
Information security risks associated
with the uncontrolled storage of secrets in source code⋆

Vladyslav Chornii1,†, Yevhenii Martseniuk1,†, Andrii Partyka1,† and Oleh Harasymchuk1,∗,†

1 Lviv Polytechnic National University, 12 Stepana Bandery str., 79000 Lviv, Ukraine

Abstract
This paper explores the problem of information security violations caused by the uncontrolled storage of
sensitive data in software source code. Specifically, it analyzes cases involving the inclusion of API keys,
access tokens, database passwords, cloud platform credentials, and other confidential data in public or
private repositories, which pose significant threats to the integrity of IT infrastructures. The research
involves an empirical analysis of open-source repositories on GitHub using specialized secret detection
tools such as TruffleHog, GitLeaks, and detect-secrets. The collected data were classified according to the
types of discovered objects, allowing for the identification of the most common risk vectors. Special
emphasis is placed on infrastructure-related threats that arise from storing secrets in CI/CD pipelines,
configuration files, and automated deployment scripts. The study proposes approaches for integrating
secret management into the software development lifecycle (SDLC), including automated scanning,
centralized credential management, and the implementation of role-based access policies. Furthermore, a
risk assessment based on the NIST SP 800-30 methodology was conducted to demonstrate the severity of
potential secret leaks and to substantiate the need for secure DevSecOps processes. The paper presents
practical recommendations for risk mitigation, including key rotation, personnel training, enforcement of
role-based access control mechanisms, and periodic audits of development environments.

Keywords
DevSecOps, source code leakage, secrets detection, hardcoded credentials, security automation, CI/CD
security, GitHub, AWS keys.

1. Introduction

One of the most pressing security concerns in the context of digital transformation, development
automation, and cloud adoption is the uncontrolled storage of sensitive information within
software source code. This widespread and hazardous practice includes the hardcoding of
credentials such as database passwords, API keys, access tokens, private SSH keys, and confidential
configuration parameters, often present in both public and internal repositories.

Such insecure storage practices pose not only a risk of data leakage but also the potential
compromise of critical IT infrastructure, ranging from unauthorized access to cloud environments
and containerized services to disruptions in CI/CD pipelines, failures in internal API operations,
and the uncontrolled distribution of malicious code [1–3]. These risks are further exacerbated in
multi-cloud and microservice architectures, where the number of interactions and access points
increases exponentially.

Despite the availability of modern secret management solutions—such as HashiCorp Vault,
AWS Secrets Manager, and Kubernetes Secrets—their adoption in CI/CD workflows often remains
partial, with poorly formalized policies for secret storage and rotation. Therefore, it is essential to
analyze both infrastructure-level vulnerabilities and the effectiveness of current methods for
identifying and mitigating the risks associated with credential leakage [4, 5].

The objective of this research is to identify typical infrastructure-related risks arising from
uncontrolled storage of secrets in code, to evaluate the effectiveness of detection and management

⋆CSDP’2025: Cyber Security and Data Protection, July 31, 2025, Lviv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 vladyslav.chornii.kb.2022@lpnu.ua (V. Chornii); yevhenii.v.martseniuk@lpnu.ua (Y. Martseniuk);
andrijp14@gmail.com (A. Partyka); oleh.i.harasymchuk@lpnu.ua (O. Harasymchuk)

 0009-0006-8671-3889 (V. Chornii); 0009-0009-2289-0968 (Y. Martseniuk); 0000-0003-3037-8373 (A. Partyka); 0000-0002-
8742-8872 (O. Harasymchuk)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

250

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0002-8742-8872
https://orcid.org/0000-0002-8742-8872
https://orcid.org/0000-0003-3037-8373
https://orcid.org/0009-0009-2289-0968
https://orcid.org/0009-0006-8671-3889
mailto:oleh.i.harasymchuk@lpnu.ua
mailto:andrijp14@gmail.com
mailto:yevhenii.v.martseniuk@lpnu.ua
mailto:vladyslav.chornii.kb.2022@lpnu.ua

tools, and to develop recommendations for integrating secure practices into the software
development and deployment lifecycle.

This study aims to detect, systematize, and analyze information security risks caused by
hardcoded secrets in source code. It seeks to substantiate the implementation of technical and
organizational controls to detect, remediate, and prevent credential leakage—including access keys
and confidential parameters—in modern IT infrastructures, particularly within cloud environments
and automated CI/CD workflows.

To achieve this goal, the following key tasks are addressed:

 Review and classify common categories of secrets found in source code, with consideration
of their impact on information security.

 Analyze frequent leakage scenarios in public and private repositories, with an emphasis on
infrastructure vulnerabilities related to cloud and CI/CD-based development.

 Investigate contemporary tools for automated secret detection, as well as secret
management systems such as HashiCorp Vault, AWS Secrets Manager, Google Secret
Manager, and others.

 design a conceptual model for integrating secret detection, storage, and rotation processes
into the SDLC, considering the security requirements of multi-cloud and containerized
environments.

