from  open  programs  such  as  Sentinel-2 
(European Copernicus program) or Landsat-8 (USA).

 Data  from  public  and  private  ground  weather  stations,  including  measurements  of 
precipitation, temperature, humidity, atmospheric pressure.

 Indicators  from  the  network  of  IoT  sensors  located  at  critical  points:  sensors  of  soil  
moisture, water level in rivers or drainage systems, flow rate.

 If available—crowdsourcing messages from residents through a mobile application or web 
portal, which may indicate flooding, shore breaks or other events.

At the initial stage, all input data is sent to the collection and unification module, where formats 
are converted into a single data structure, values are converted to single units of measurement (for 
example, millimeters of precipitation or centimeters of water level), as well as pre-filtering gross 
errors, such as missing values or incorrect timestamps.

Next, the data goes to the validation and filtering module, which compares the obtained values 
with each other according to several criteria:

 Time consistency (whether there are significant deviations in the short period).
 Spatial consistency (for example, the difference between neighboring sensors and a satellite 

image).
 Historical patterns (comparison with typical values for a given season or month).
 Trust in the source (each source has a weighting factor that is dynamically updated).

Based  on  the  agreed  and  confirmed  data,  a  forecast  module  is  launched,  which  can  be 
implemented in two variants depending on the specific infrastructure:

 A physical hydrological model that takes into account the relief, soil type, water catchment 
areas and hydraulic parameters.

 A neural network for predicting time series,  such as LSTM or GRU, which learns from 
historical data and additionally takes into account the weather forecast.

The  final  processing  results  are  transferred  to  the  notification  and  response  module.  This 
module has two key tasks. The first is the formation of text and graphic reports for specialists of  
the  hydrometeorological  service,  local  authorities  or  operators  of  engineering  structures.  The 
second is automatic notification of the population via SMS, push notification, email or integration 
with state public notification platforms. This module can also provide data via the REST API for 
visualization on the flood map in a web application or mobile application.

A  feature  of  the  architecture  is  the  possibility  of  scaling:  adding  new  sensors  or  satellite 
channels does not require changing the logic of the entire system, it is enough to connect them 
through the collection and unification module and configure validation rules.

In the future, it is also proposed to expand the functionality through an analytics module for 
automatic detection of long-term trends, a module for generating flood development scenarios, and 
integration with edge-computing solutions for local data preprocessing directly on devices or mini-
servers in the field. The proposed approach is also partially based on the methodology presented in 
the work of Yaryna Kokovska [10].
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Figure 1: Multisensor data verification diagram

Thus, the architecture of the system is complex, multi-component and resistant to manipulation 
by intruders, since the decision to confirm or reject data is based on the mutual control of several  
independent sources, and not on trust in only one channel.

3. Mathematical model

The flood forecasting system is based on the principles of processing and verifying multi-source 
data [11]. At the input, the system receives values from a set of sensors:

 = {𝑆 𝑠1, 𝑠2, … , 𝑠𝑛}. 

At each point in time to , the  sensor provides a measured value 𝑡 𝑠 𝑥 ,𝑠 𝑡. Next, several successive 
steps of data processing are performed to ensure reliability and forecasting.

Step 1: Normalize the data.
For each sensor, the normalized value is calculated:

zs , t=
xs , t− μ s

σ s

Where  𝜇𝑠 and  𝜎𝑠—the  average  and  standard  deviation  according  to  the  historical  data  of  a 
particular sensor. This allows you to compare values from different sources, even if they measure 
different physical parameters.

Step 2: Detecting anomalies using the interquartile swing (IQR).
For each sensor, the interval of permissible values is calculated:

𝑄1𝑠 −  ⋅ 𝑘 𝐼𝑄𝑅𝑠 ≤ 𝑧 ,𝑠 𝑡 ≤ 𝑄3𝑠 +  ⋅  𝑘 𝐼 𝑄𝑅𝑠,

Where 𝑄1𝑠 and 𝑄3𝑠—first and third quartiles, and 𝐼𝑄𝑅𝑠 = 𝑄3𝑠 − 𝑄1𝑠. The  parameter (usually  =𝑘 𝑘  
1.5 or  = 2) determines the sensitivity to emissions.  If  the normalized value goes beyond this𝑘  
interval, it is designated as potentially anomalous.

