
Intelligent system for hyperspectral image processing 
based on generative adversarial networks⋆

Victor Sineglazov1,† and Oleksii Shcherban1,∗,†

1 State University “Kyiv Aviation Institute”, 1 Liubomyra Huzara ave., 03058 Kyiv, Ukraine

Abstract
This  paper  addresses  the  challenge  of  hyperspectral  image  classification  under  conditions  of  limited 
labeled  data  and  class  imbalance.  An improved  method  based  on  the  AC-WGAN-GP architecture  is 
proposed to enhance classification performance through dataset augmentation with synthetic samples  
generated via class-aware sampling and label embedding. The generator, discriminator, and classifier were 
modified  accordingly,  resulting  in  high  classification  accuracy  on  standard  benchmark  datasets.  The 
proposed  approach  demonstrates  strong  potential  for  applications  in  remote  sensing  and  precision 
agriculture.
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1. Introduction

The  agricultural  sector  faces  challenges  from population  growth,  climate  change,  and  limited 
resources. Precision agriculture tackles these issues using advanced technologies to improve yields 
and resource management [1].

Hyperspectral imaging (HSI) stands out for capturing detailed spectral profiles that reveal early 
signs of crop stress, such as nutrient deficiencies or disease [2, 3]. Combined with thermal imaging, 
it enhances monitoring during critical growth phases.

Traditional  field-based  approaches  are  labor-intensive  and  unsuitable  for  real-time  analysis 
[4, 5]. In contrast, AI models efficiently process high-dimensional data from satellites, UAVs, and 
ground platforms—each with trade-offs in resolution, cost, and scalability [6–9].

Satellites offer broad coverage but lower resolution [10]; UAVs provide detailed data but have 
limited range and higher cost [11]; ground systems offer precision but poor scalability [5].

Despite these limitations, satellite sensing—when combined with AI and sensor fusion—offers a 
scalable solution for large-scale precision agriculture.

2. Hyperspectral and multispectral imaging

Hyperspectral imaging (HSI) captures hundreds of contiguous spectral bands across the visible to 
SWIR range, enabling fine-grained detection of crop conditions such as nutrient deficiency, disease, 
and water stress [2, 12]. In contrast, multispectral imaging (MSI) uses fewer (3–15) broader bands 
targeting key wavelengths, supporting vegetation indices like NDVI and EVI [5].

HSI is valuable in precision agriculture due to its ability to distinguish visually similar crops and 
detect  early  plant  stress  [13,  14].  However,  its  high  dimensionality  complicates  storage  and 
analysis, often requiring PCA, ICA, or autoencoders. Moreover, deep learning models demand large 
annotated datasets,  which are costly to produce [15].  Spectral  similarity among classes further 
complicates classification, often mitigated via spatial context or data augmentation [7].
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HSI combines spectroscopy and imaging, producing a 3D cube with rich spectral-spatial data [16]. 
Pixel-wise classification supports tasks like target detection, change monitoring, and crop mapping 
[17, 18]. While early methods used SVM or KNN, modern approaches rely on CNNs, 3D-CNNs, and 
hybrid networks for improved performance [8, 9, 19].

Data collection is supported by platforms like satellites (e.g., Sentinel-2, Landsat), which offer 
wide coverage but lower resolution and weather limitations [6,  10]; UAVs, which provide high 
resolution  but  limited  scalability  [11,  20–24];  and open-access  datasets  (e.g.,  HISUI)  that  drive 
development  of  HSI  classification  methods.  Combining  platforms  enables  flexible  monitoring 
tailored to agricultural needs.

3. Using generative adversarial networks for HSI classification tasks

Generative  adversarial  networks  (GANs)  are  effective  in  generating  structured  data,  including 
hyperspectral images, helping reduce dependence on large labeled datasets—a key benefit in data-
scarce settings [15, 25]. This study utilizes the AC-WGAN-GP architecture, which combines class 
conditioning (AC-GAN), Wasserstein loss for stability, and gradient penalty regularization [20, 26].

The model generates realistic synthetic samples with specified labels, preserving diversity even 
with  limited  training  data.  Architectural  enhancements  further  address  class  imbalance  and 
spectral similarity, improving classification performance in both HSI and MSI contexts—relevant 
for precision agriculture [18,  27]. Such hybrid designs can be generalized across AI systems for 
improved adaptability and robustness [28–30].