 Formulate practical recommendations for implementing secure secret management
practices in enterprise IT infrastructures, aligned with DevSecOps principles and
international information security standards.

Literature review

The problem of storing sensitive information in source code has gained increased relevance in the
era of widespread adoption of cloud technologies, DevOps practices, and continuous
integration/deployment (CI/CD). Academic sources highlight that hardcoded credentials often lead
to unauthorized access to critical infrastructure components, including cloud services, databases,
and external APIs [6].

A study on the development of the Risk Harvester tool [6] emphasizes the feasibility of applying
risk-oriented prioritization in secret removal, allowing security teams to focus on the most
vulnerable code segments. Similarly, [7] proposes automatic secret detection through source code
analysis models, although the focus is more aligned with artificial intelligence than infrastructure-
oriented secret management.

Centralized secret management tools—including HashiCorp Vault, AWS Secrets Manager, and
Kubernetes Secrets—are actively explored in the context of secure credential access in microservice
and multi-cloud environments. Notably, study [8] demonstrates the implementation of Vault
within a Kubernetes cluster for dynamic secret issuance to microservices, which reduces the attack
surface and enables controlled access to sensitive data. Further developments in this domain are
discussed in [9] and [10], with an emphasis on unified secret management across multi-cloud
infrastructures and cross-layer integration with DevOps workflows.

Special attention is given to the security of automated testing and deployment processes, where
exposed access keys remain a prevalent attack vector [11]. Researchers underscore the importance
of integrating automated detection, rotation, and revocation of secrets into CI/CD as a critical
element of the DevSecOps approach.

Several publications [8, 9, 11] also emphasize the need for methodological frameworks for risk
assessment related to secret leakage, both at the state and corporate levels. This highlights the
interdisciplinary nature of the problem, encompassing not only technical aspects but also risk
management, compliance, and security policy development.

In addition to centralized secret management solutions, emerging research highlights the use of
blockchain technologies to enhance the confidentiality, integrity, and auditability of sensitive

251

information, supporting compliance with regulations such as GDPR [10]. Martseniuk et al. [12]
propose a universal approach for centralized secret data management in automated public cloud
provisioning, demonstrating reduced operational risks and improved control over dynamic
environments. Complementary frameworks for information classification and policy enforcement,
such as SOC 2 Type II-based models, have been shown to provide structured guidelines for secure
handling of secrets throughout the software development lifecycle [13, 14]. Furthermore, rule-
based intelligent systems and secure authentication mechanisms contribute to the proactive
management of sensitive data and reduction of human-related errors in DevOps and CI/CD
pipelines [15, 16]. These interdisciplinary approaches underline the necessity of integrating
technical, organizational, and regulatory measures to ensure comprehensive protection of secrets
in source code [17].

In conclusion, the analysis of current academic literature indicates that uncontrolled storage of
secrets in code is a complex problem requiring both technical and organizational solutions. Despite
the availability of tools and best practices, there remains a lack of standardized approaches for
integrating secret management systems into real-world infrastructure scenarios. This underscores
the need for further research focused on modeling common vulnerabilities, improving detection
tools, and deploying secure secret management workflows across the full software development
lifecycle.

1.1. Challenges of DevOps in secret management

In the context of modern information systems—characterized by a high level of automation,
widespread use of microservice architecture, and active adoption of cloud infrastructure—the
practice of storing sensitive information directly in source code remains common. However, this
approach introduces substantial information security risks to organizations. Such confidential data
includes passwords, API keys, access tokens, database credentials, and configuration parameters
required for integration with external services. When stored directly within the codebase,
especially in public or insufficiently protected repositories, these secrets significantly increase the
risk of unauthorized access to critical components of the IT infrastructure [7].

There exists an inherent conflict between the demand for speed, automation, and openness in
development processes—enabled by tools such as CI/CD, GitOps, and Infrastructure as Code—and
the necessity of maintaining an adequate security posture. This issue is particularly acute for small
and medium-sized organizations, where security questions are often deprioritized or fall outside
the scope of operational control. The absence of formalized secret management policies, the low
level of security awareness among developers, and the limited adoption of centralized credential
management solutions (such as HashiCorp Vault or AWS Secrets Manager) collectively increase
the likelihood of data leakage and cloud infrastructure compromise.

Despite the availability of standalone technical solutions, a comprehensive approach to
integrating secret management into SDLC is still lacking. Moreover, security frameworks
implemented within DevOps environments often fail to account for the need to prioritize risks
associated with secret exposure. This underscores the necessity of further academic inquiry into
the subject, including the classification of typical vulnerabilities, the formalization of threat models,
and the development of monitoring, detection, and mitigation policies for confidential data leakage
at the infrastructure level [6].

1.2. Information security risks associated with uncontrolled storage of secrets in
source code

The storage of sensitive information—such as access tokens, passwords, private keys, API keys, and
configuration parameters—within open or insufficiently protected source code introduces a set of
critical information security risks for an organization’s IT infrastructure. These risks can be
classified into several key domains.