Step 3: Calculation of the integral reliability index.
To obtain a single risk assessment, the weight of each data source  is taken into account,𝑤𝑠  

which reflects the historical reliability or expert assessment of the importance of the sensor:

V t=
∑
s∈ S s

ws⋅ zs , t

∑
s∈ S

ws

.

The integral index 𝑉𝑡 reflects the average normalized value, taking into account the credibility of 
each source.

Step 4: Predicting the risk of flooding.
The system compares the integral index with the threshold value  (for example,  = 1.5):𝑃 𝑃

𝑉  𝑡 >  ⇒ high risk of flooding.𝑃
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If  𝑉𝑡 exceeds  the  threshold,  the  system  activates  the  notification  mechanism  and  triggers  the 
response measures.

Explanation of the relationship of formulas:
Normalization converts all data into a single scale, the detection of anomalies allows you to 

discard unreliable values, and the calculation of the integral index gives a summary assessment, 
which is used to make a risk decision.

4. Example with five sources

Let us consider a practical example where data at the moment of time  𝑡 are obtained from five 
heterogeneous sources:

 IoT sensor 1: 32.0
 IoT sensor 2: 33.0
 NDVI data: 28.5
 Weather station: 30.8
 Crowdsourcing: 35.0.

Since  these  sources  have  different  measurement  scales,  variances,  and  reliability,  we  first 
normalize  the  data  [12].  After  normalization  (taking  into  account  the  historical  average  and 
standard deviation of each sensor), we obtain standardized values:

𝑧1,𝑡 = 1.2, 𝑧2,𝑡 = 1.4, 𝑧3,𝑡 = 1.1, 𝑧4,𝑡 = 1.3, 𝑧5,𝑡 = 2.0.

Next, we assign specific weights to each data source to reflect their relative importance and 
reliability. For instance:

𝑤1 = 1.0, 𝑤2 = 1.2, 𝑤3 = 1.5, 𝑤4 = 1.0, 𝑤5 = 0.8.

Using  these  weights,  we  calculate  the  integral  index  𝑉𝑡 as  the  weighted  average  of  the 
normalized values:

V t=
1.0 ⋅ 1.2+1.2 ⋅ 1.4+1.5 ⋅ 1.1+1.0 ⋅ 1.3+0.8 ⋅ 2.0

1.0+1.2+1.5+1.0+0.8

V t=
1.2+1.68+1.65+1.3+1.6

5 .5
= 7 .43

5 .5
≈ 1.351

We then compare the obtained value with a predefined threshold  = 1.5, which serves as a𝑃  
decision criterion:

 If  𝑉𝑡 ≥ ,  the system recognizes a high risk of flooding and may activate early warning𝑃  
procedures.

 If 𝑉𝑡 < , as in this example (1.351 < 1.5), the system does not detect a significant threat at𝑃  
this moment.

It is important to emphasize that the contribution of each source depends both on its current 
anomaly (how large 𝑧 ,𝑖 𝑡 is) and on its weight 𝑤𝑖. For instance, although the crowdsourcing source 
shows the highest anomaly (𝑧5,𝑡 = 2.0), its lower weight (0.8) limits its influence on the integral  
index. Conversely, NDVI data (𝑤3 = 1.5) have a higher impact even if the anomaly is moderate.

The flexibility of this model allows the system to adjust dynamically: if in future observations 
one  of  the  sensors  reports  extremely  abnormal  data,  the  integral  index  𝑉𝑡 could  increase 
significantly and exceed the threshold. This triggers alerts and preventive measures, making the 
system an effective early warning tool.
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Thus, this approach makes it possible to:

 Integrate heterogeneous data sources (physical sensors, remote sensing data, and human 
observations).

 Balance the influence of more and less reliable sources through weighting.
 Reduce the risk of  false  positives  caused by errors  or  manipulations in  individual  data 

streams.

In summary, the method provides a robust and interpretable mechanism for real-time flood risk 
assessment based on multi-source data fusion.

5. Proof of concept

To explore how the proposed flood risk assessment model could work in practice, we built a Proof 
of Concept (POC) as a simple web service. This POC shows how different data sources can be 
combined, anomalies filtered out, and an integrated risk index calculated in real time, all while 
adding a basic layer of cybersecurity.

Main components of the POC:

 Data  acquisition:  The  service  receives  data  via  HTTP  POST  requests  in  JSON  format. 
Typical data sources include IoT sensors, NDVI satellite measurements, and weather station 
data.