3.1. AC-WGAN-GP architecture and its characteristics

The  AC-WGAN-GP  architecture  includes  a  generator  (G),  discriminator  (D),  and  auxiliary 
classifier (C). The generator receives Gaussian noise, spectral features (e.g., PCA), and class labels 
(one-hot  or  embedded)  to  produce  synthetic  spectral  samples.  Its  structure  comprises  1D 
transposed convolutions (Deconv1D) with ReLU activations and a final Tanh layer, using batch 
normalization for training stability [25,  31].  Related research on the detection of synthetic visual 
content highlights parallels between hyperspectral image generation and deepfake detection. For 
instance,  recent  studies  have  explored  neural  network-based systems  for  identifying  biometric 
image  manipulations  [32,  33],  demonstrating  architectural  strategies  that  can  be  adapted  to 
improve the robustness of GAN-based HSI generation and classification. 

Figure 1  shows the data  flow and interaction among components,  each optimized within a 
unified training framework.

Figure 1: Architecture AC-WGAN-GP
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The  discriminator,  built  from  1D  Conv  layers  with  Leaky-ReLU activations,  evaluates  sample 
authenticity. It outputs a linear value and uses Wasserstein loss with gradient penalty, ensuring 
stable training under distribution shifts [26].

The auxiliary classifier performs multi-class classification on both real and generated samples. It  
consists of a Conv layer, flattening, and a fully connected Softmax output. Batch normalization is  
excluded to preserve spectral sensitivity. It also guides the generator to produce correctly labeled 
data [20, 34].

Together,  G,  D,  and  C  form  a  closed  feedback  loop:  the  generator  is  informed  by  both 
discriminator  and  classifier,  promoting  realism  and  class  accuracy—crucial  for  imbalanced  or 
overlapping spectral classes [15, 18, 35].

3.2. Training process and loss functions

The AC-WGAN-GP model trains the generator (G), discriminator (D), and auxiliary classifier (C) in  
an  alternating  fashion  to  ensure  stable  and  controlled  generation.  Batch  Normalization  (BN) 
accelerates  convergence,  while  Gradient  Penalty  (GP)  enforces  Lipschitz  continuity  for  stable 
training [25, 26].

The discriminator uses the Wasserstein loss with GP:

LD= 𝔼~x ~ pg
D (~x )− 𝔼x ~ p ( x) D ( x)+ λ𝔼x̂ ~ p ( x̂)[( ‖ ∇ x̂ D ( x̂) ‖2− 1)2]. (1)

This balances the Wasserstein distance and gradient regularization to prevent mode collapse.
The generator minimizes:

LG= − 𝔼~x ~ pg
[D (~x )]+𝔼[log p (С = с |~x )] (2)

combining realism (discriminator) and class consistency (classifier).
The classifier is trained on both real and synthetic data:

LC= 𝔼[log p (C = c | x)]+𝔼[log p (C = c |~x )] (3)

ensuring inter-class discrimination even under spectral overlap and imbalance.

4. Hyperspectral image processing using AC-WGAN-GP

HSI processing faces the “curse of dimensionality”: hundreds of spectral channels increase training 
complexity and risk overfitting, especially with limited labeled data [15, 25].

AC-WGAN-GP  addresses  this  by  generating  synthetic  samples  that  preserve  spectral  and 
semantic class properties. Conditional generation via class labels and classifier guidance improves 
data diversity and reduces overfitting [18, 20, 26]. Labeled HSI data is scarce due to costly expert 
annotation,  leading  to  class  imbalance.  AC-WGAN-GP  augments  datasets—particularly  rare 
classe —improving balance and training efficacy [15, 27].

Spectral overlap between classes causes classification ambiguity. The model maintains semantic 
consistency  through  classifier  feedback,  enhancing  discrimination  [14,  25].  The  improved  AC-
WGAN-GP shows gains in  average accuracy (AA) and Cohen’s  kappa ( )  on benchmarks  like𝜅  
Indian  Pines,  Salinas,  and  Pavia  University  [18].  Mode  collapse  is  mitigated  through  gradient 
penalty and auxiliary classification, ensuring diversity and training stability [26, 36].