252

Risk of unauthorized access to infrastructure resources. If credentials embedded in source
code are leaked, attackers may directly access critical services within the organization. This
includes cloud accounts (AWS, Azure, GCP), unsecured databases, and CI/CD servers that could be
leveraged for privilege escalation or injection of malicious code into production environments.
Such attacks often go undetected at the execution stage, since the use of valid credentials typically
does not trigger anomalies in event logs without proper monitoring in place [8].

Risk of software supply chain compromise. The presence of secrets in repositories
accessible to external contributors increases the likelihood of development tooling being
compromised. Once an attacker gains access to the CI/CD pipeline, they can introduce malicious or
modified code into the software that is ultimately delivered to end-users. This attack vector is
especially dangerous in DevOps paradigms, where automated releases reduce the opportunity for
manual verification at each stage.

Risk of configuration and environment control loss. Hardcoded secrets are frequently
duplicated across development, staging, and production environments, making it difficult to
maintain their relevance and impeding centralized rotation. In the event of a leak, organizations are
forced to conduct full-scale audits and infrastructure revalidation, including the recreation of
accounts, key regeneration, and manual configuration updates—a time-consuming and error-prone
process [8].

Risk of non-compliance with standards and regulatory frameworks. Storing credentials
in open-source code violates several international security standards, including ISO/IEC 27001,
NIST SP 800-53, SOC 2, and OWASP ASVS. Identifying such violations during an audit may lead to
financial penalties, loss of certification, or reputational damage among clients and partners.

Risk of automated leakage through indexing and third-party services. Secrets placed in
publicly accessible or insufficiently protected repositories can be rapidly indexed by search engines
or discovered by specialized bots and scanners (e.g., GitRob, TruffleHog, Shhgit). Consequently,
data exposure may occur within minutes of code publication, even without a targeted attack [9].

Risk of internal breaches and human error. A significant portion of incidents involving
secrets in code stems from human mistakes: accidental commits of confidential data, reuse of
tokens across personal and professional projects, and so on. The absence or neglect of secure
development policies contributes to irreversible leaks that are difficult to detect and trace without
proper monitoring procedures [11].

In conclusion, the uncontrolled storage of secrets in source code should be recognized as a
systemic vulnerability that threatens the confidentiality, integrity, and availability of organizational
information infrastructure. Effectively mitigating these risks requires a comprehensive approach
that combines technical, organizational, and procedural security measures throughout the software
development lifecycle.

1.3. Lack of standardized practices and controls within the SDLC framework

One of the critical challenges in modern software development is the insufficient integration of
security practices across all phases of SDLC. Within the widespread adoption of DevOps
methodologies, development teams prioritize rapid delivery, continuous integration, and
automation of software deployment. This often leads to neglect of information security
considerations, which should be incorporated through DevSecOps principles.

The absence of standardized security controls at each stage of the SDLC contributes to the
accumulation of so-called security debt—unresolved or underestimated vulnerabilities that are
overlooked during accelerated development and release cycles. Over time, this complicates
infrastructure maintenance and evolution, as remediating such vulnerabilities may require
significant resource investment, process adjustments, or even codebase refactoring [10].

Within the context of the SDLC, this issue manifests at every development stage, resulting in
systemic vulnerabilities and escalating information security risks due to the lack of embedded
security practices (see Table 1).

253

Table 1
Security gaps in DevOps across SDLC phases and their potential consequences

SDLC Phase Security Deficiency in DevOps Potential Consequences

Requirements
Analysis

Security requirements are not
documented or are ignored

Insufficient baseline protection; no
planning for secure secrets
management

Design
Threat models are not defined; secure
storage channels are not designed

No architectural space allocated for
secret management systems

Development
Lack of linters, code scanners, or pre-
commit hooks for detecting secrets

Introduction of hardcoded secrets and
plaintext credentials in source code

Testing
Security aspects are not covered; secret
handling is not tested

Undetected leaks of confidential
information

Release &
Deployment

Absence of security controls in CI/CD
(e.g., secret scanning, RBAC
enforcement)

Secrets reaching production
environments; insecure deployment
configurations

Operations &
Maintenance

No security monitoring or regular audit
controls for secrets

Accumulation of untracked secrets in
repositories and runtime
environments

Thus, the lack of DevSecOps implementation as a mandatory component of SDLC, as outlined
in the previous sections, results in a persistent technical debt in the field of information security.
Within the SDLC, this is manifested through a systemic absence of security validations and
controls at all critical stages—from requirements analysis and design to development, testing,
release, and maintenance. Consequently, vulnerabilities associated with the uncontrolled storage of
sensitive information remain undetected, accumulate with each development and integration
iteration, and complicate further operation of the software product [18].

According to the SDLC structure, the absence of security at early stages leads to a failure in
addressing secret protection requirements in system architecture, thereby hindering centralized
management at later stages [7]. During development, the lack of pre-commit checks and static code
analysis facilitates the proliferation of hardcoded credentials, while weak controls at the CI/CD
process level create risks of such secrets being deployed into production environments. At the
maintenance stage, the absence of monitoring and regular auditing exacerbates these
vulnerabilities, making the organization susceptible to targeted attacks or accidental leaks.