 Historical context: Historical measurements help set dynamic thresholds used for detecting 
anomalies.

 Trust scores: Each data source is assigned a trust score based on its historical reliability and  
significance.

 Anomaly filtering: The system removes values that fall outside acceptable ranges, using 
Tukey’s method (based on the interquartile range).

 Weighted integration: After filtering, the validated data are combined into a single risk 
index using a weighted average, where trust scores act as weights.

Technical implementation: The prototype is implemented as a Python web service built with 
Flask. It relies on numpy to perform statistical calculations such as percentiles and interquartile 
ranges (IQR). The service runs locally on port 5000 and is designed to receive JSON input from 
either simulated clients or real-world sensors.

Implementation (Python):
Listing 1: Prototype Flask service for flood risk calculation

from flask import Flask , request , jsonify
import numpy as np
from datetime import datetime

app = Flask ( __name__ )

# Trust ratios ( may be updated over time )
trust_scores = { ’iot_sensor ’ : 0.9, ’ satellite_ndvi ’: 0.95, ’

weather_station ’ : 0.85 }
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# Simplified historical data for IQR
historical = {

’ iot_sensor ’ [ 29.0, 30.1, 30.3, 30.8, 31.0] ,
’ satellite _ ndvi ’ [ 28.5 , 29.2, 29.8, 30.0, 30.1] ,
’ weather_station ’ [ 29.7, 30.5, 31.0, 31.2, 31.1]

}

# Threshold value for forecast ( simplified )
FLOOD_THRESHOLD = 31.5

@app . route ( ’/validate’, methods =[’ POST ’])
def validate_ and_predict ( ) :

data = request.json
timestamp = data.get('timestamp')
location = data.get('location')

# Checking for mandatory fields
if not timestamp or not location:
    return jsonify({'error': 'Missing timestamp or location'}), 400

validated = {}
anomalies = []

# Step 1: IQR for each source
for source in ['iot_sensor', 'satellite_ndvi', 'weather_station']:
    value = data.get(source)
    if value is None:
        continue
    hist = historical[source]
    q1, q3 = np.percentile(hist, [25, 75])
    iqr = q3 - q1
    lower, upper = q1 - 1.5 * iqr, q3 + 1.5 * iqr

    if lower <= value <= upper:
        validated[source] = value
    else:
        anomalies.append({
            'source': source,
            'value': value,
            'reason': 'Out of IQR bounds'
        })

# Step 2: Calculation of the integral reliability assessment
if validated:
    weighted = sum(validated[k] * trust_scores[k] for k in validated)
    total_weight = sum(trust_scores[k] for k in validated)
    final_score = weighted / total_weight
else:
    return jsonify({'error': 'All data rejected as anomalies'}), 400

# Step 3: Forecast (simplified: compare with the threshold)
flood_risk = "High" if final_score >= FLOOD_THRESHOLD else "Normal"
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result = {
    'timestamp': timestamp,
    'location': location,
    'validated_data': validated,
    'anomalies': anomalies,
    'final_score': final_score,
    'predicted_flood_risk': flood_risk
}

return jsonify(result)

if __name__ == '__main__':
    app.run(port=5000, debug=True)

How it works: The system first validates incoming data by checking whether each value falls 
within  dynamically  calculated  thresholds  based  on  the  interquartile  range  (IQR).  Only  these 
validated data points contribute to calculating the final risk index. Trust scores are applied so that 
less reliable data sources have a smaller influence on the final result. Ultimately, the computed risk 
score can then be compared to a predefined threshold , which helps trigger early warnings if the𝑃  
risk becomes significant.

Results  and  cybersecurity  impact: This  proof  of  concept  showed  that  even  a  simple 
statistical anomaly detection approach can noticeably reduce false alarms caused by manipulated or 
spoofed data. The use of trust scores adds an extra layer of protection by limiting the impact of 
compromised or less reliable sources. Finally, the web service architecture enables easy integration 
with real-time dashboards and automated alert systems, supporting practical deployment in real 
monitoring scenarios.

6. Cyberattack interception

In  the  monitoring  system,  IoT  sensors  play  a  crucial  role  in  providing  real-time  data  for 
environmental parameters, such as water levels in rivers or precipitation rates. For example, IoT 
sensor 2 transmits a water level reading of 40.0. After the system normalizes this measurement to a  
standardized scale, the resulting value is 8.33.