In  summary,  AC-WGAN-GP  effectively  processes  hyperspectral  data  under  limited-label 
conditions, enhancing classification through synthetic, spectrally valid augmentation.
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5. Problem formulation of hyperspectral image classification using 
AC-WGAN-GP

In hyperspectral image classification tasks involving generative models, evaluation metrics play a 
crucial role in objectively comparing model performance and quantifying improvements resulting 
from architectural modifications. In this study, we employ three widely adopted metrics: Overall  
Accuracy (OA), Average Accuracy (AA), and the Cohen’s Kappa coefficient ( ), which are standard𝜅  
in hyperspectral classification research [18, 20, 25].

While  global  metrics  like  OA,  AA,  and   assess  overall  performance,  per-class  metrics—𝜅
Precision, Recall, and F1-score—reveal how well individual classes are classified.

Overall Accuracy (OA) is a standard metric in HSI classification that measures the proportion of 
correctly predicted samples among all test samples:

OA=
1
N ∑

i= 1

C̄

hii, (4)

where  is the total number of test samples,  𝑁 C̄  is the number of classes, and ℎ𝑖𝑖 represents 
correctly classified samples of class  (confusion matrix diagonal).𝑖

Average  Accuracy  (AA)  evaluates  classification  performance  across  all  classes  equally, 
regardless of class size. It is calculated as the mean of per-class accuracies:

AA=
1
C̄ ∑

i= 1

C̄ hii

N i

, (5)

where C̄  is the number of classes, ℎ𝑖𝑖 the correctly classified samples for class , and 𝑖 𝑁𝑖 the total 
test samples in class .𝑖

The  Kappa  coefficient  ( )  measures  agreement  between  predicted  and  true  labels  while𝜅  
accounting for chance. Unlike OA, it reflects class distribution, making it suitable for imbalanced 
datasets [20, 25]. It is computed as:

κ=
N ∑

i= 1

C̄

hii− ∑
i= 1

C̄

(hi+⋅ h+i)

N 2− ∑
i= 1

C̄

(hi+⋅ h+i)

(6)

where  is the total number of test samples, 𝑁 C̄  the number of classes, ℎ𝑖𝑖 correct predictions, ℎ +𝑖  

actual counts, and ℎ+𝑖 predicted counts per class.

6. Proposed method

The  improved  AC-WGAN-GP  retains  the  classical  conditional  GAN  structure  comprising  a  
generator  (G),  a  discriminator  (D),  and  an  auxiliary  classifier  (C),  but  introduces  targeted 
modifications to address class imbalance, spectral overlap, mode collapse, and training instability 
(Figure 2).

A revised training strategy complements the architecture. Conditional samples are generated 
using class embeddings and PCA vectors, followed by clustering in spectral space—applied only to 
real training data. Synthetic samples closest to the cluster centers (measured by cosine similarity)  
are selected and merged with real data for classifier training.

Crucially, all processing is confined to training data, avoiding test set leakage. This improves 
evaluation  rigor  and  reproducibility,  ensuring  fair  performance  assessment  under  realistic 
constraints.
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6.1. Improved generator architecture G

In the improved AC-WGAN-GP, the generator synthesizes conditional hyperspectral samples by 
combining class and spectral information. The baseline design with Deconv1D layers, ReLU, and 
batch normalization suffered from mode collapse and weak control via one-hot labels (Figure 3).

Figure 2: Enhanced architecture of the AC-WGAN-GP

Figure 3: Improved architecture of the generator G

The updated architecture incorporates a Class-aware Sampling and Label Embedding (CS+LE) 
module,  encoding  labels  into  dense  vectors  and  concatenating  them  with  PCA  features  and 
Gaussian noise. This richer input better captures class identity and spectral variation. 