2. Risk assessment of uncontrolled secret storage in source code

One of the critical threats to information security in modern information and communication
systems is the uncontrolled storage of sensitive data within source code. Despite its prevalence
among developers, this practice creates preconditions for significant risks, potentially leading to
infrastructure compromise, data integrity breaches, leakage of confidential information, and non-
compliance with regulatory standards [19].

Given the importance of a comprehensive approach to information security risk management,
this section presents a formalized risk assessment related to secret storage in codebases. The
methodology applied is NIST SP 800-30 “Guide for Conducting Risk Assessments,” which enables
systematic identification of assets, relevant threats and vulnerabilities, evaluation of their
likelihood of occurrence, and estimation of the potential organizational impact [20].

254

The assessment considers the specifics of development environments, CI/CD processes, cloud
infrastructure, and DevOps operational practices, which are especially susceptible to issues arising
from uncontrolled handling of secrets. This approach enables risk prioritization and the
development of mitigation recommendations through the integration of appropriate controls into
SDLC.

According to this methodology, the assessment is carried out through the sequential
identification of the following components:

1. Asset—a resource or component of the information infrastructure that requires protection
and may be affected by a threat.

2. Threat—a potential event or action that may cause undesirable consequences for an asset.
3. Vulnerability—a weakness in the system, process, or control that allows a threat to be

successfully exploited.
4. Likelihood—an expert judgment on the probability that a given threat will exploit an

existing vulnerability.
5. Impact—the potential scale of losses or adverse effects on the organization if the threat

materializes.
6. Risk Level—an integrated value resulting from the combination of threat likelihood and

the expected impact.

This model enables a comprehensive risk assessment through the structured analysis of each of
these components [21]. In the context of this research, it is applied to evaluate the degree of threats
posed by storing credentials, tokens, keys, and other secrets without proper control in source code,
repositories, and infrastructure components in Table 2.

Table 2
Risk assessment of uncontrolled storage of sensitive information in source code according to NIST
SP 800-30

No Asset Threat Vulnerability Likelihood Impact
Risk
Level

1
Cloud
accounts

Unauthorized
access

Storage of access keys
(AWS, Azure, GCP) in
plaintext source code

High
Full control over
cloud
infrastructure

Critical

2
CI/CD
pipelines

Supply chain
compromise

API keys for
Jenkins/GitHub
Actions stored in
repositories

Medium
Injection of
malicious code into
production

High

3 Databases
Confidential
data leakage

Hardcoded credentials
for PostgreSQL,
MySQL, MongoDB

High

Compromise of
personal and
financial
information

Critical

4
DevOps
infrastructure

Service
disruption

Compromised tokens
for infrastructure APIs
(Docker, Ansible,
Helm)

Medium
Deployment and
scaling failures

High

5
Internal
configuration
files

Unauthorized
network
scanning

Hardcoded IP
addresses, ports, and
network credentials

Medium
Network
reconnaissance and
attack preparation

Medium

6 Regulatory Non- Absence of policies and Medium Fines, loss of High

255

compliance
compliance
with standards

controls for secret
management

certification,
reputational
damage

7
Organization
al reputation

Public leakage
of secrets via
GitHub

Accidental publication
of code with keys or
passwords

High
Loss of customer
trust, media
exposure

High

8
Business
continuity

External
control over
services

Lack of automated
secret rotation

Low

Temporary service
disruption,
recovery efforts
needed

Medium

2.1. Critical risks associated with unauthorized access to core organizational
resources

The realization of these risks can lead to catastrophic consequences, including full compromise of
the environment, leakage of confidential information, or complete disruption of business processes.

To mitigate such risks, it is essential to implement a comprehensive set of technical and
organizational measures. In particular, it is recommended to conduct automated scanning of source
code for the presence of sensitive data using appropriate tools such as TruffleHog, GitLeaks, and
detect-secrets. An important step is the deployment of centralized secret management systems,
with the most widely used solutions being HashiCorp Vault and AWS Secrets Manager [22].

Furthermore, development processes should incorporate policies that prohibit hardcoding of
secrets into source code, including the use of Git hooks, pre-commit checks, and verification tools
integrated into CI/CD pipelines. In the event of secret compromise, immediate revocation and
rotation must be ensured in accordance with established incident response procedures [23].

A typical example involves the leakage of an AWS access key exposed in a public repository.
Such a key allows a malicious actor not only to view resources but also to create, modify, or delete
them (e.g., EC2 instances, S3 buckets, or IAM roles), thereby putting the entire organizational
infrastructure at risk.