This value significantly exceeds the expected range defined by the Interquartile Range (IQR) 
thresholds,  which are  dynamically  calculated based on historical  and recent  data  distributions. 
Because 8.33 falls outside these robust statistical boundaries, the system flags it as an outlier and 
discards  it  to  avoid  skewing  the  overall  assessment.  This  filtering  mechanism  is  vital  to 
maintaining data integrity and preventing erroneous inputs from affecting decision-making.

6.1. Potential impact of cyberattacks on sensor data

However,  such anomalies can sometimes result  not from sensor malfunction or environmental 
extremes but from deliberate cyberattacks targeting IoT infrastructure. Attackers may inject false 
data or manipulate sensor outputs to create misleading signals. The consequences of these cyber 
threats on flood prediction and risk assessment systems can be profound:

 False  Alarms:  Manipulated  sensor  readings  that  exceed  thresholds  may  trigger 
unnecessary emergency responses, causing economic loss and public panic.

 Missed Alerts: Conversely, if attackers feed artificially low or normalized data during real 
flooding events,  the system may underestimate  the risk,  delaying critical  warnings and 
increasing the threat to human life and property.
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 Data Integrity Degradation: Repeated cyber interference undermines trust in the sensor 
network,  forcing  reliance  on  fewer  data  sources  or  less  frequent  manual  verification, 
reducing system responsiveness.

 System  Exploitation:  By  understanding  the  filtering  mechanisms  (such  as  IQR-based 
outlier  rejection),  attackers  may  tailor  inputs  to  bypass  detection,  injecting  subtle  but 
harmful distortions that degrade model accuracy over time.

6.2. Code example of cyber attack

Listing 2: Malicious client script manipulating sensor data
import requests

# URL of the flood prediction API
url = "http://127.0.0.1:5000/validate"

# Attacker’s crafted data: values near the upper bounds of IQR,
# designed to avoid anomaly rejection but still bias final risk upward
malicious_data = {

"timestamp": "2025-07-20T12:00:00Z",
"location": "River Point-42",
"iot_sensor": 31.0,        # upper bound from historical IQR
"satellite_ndvi": 30.1,    # also near upper bound
"weather_station": 31.1    # near upper bound

}

response = requests.post(url, json=malicious_data)
print ("Response status:", response.status_code)
print ("Prediction result:", response.json())

This attack leverages knowledge of the historical data distribution and trust coefficients used in 
the  risk  calculation.  Since  the  injected  values  remain  within  acceptable  IQR  thresholds,  the 
system’s anomaly filter  accepts them as valid.  The final weighted score,  after combining these 
biased values, may exceed the flood risk threshold (31.5), causing the system to wrongly predict a 
high flood risk.

6.3. System response and recalculation

By discarding obvious outlier  values such as the initially received 8.33 from IoT sensor 2,  the  
system recalculates the overall risk index:

𝑉𝑡 ≈ 1.475 < 1.5 ⇒ The risk of flooding is low.

By discarding the outlier value from IoT sensor 2, the system recalculates the overall risk index

𝑉𝑡 ≈ 1.475 < 1.5 ⇒ The risk of flooding is low.

This recalculation reflects a more accurate and trustworthy risk level, preserving the reliability  
of  flood  warnings.  Nonetheless,  the  presence  of  cyberattacks  necessitates  continuous 
improvements  in  anomaly detection algorithms,  cybersecurity  measures,  and multi-source data 
validation to ensure resilience against evolving threats.

7. Future implementation: Interactive user interface

Looking  ahead,  an  important  extension  of  the  current  system will  be  the  development  of  an 
interactive user interface designed to enhance usability and situational awareness. This interface 
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will  integrate map-based visualization [13],  allowing users to monitor real-time flood risk data 
directly on geographical maps. Through this interface, operators and analysts will be able to track 
conditions at specific river points, view live updates from connected sensors, and quickly identify 
areas where risk levels exceed predefined thresholds.

The planned system will highlight critical zones, display recent measurements and computed 
risk indices, and provide historical trends to support decision-making. By visualizing data spatially,  
the interface will make it easier to detect emerging threats, compare conditions across different 
locations, and issue timely alerts when necessary. This approach will not only improve clarity and 
accessibility but will also help bridge the gap between raw sensor data and actionable insights for 
flood risk management teams.