To improve training stability and representation of minority classes, ResNet-style Deconv1D 
blocks with skip connections were added. A cross-attention mechanism aligns label and spectral 
embeddings with generator features, enhancing semantic coherence. Spectral Dropout is applied in 
intermediate  layers  to  zero  out  entire  spectral  bands,  improving  robustness.  The  output  is 
generated  via  UpSampling1D and  a  Conv1D layer  with  Tanh  activation,  ensuring  normalized 
spectra. This architecture produces more diverse, class-consistent, and spectrally realistic samples.
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6.2. Improved discriminator architecture D

In  AC-WGAN-GP,  the  discriminator  assesses  how  closely  generated  spectra  resemble  real 
hyperspectral data and provides feedback to the generator. The initial version used Conv1D layers 
with LeakyReLU and batch normalization, but the latter conflicts withWGAN-GP’s requirement for 
sample independence, causing instability (Figure 4).

To address this, batch normalization was replaced with LayerNorm, which operates per sample 
and ensures stable training with gradient penalty. Each Conv1D layer is followed by LeakyReLU 
and LayerNorm for consistent processing. To mitigate mode collapse, a Minibatch Discrimination 
layer was added to detect similarity across samples, encouraging output diversity. The final output 
is a scalar critic score from Flatten and Dense(1), as required by the WGAN formulation. Overall,  
these changes improve training stability, prevent mode collapse, and enhance the model’s ability to 
distinguish synthetic from real spectra.

Figure 4: Improved architecture of the discriminator D

6.3. Improved architecture of the classifier C

The auxiliary classifier C in AC-WGAN-GP predicts class labels for real and synthetic samples and 
guides the generator. The initial design with a single Conv1D layer and Softmax output was too 
shallow to handle spectral similarity and rare classes (Figure 5).

Figure 5: Improved architecture of the classifier C
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To improve performance, the classifier was deepened with three Conv1D layers followed by ReLU 
and  batch  normalization.  Class  labels  are  passed  as  dense  embeddings,  encoding  semantic 
relationships.  Extracted features are flattened and concatenated with the label embedding, then 
processed  by  a  dense  layer  (256  units)  used  for  both  classification  and  contrastive  loss.  This 
enhances class separation while maintaining intra-class compactness.

6.4. Loss functions of the improved AC-WGAN-GP

The improved AC-WGAN-GP architecture employs a multi-component loss formulation to enable 
efficient and stable training across all  network modules.  Each component of  the loss  not  only 
incorporates core adversarial objectives common to classical GANs but also introduces domain-
specific terms tailored to the challenges of hyperspectral classification.

6.4.1. Generator loss

Unlike  in  traditional  GANs,  the  generator  in  AC-WGAN-GP  is  optimized  not  only  through 
adversarial feedback from the discriminator but also by enforcing alignment with class conditions 
and spectral context.

The basic Wasserstein loss component for the generator is given by:

LWGAN= − 𝔼z,c[D (G ( z , c ))], (7)

where:  denotes the latent noise vector;  is the conditional class label; ( , ) is the generated𝑧 𝑐 𝐺 𝑧 𝑐  
spectral sample; ( ( , )) is the “realism” score assigned by the discriminator.𝐷 𝐺 𝑧 𝑐

1. Cosine Similarity with PCA Vectors (Cosine PCA Loss)—ensures that the generated spectrum 
aligns with the average PCA vector of its target class:

LPCA= 𝔼[1 − cos( x̂ , xPCA)]. (8)

2.  Cosine Alignment Loss—enforces the classifier’s internal feature representation  to align𝑓  
with the class embedding vector :𝑒

Lalign= 𝔼[1 − cos( f , e )]. (9)

3.  Categorical Cross-Entropy—penalizes  the  generator  if  the  classifier  fails  to  recognize  the 
correct class of a generated sample:

Lce= 𝔼z,c[− log P cls(c |G ( z , c ))]. (10)

The full generator loss is then defined as:

LG= LWGAN +𝜆 PCA⋅ LPCA+𝜆align⋅ Lalign+𝜆 ce⋅ Lce, (11)

where 𝜆PCA, 𝜆align, and 𝜆ce  are weighting coefficients that control the contribution of each loss 
component. These are tuned empirically based on data characteristics, class imbalance, and desired 
classification performance.