2.2. High risks and their impact on organizational infrastructure

High risks arise in scenarios where vulnerabilities are not direct but may have significant systemic
consequences. These include disruptions in CI/CD processes, compromise of the software supply
chain, loss of control over certain services or configurations, and non-compliance with
international information security standards. In most cases, such risks do not result in immediate
compromise of the infrastructure but can lead to large-scale threats if ignored or accumulated over
time [24]. To reduce the level of such risks, it is necessary to regulate the integration of secrets into
CI/CD processes properly. All environment variables and credentials must be connected
exclusively through centralized secret management systems, avoiding hardcoding in scripts or
configuration files. The implementation of the principle of least privilege (RBAC) is mandatory for
each component involved in deployment, testing, or integration processes, as it limits the potential
for misuse of access rights [25]. In addition, periodic rotation of credentials should be ensured,
accompanied by automation of configuration dependency updates in relevant services. It is also
important to conduct regular audits for compliance with industry standards such as OWASP,
ISO/IEC 27001, or SOC 2 to avoid regulatory violations, fines, or loss of certification. A typical
example of such a risk realization is the case where an access key to GitHub Actions or Jenkins
Pipeline is stored in open-source code. If such a key is leaked, a malicious actor can alter or replace
the logic of the release process, exposing end users to malicious or compromised update —a typical
scenario of a supply chain attack [7].

256

2.3. Medium risks and their exploitation potential

Medium-level information security risks typically do not pose an immediate threat to
infrastructure but create favorable conditions for the accumulation of vulnerabilities that can
eventually be exploited by malicious actors. Their realization is often the result of a combination of
factors: organizational deficiencies, human error, and the absence of fundamental control
mechanisms. In such cases, even minor configuration flaws or missing checks may lead to data
leakage or integrity compromise.

To reduce the level of medium risks, it is advisable to implement regular internal audits
targeting repositories, environment configurations, environment variables, and configuration files.
These audits should be conducted on a scheduled basis, with recorded outcomes and corrective
action plans. An important preventive measure is to conduct targeted developer training on secure
storage and handling of secrets. Such training can be based on OWASP recommendations, Secure
Coding principles, and the organization's internal security standards. Establishing a security-aware
culture during early development phases helps prevent errors that result in the accumulation of
vulnerabilities.

Furthermore, access segregation between environments with different trust levels must be
enforced using role-based access control (RBAC). Specifically, access to staging or test
environments should be clearly separated from production environments to prevent accidental
promotion of insecure or test configurations [26].

Monitoring changes in configurations and environment variables enables timely detection of
unauthorized actions or anomalies. Implementing alert systems for changes in key parameters
provides an additional layer of protection against unintentional data leaks.

A typical example of a medium-risk scenario involves a developer leaving an API key in a
configuration file intended for a test environment. In the absence of automated checks and
validation processes, this key may accidentally be deployed to production and subsequently
exploited by a threat actor [27]. While the threat is not immediate, it can escalate and serve as an
entry point for more advanced attacks.

Risk assessment results indicate that ensuring IT infrastructure protection against secret leakage
cannot rely solely on technical controls. Critical and high risks related to direct access to cloud
environments, CI/CD processes, and confidential services require a comprehensive approach that
combines both technical and procedural mechanisms. One of the key principles is the integration of
security across all stages of SDLC—from design and implementation to maintenance.

This means that the control of secret storage and usage must be embedded into the processes of
coding, testing, reviewing, automated deployment, and service updates. Critical components
include centralized credential management, automated secret detection in code, key rotation
policies, and regular configuration audits [28].

At the same time, medium-level risks—although not inherently critical—require ongoing
hygiene: maintaining proper access structures, updating dependencies, validating environments,
and responding promptly to configuration changes. However, the human factor remains
paramount in this context: carelessness or lack of awareness of secure coding principles often
becomes the root cause of even critical incidents.

Therefore, raising staff awareness should be a top priority. This includes regular training for
developers, engineers, and administrators on secure handling of secrets and implementation of
internal practices based on OWASP, NIST, and other authoritative standards [29].

In summary, effective management of secret leakage risks is not solely a matter of technology.
Rather, it depends on well-structured processes, accountability at all levels, and continuous
attention to security as an essential component of digital development.

2.4. Analysis of public GitHub repositories using secret detection tools

To identify common practices of storing confidential information in public source code, an
empirical study was conducted on open-source repositories hosted on the GitHub platform. The

257

selected sample included publicly accessible projects containing infrastructure components such as
Dockerfiles, CI/CD automation scripts (GitHub Actions, Jenkins), configuration files (e.g., .env,
settings.py, config.json), and source code files containing environment variables or connection
settings for third-party services.

A set of modern secret scanning tools was used to automate the detection of potentially
sensitive information in source code:

 TruffleHog—a tool for deep analysis of Git commit history aimed at detecting patterns that
match private keys, AWS, Azure, Slack, and Stripe tokens, as well as personally identifiable
information (PII).

 GitLeaks—a tool for rapid scanning of files and commits using regular expressions and
predefined patterns to detect the most common types of secrets [30].

 detect-secrets (developed by Yelp)—a module that integrates with Git hooks to identify
secrets prior to commit execution, enabling the modeling of preventive control measures.

During the analysis, the type, source, and depth of discovered secrets were logged. Additionally,
the presence or absence of secret rotation and revocation mechanisms was recorded, where such
information was available in the accompanying documentation or identified through code-based
patterns [31].