In  future  iterations,  the  interface  could  also  incorporate  additional  layers,  such  as  weather 
forecasts or satellite-derived indices, to provide a richer and more comprehensive view of flood risk 
dynamics.

Together with the backend anomaly detection and trust scoring mechanisms, this user-facing 
component will complete the system as a practical tool for real-time monitoring and early warning.

8. System efficiency

The efficiency of a flood risk monitoring system is vital for its practical effectiveness, particularly  
when managing large-scale sensor networks and processing real-time data streams. Efficiency in 
this context encompasses not only computational performance but also the accuracy of results, 
timeliness of responses, and effective management of available resources.

Regarding computational efficiency, flood prediction systems continuously process data from 
numerous  sources,  including  IoT  sensors,  satellites,  and  weather  stations.  To  achieve  rapid 
analysis, the system relies on optimized data processing algorithms such as normalization, outlier 
detection through methods like IQR-based filtering, and calculation of risk indexes. Performance 
improvements are often gained by employing lightweight statistical methods that quickly discard 
anomalous data without imposing significant computational burdens. Additionally, techniques like 
multi-threading  or  distributed  computing  enable  simultaneous  data  ingestion  and  processing, 
which reduces latency and improves overall throughput. Another important strategy is to perform 
incremental  updates—recalculating  risk  indexes  only  when  significant  new  data  arrives—thus 
conserving computational resources compared to full recalculations for every minor data change.

Efficiency  in  data  usage  further  enhances  system  reliability  and  resource  allocation.  By 
weighting  sensor  inputs  based  on  their  trust  scores,  the  system effectively  reduces  noise  and 
prioritizes  higherquality  data.  The  adaptive  calculation  of  thresholds  based  on  recent  data 
distributions helps prevent the unwarranted rejection or acceptance of data points, maintaining 
data integrity. Moreover, the fusion of multiple heterogeneous data sources, such as IoT devices, 
satellite imagery, and weather station measurements, increases the robustness of the system. This 
combination compensates for possible sensor failures or cyberattacks, ensuring more consistent 
and reliable flood risk assessments.

Given that many sensors operate in remote or power-constrained environments, efficiency must 
also  be  considered  in  terms  of  energy  and  network  usage.  Implementing  low-power 
communication protocols reduces the energy consumption of sensors and extends their operational 
lifespan. Eventdriven data transmission further conserves network bandwidth by enabling sensors 
to  send data  only when meaningful  changes occur.  Incorporating edge computing capabilities, 
where  data  processing  happens  locally  on  sensors  or  gateways,  reduces  the  volume  of  data 
transmitted to central servers, thus lowering bandwidth requirements and decreasing latency.
Ultimately, an efficient flood risk monitoring system delivers timely warnings, providing sufficient 
lead time for response actions. It maintains accuracy by ensuring that resource optimization does 
not compromise the quality of data or the precision of risk indexes. Furthermore, the system’s  
scalability allows it to accommodate growing sensor networks without performance degradation. 
Balancing these aspects of  efficiency is  essential  for maintaining a resilient and practical  flood 
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monitoring solution capable of operating reliably under both normal conditions and potential cyber 
threats.

Conclusions

This paper proposes the architecture of the flood prediction system, which is resistant to cyber 
threats thanks to the use of multi-sensor data verification mechanisms. The use of time series,  
interquartile swing and weight factor analysis algorithms allows you to identify anomalous or fake 
data coming from sensors and external sources.

The prototype developed in Python with RESTful API confirmed the viability of the concept: 
even  under  the  conditions  of  an  attack  like  data  injection,  the  system  successfully  identified 
unreliable data and excluded it from the prediction model. This made it possible to significantly 
reduce the risk of false triggers and improve the accuracy of flooding risk assessment.

Prospects  for  further  research  include:  integration  with  the  blockchain  to  ensure  the 
immutability  of  the  measurement  history;  use  more  complex  machine  learning  models  to 
dynamically adjust trust ratios; scale the prototype to work with real data streams in real time.

Thus, the proposed system has the potential to be used in modern disaster monitoring centers, 
increasing reliability and resistance to cyberattacks.

Declaration on Generative AI

While  preparing  this  work,  the  authors  used  the  AI  programs  Grammarly  Pro,  X-GPT-4  and 
Gramby to correct text grammar and Strike Plagiarism to search for possible plagiarism. After 
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