6.4.2. Discriminator loss

In  the  AC-WGAN-GP  framework,  the  discriminator  functions  as  a  critic  that  estimates  the 
divergence  between real  and  generated  spectral  samples.  Unlike  in  classical  GANs,  where  the 
discriminator performs binary classification, the WGAN formulation approximates the Wasserstein 
distance between real and synthetic distributions.
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The discriminator loss is defined as:

LD= 𝔼~x ~ pg
D (~x )− 𝔼x ~ p ( x) D ( x)+𝜆⋅ Lgp, (12)

Lgp= 𝔼x̂ ~ p ( x̂)[( ‖ ∇ x̂ D ( x̂) ‖2− 1)2], (13)

where: 𝑝  𝑔 is the distribution of generated samples (from the generator); 𝑝data is the distribution 
of real training samples; ~𝑥  is a generated spectrum ( , );  is a real spectral sample; 𝐺 𝑧 𝑐 𝑥 𝑥  is a linear 
interpolation between  and  𝑥 ~𝑥 ;   is  a  hyperparameter  controlling  the  weight  of  the  gradient𝜆  
penalty term Lgp that ensures 1-Lipschitz continuity.

6.4.3. Classifier loss

The auxiliary  classifier  in  AC-WGAN-GP is  responsible  for  both class  prediction and learning 
discriminative features for regularization. Its loss function comprises several components aimed at 
maximizing classification accuracy while structuring the feature space.

1. Categorical Cross-Entropy (Class-Weighted) This standard classification loss is weighted to 
compensate for class imbalance:

Lce= − 𝔼x,y [ω y⋅ log P cls( y | x)], (14)

where  is the spectral sample,  is the true class label, 𝑥 𝑦 𝑃cls(  | ) is the predicted probability,𝑦 𝑥  
and 𝜔  𝑦 is the inverse class frequency weight.

2. Contrastive Loss This term promotes closeness of features from the same class and separation 
between features from different classes:

Lcontrast= 𝔼 ,𝑖 𝑗{ ‖ f i− f j‖
2 , if yi= y j

max (0 ,‖ f i− f j‖ − δ )2 , if yi ≠ y j

, (15)

where 𝑓𝑖, 𝑓  𝑗 are feature vectors and  is a margin parameter.𝛿
3. Cosine Alignment Loss Aligns the feature vector with the corresponding class embedding:

Lalign= 𝔼x,y [1 − cos( f ( x) , e y)], (16)

where ( ) is the feature vector from the classifier and 𝑓 𝑥 𝑒  𝑦 is the embedding of class .𝑦
4. Embedding Divergence Loss Regularizes class embeddings to prevent their collapse in latent 

space:

Ldiv= ∑
i ≠ j

(
1

|| e i− e j ||
2+ ε

), (17)

where  𝑒𝑖,  𝑒  𝑗 are embeddings of  different  classes,  and  is  a  small  positive  constant  to  avoid𝜀  
division by zero.

Total Classifier Loss:

LС= Lce+𝜆 contrast⋅ Lcontrast+𝜆align⋅ Lalign+𝜆div⋅ Ldiv, (18)

where  𝜆contrast,  𝜆align,  𝜆div  are  hyperparameters  controlling  the  contribution  of  each 
regularization  component.  These  are  selected  empirically  based  on  task  complexity  and  class 
imbalance.
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7. Results

7.1. Experimental setup and execution specifics

All experiments were conducted using PyCharm Community Edition 2024.3.4 with Python 3.9 and 
the TensorFlow 2.19.0 framework. The development environment ran on Windows 10 and local 
machine specifications were as follows. Synthetic samples were generated in online mode without 
being saved to disk, reducing memory usage and preventing data duplication. Spectral vectors were 
reduced to  = 30 components using Principal Component Analysis (PCA). The training and test𝐻  
splits were performed with strict class separation, eliminating potential data leakage.

7.2. Analysis of incremental improvements in AC-WGAN-GP

Table  1  summarizes  the  stepwise  impact  of  architectural  enhancements  in  AC-WGAN-GP  on 
hyperspectral image classification. Each modification (from the baseline to the inclusion of cosine 
alignment and embedding divergence losses) leads to progressive gains in OA, AA, and  across all𝜅  
datasets.

The  most  notable  improvement  is  observed on the  challenging  Indian Pines  dataset,  where 
introducing the CSLE module (Step 2) increases OA to 67.74%. Adding ResNet-style deconvolutions 
with Spectral Dropout (Step 3), followed by Minibatch Discrimination and Layer Normalization 
(Step 4), improves training stability—especially on KSC, where accuracy reaches 90.12%.