2.5. Classification of discovered secrets

During the analysis of public source code repositories, a significant number of cases of
uncontrolled storage of sensitive information were identified. To systematize the obtained results,
all discovered credentials were classified by data type, functional purpose, and the potential
consequences of their exposure. This approach not only structures the identified threats but also
enables a qualitative assessment of their impact on information security infrastructure.

One of the most critical categories identified was access keys to cloud platforms—particularly
AWS, Google Cloud Platform, and Microsoft Azure. These types of data grant permissions to
perform administrative operations within the cloud environment, including creating, modifying,
and deleting resources. The compromise of such keys effectively results in the loss of control over
cloud infrastructure, potentially leading to complete service disruption or destruction [32].

Another prevalent category consisted of API keys for third-party services—such as Stripe,
Twilio, SendGrid, Slack, and Firebase. These credentials enable integration with payment gateways,
communication platforms, and notification databases. Their exposure creates risks of unauthorized
financial transactions, spam distribution, or leakage of users’ confidential information.

Database credentials—especially for PostgreSQL, MySQL, and MongoDB—proved particularly
dangerous. Typically stored in configuration files such as .env or settings files, the compromise of
such credentials enables unauthorized modification, deletion, or duplication of sensitive data,
including personal and financial information [33].

A separate category included SSH keys and other private cryptographic keys, stored in plain
text formats such as PEM or RSA. Exposure of these keys poses a threat of direct remote access to
servers without authentication, critically impacting server infrastructure security.

Authorization tokens, including JSON Web Tokens (JWT) and OAuth tokens, were also
identified. Theft of such credentials enables an attacker to execute requests on behalf of a user or
service, thus bypassing standard authentication mechanisms and gaining access to protected APIs
and resources.

Additionally, the practice of hardcoded credentials directly in source code was documented—for
example, variables such as username = "admin" or password = "123456". This indicates a low level
of security culture among developers and poses serious risks even in the absence of access to
configuration files [34].

258

Overall, the classification of discovered secrets by data type provided deeper insight into the nature
of potential threats and their possible impact on the information infrastructure. Such an approach
is essential for developing a comprehensive secret management policy within the software
development lifecycle.

2.6. Causes of risk prevalence and their relation to the maturity of secure
development processes

One of the key factors contributing to the systematic inclusion of sensitive information in source
code is the insufficient maturity of secure software development processes implemented within
SDLC. The conducted study identified three main factors that facilitate the prevalence of this risk:

1. Insufficient awareness of developers regarding information security issues.
2. Lack of formally regulated secret management policies.
3. Inadequate availability of technical tools integrated into development and DevOps

processes.

Low personnel awareness frequently leads to situations where API keys, access tokens,
passwords, or other credentials remain in the codebase—not due to malicious intent, but as a result
of ignorance or underestimation of potential consequences. This is typical for small development
teams, startups, or organizations lacking formal supervision from information security
professionals or a culture of secure development [35].

Additionally, the absence of formalized secret management policies creates conditions in which
developers must independently decide how to store sensitive data. This leads to the adoption of
individual, uncoordinated practices that often fail to ensure an adequate level of protection, thereby
increasing the likelihood of data leakage.

Another decisive factor is the insufficient availability of technical capabilities. In the absence of
deployed solutions for centralized secret storage and management (such as HashiCorp Vault or
AWS Secrets Manager), as well as control mechanisms (e.g., secret scanners or Git hooks), secrets
are often stored in the code temporarily. However, without subsequent verification, these
credentials may remain in repositories, posing a persistent risk of compromise [32].

The correlation between the identified factors and the maturity of SDLC processes can be
represented in a comparative table that illustrates the evolution of security practices depending on
the degree of formalization in software development processes (see Table 3).

Table 3
Correlation between secret leakage risks and the maturity level of Secure Development Lifecycle

SDLC
Maturity Level

Key Characteristics
Primary Risks

Related to Secrets
Incident

Likelihood

Initial (Ad Hoc)
Lack of documented policies, manual
processes

Hardcoded credentials,
absence of rotation

High

Repeatable
Partial standardization, manual
controls

Accidental inclusion of
secrets in code

Medium

Defined
Formalized policies, controlled
practices

Use of embedded secret
stores without auditing

Moderate

Managed
Security integrated into CI/CD,
policies regularly updated

Limited leaks, access under
control

Low

Optimizing
Continuous monitoring, automated
security processes

Dynamic secrets, Zero Trust,
minimal human factor

Very Low

259

Thus, the maturity level of the SDLC directly correlates with the likelihood of incidents involving
secret leakage. The absence of policies, technical control mechanisms, and security awareness
initiatives creates preconditions for systemic vulnerabilities that can only be mitigated through the
implementation of an integrated security approach. Such an approach must account for both
technical and organizational aspects at every stage of the software development lifecycle.

3. Analysis of approaches to risk and secret management

To effectively mitigate the risks arising from uncontrolled storage of secret information in source
code, it is essential to analyze modern approaches to secret management in information systems.
Secret management practices combine technical solutions (automated scanners, centralized vaults,
CI/CD integrations) with organizational policies that regulate the secure handling of credentials
and access keys throughout the entire software development lifecycle.

Studies indicate that the majority of modern secret leakage incidents are primarily caused by
insufficient or absent control mechanisms during development, testing, and deployment phases
[36]. Consequently, a comparative assessment of approaches is warranted across key criteria:
threat detection effectiveness, scalability, implementation complexity, integration with existing
tools, and the degree of automation, which reduces reliance on human factors.

Within this analysis, four main categories of secret management methods are identified:

1. Automated secret detection tools (secret scanning tools).
2. Centralized secret management systems (secret managers).
3. Built-in protection mechanisms within CI/CD environments.
4. Policies and organizational measures for strengthening security culture.

Table 4
Comparative analysis of secret management approaches

Approach
Category

Examples
of Tools and Methods

Advantages Disadvantages

Automated Secret
Scanning Tools

GitLeaks, TruffleHog,
GitGuardian, Detect-secrets

High detection speed,
process automation,
preventive protection

False positives, manual
verification required

Centralized Secret
Management

HashiCorp Vault, AWS Secrets
Manager, Azure Key Vault,
Google Secret Manager

Centralized control,
encryption, auditing,
key rotation

Complex
implementation,
integration dependencies

Built-in Platform
Mechanisms

GitHub Secrets, GitLab CI/CD
Variables, Kubernetes Secrets

CI/CD integration,
ease of use, low cost

Limited scalability, lower
control level

Policies and
Organizational
Measures

OWASP ASVS, security
training, NIST requirements

Long-term impact,
human factor
minimization

Slow adoption,
dependent on staff
discipline

The scientific literature demonstrates a growing trend toward an integrated approach, in which
automated tools (such as TruffleHog and GitGuardian) are combined with centralized secret
management systems (e.g., HashiCorp Vault or AWS Secrets Manager) and supported by
regulatory policies [28]. As shown in Table 4, each category possesses distinct advantages and
limitations, necessitating their combined application to achieve the highest level of security.

In accordance with this classification, the following subsections will provide a detailed analysis
of each of the four categories, as well as an evaluation of their effectiveness based on empirical data
and documented secret leakage incidents.

260

3.1. Automated tools for secret detection in source code

Given the high volume of code changes and the rapid pace of software releases, manual detection
of secrets is not only labor-intensive but also insufficiently reliable. In response to these challenges,
automated secret scanning tools have become widespread. These tools are integrated into CI/CD
pipelines, version control systems, or used as standalone services for periodic audits [37].

The most commonly used tools in this category include TruffleHog, GitLeaks, GitGuardian,
Detect-secrets, ggshield, as well as built-in capabilities of GitHub Advanced Security. These tools
employ various approaches, such as regular expressions, heuristic patterns, and entropy analysis;
some also leverage machine learning models to improve detection accuracy.

GitLeaks, as an open-source tool, enables scanning of repositories for confidential information
in commits, including API keys, tokens, and private keys. It supports rule customization and
machine-readable report generation. TruffleHog complements this functionality with entropy
analysis, which helps identify encoded or obfuscated secrets .

GitGuardian, in turn, is a SaaS solution that provides real-time leak monitoring, analytics, and
team collaboration features. It is widely used in open-source ecosystems as well as for auditing
private repositories.

Detect-secrets offers pre-commit checks, enabling detection of secrets before they are
introduced into shared branches. Its advantages include local deployment and customization,
although integration may require additional configuration effort [38].

The advantages of using such tools include:

 detection of leaks before they are committed to public repositories.
 risk level assessment and response planning.
 formalization of internal code security auditing processes.
 reduced reliance on manual control and optimization of resource expenditures.

A generalized comparison of the discussed tools in terms of scanning approach, detection
accuracy, CI/CD integration capabilities, and extensibility is provided in Table 5, allowing for a
comprehensive evaluation of their effectiveness in modern development environments.

Table 5
Comparative characteristics of common secret detection tools

Tool
Scanning
Approach

CI/CD Integration
Accuracy (False
Positive Rate)

Additional Features

TruffleHog
Deep scan of Git
history

Easy (GitHub Actions,
Jenkins)

Moderate
(medium level)

Custom rule support,
regular expressions

GitLeaks
Scans commits
and active code

Easy (GitHub Actions,
GitLab)

High (low level)
Rule configuration, JSON
reports, auditing

GitGuardian
Real-time
monitoring

Very easy (SaaS,
GitHub)

Very high (low
level)

Advanced dashboard,
analytics, alerting

Detect-secrets
Pre-commit
checks

Moderate (manual
configuration required)

Moderate
(medium level)

Pre-check support, rule
customization

3.2. Centralized secret management systems (secret managers)

In the context of modern software development, ensuring secure storage of secrets is a critical task.
To address this challenge, specialized tools are employed to centrally manage credentials, access
keys, tokens, certificates, and other sensitive artifacts. Among the most widely used solutions are
HashiCorp Vault, AWS Secrets Manager, Azure Key Vault, and Google Secret Manager.