Incorporating Contrastive Loss (Step 5) and the final alignment-based loss terms (Step 6) yields 
the highest performance, notably OA = 90.55% on Salinas and  = 63.63 on Indian Pines. These𝜅  
results confirm the effectiveness of the proposed architectural and loss-based enhancements.

Table 1
Impact  of  Incremental  Architectural  Improvements  on  Classification  Performance  (Training 
Ratio: 5%)

Step Improvement
Salinas Indian Pines KSC

OA AA 𝜅 OA AA 𝜅 OA AA 𝜅

1 Baseline AC-WGAN-GP 89.54 94.46 88.49 66.30 54.48 61.11 89.76 84.61 88.50

2 CSLE 89.73 94.78 88.46 67.74 56.61 63.10 89.81 84.26 88.64

3 ResNet + Spectral Dropout 89.76 94.83 88.54 67.89 56.82 63.28 90.05 85.53 89.18

4 Minibatch Disc. + LayerNorm 90.09 95.01 89.05 68.08 56.25 63.36 90.12 85.57 89.27

5 Contrastive Loss 90.44 95.13 89.45 68.10 56.31 63.56 90.16 86.18 89.42

6 Cosine Align. + Divergence 90.55 95.20 89.50 68.60 58.09 63.63 90.62 86.30 89.55

7.3. Analysis of results at different training set sizes

The classification performance was evaluated on three benchmark HSI datasets—Salinas, Indian 
Pines, and KSC—at varying training ratios. As shown in Table 2, all datasets demonstrate clear 
improvement in OA, AA, and  with increased training size.  𝜅 Prediction maps for studied datasets 
are shown in Figures 6–8.

Per-class F1 analysis reveals that classes with stable and well-separated spectral signatures (e.g., 
Stubble, Woods, Water) achieve F1 scores above 90–95%. In contrast, classes with limited samples or 
high spectral overlap (e.g., Oats, Corn, Oak Forest) show lower F1 scores (40–70%).

The  improved  model  achieves  reliable  classification  even  under  extreme  label  scarcity, 
achieving over 90% OA on the Salinas and KSC datasets using only 5% of labeled data, and over 68% 
on Indian Pines—one of the most challenging datasets.
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Table 2
Overall Classification Results Across Datasets

Dataset Train Ratio (%) OA (%) AA (%) 𝜅

Salinas

1 88.70 92.90 87.41

5 90.55 95.20 89.50

10 91.27 95.36 90.07

Indian Pines

1 54.15 43.24 46.78

5 68.60 58.09 63.63

10 74.07 63.82 70.24

KSC

1 80.71 70.73 78.50

5 90.62 86.30 89.55

10 93.06 89.46 92.27

Figure 6:  Prediction maps for  Salinas  dataset  (5% training ratio).  Figure  shows spectral  band, 
ground truth, and classification result

Figure 7: Prediction maps for Indian Pines dataset (5% training ratio). Figure shows spectral band, 
ground truth, and classification result
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Figure 8: Prediction maps for KSC dataset (5% training ratio). Figure shows spectral band, ground 
truth, and classification result

Conclusions

This  study  presented  an  enhanced  AC-WGAN-GP  architecture  for  conditional  hyperspectral 
sample  generation,  addressing  class  imbalance,  spectral  overlap,  and  training  instability. 
Improvements include class-aware sampling, label embeddings, PCA-based conditioning, ResNet 
deconvolutions,  crossattention,  and spectral  dropout  in  the  generator;  layer  normalization and 
minibatch  discrimination  in  the  discriminator;  and  weighted  categorical,  contrastive,  and 
embedding divergence losses in the classifier.

The  method  demonstrated  strong  performance  under  limited  data  and  imbalanced  class 
distributions, with all evaluations performed without test data leakage. Future research will extend 
this approach to 3D hyperspectral data, semantic segmentation tasks.

Declaration on Generative AI

While  preparing this  work,  the  authors  used the  AI  programs Grammarly  Pro  to  correct  text 
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors 
reviewed and edited the content as needed and took full responsibility for the publication’s content.
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