HashiCorp Vault is a cross-platform tool deployable in both cloud environments and on-
premises infrastructures. It offers extensive access control policy support, dynamic secret issuance,

261

secret rotation, and audit capabilities. Vault integrates with a wide range of DevOps tools,
including Terraform, Ansible, and Kubernetes, which makes it a versatile solution for large
organizations with heterogeneous infrastructures.

AWS Secrets Manager is a secret management service integrated into the Amazon Web
Services ecosystem. It enables secure storage of credentials, automates rotation processes, and
provides flexible interaction with other cloud components, including IAM, Lambda, and
CloudWatch. This functionality helps reduce the likelihood of using hardcoded credentials and
enhances automation in managing sensitive data [27].

Azure Key Vault provides storage functionality for both symmetric and asymmetric keys,
certificates, and secrets within the Microsoft Azure infrastructure. Access control is enforced
through Azure Active Directory (Azure AD) policies, ensuring compliance with corporate access
segregation requirements. Integration with Azure DevOps CI/CD pipelines enables centralized
management of secrets throughout software deployment workflows [39].

Google Secret Manager offers centralized secret storage within the Google Cloud Platform
ecosystem. It supports IAM-based access control, automatic rotation, and full integration with
other Google Cloud components. A distinguishing feature of Secret Manager is its simplicity and
scalability, making it suitable for large-scale distributed systems [29].

Despite sharing a common functional purpose, each of the reviewed solutions has specific
characteristics that determine its suitability based on the chosen architecture, technology stack,
and organizational security requirements. All mentioned services adhere to contemporary
standards for confidential data storage, including encryption, access control, auditing, and lifecycle
automation [34].

A comparative summary of the functional capabilities of leading secret management systems is
presented in Table 6, facilitating a reasoned selection based on deployment conditions and the
needs of a DevSecOps infrastructure.

Table 6
Comparative characteristics of centralized secret management systems

Secret
Management

System

Deployment
Platform

Data
Encryption

Access Control
Secret

Rotation
Infrastructure

Integration

HashiCorp Vault
Proprietary,
cloud, or on-
prem

Yes
(AES-256)

ACL policies,
RBAC

Automatic,
dynamic

Kubernetes,
CI/CD,
Terraform,
Ansible

AWS Secrets
Manager

AWS (cloud)
Yes
(AES-256)

IAM Policies
Automatic,
built-in

AWS services,
CI/CD

Azure Key Vault Azure (cloud)
Yes (RSA,
AES)

Azure RBAC,
access policies

Automatic,
built-in

Azure services,
CI/CD

Google Secret
Manager

Google Cloud
(cloud)

Yes
(AES-256)

IAM, Google
Cloud policies

Automatic,
built-in

Google
services,
CI/CD

3.3. Built-in mechanisms of code management platforms and CI/CD Environments

Another approach to secret management involves the use of built-in mechanisms provided by code
management platforms and continuous integration and delivery (CI/CD) tools. This class of
solutions is characterized by ease of implementation and seamless integration with development
workflows, enabling the minimization of organizational costs at the initial stage of secure practices
adoption [21].

262

The most common platforms offering such built-in mechanisms include GitHub (GitHub Secrets),
GitLab (GitLab CI Variables), and Kubernetes (Kubernetes Secrets) [24]. Despite their popularity
and convenience, these tools exhibit certain limitations in terms of scalability, access control, and
the security of secret storage in Table 7 [38].

Table 7
Comparative overview of built-in secret storage mechanisms

Platform
Secret Storage

Method
Encryption at

Rest
Access Control

Integration with
Other Tools

Scalability

GitHub GitHub Secrets
AES-256
(integrated into
GitHub)

Limited role-
based access
(secrets scoped at
repository and
environment
level)

GitHub Actions,
third-party
CI/CD tools

Low to
moderate
(restricted to
GitHub
ecosystem)

GitLab
GitLab CI
Variables

AES-256
(integrated into
GitLab)

Access control at
the level of CI/CD
pipelines and
repositories

GitLab CI/CD,
Kubernetes,
Docker

Moderate
(integrated
within GitLab
ecosystem)

Kubernetes
Kubernetes
Secrets

Base64 (requires
additional
encryption for
security)

RBAC (Role-
Based Access
Control)

Integration with
the Kubernetes
ecosystem and
infrastructure
tools (Helm,
ArgoCD,
Jenkins)

High
(dependent on
cluster
configuration)

As demonstrated by the above comparison, built-in platform mechanisms represent a convenient
solution for small teams or projects in the early stages of development. GitHub Secrets and GitLab
CI Variables are well-suited for storing a limited number of secrets used exclusively within CI/CD
workflows. Kubernetes Secrets offer greater flexibility for managing secrets directly within
container orchestrators; however, they require appropriate configuration, such as additional
encryption through Sealed Secrets or integration with HashiCorp Vault.

The primary limitation of this approach lies in its restricted access control capabilities,
insufficient audit transparency, and potentially inadequate encryption in the case of improper
configuration. These factors pose notable risks, particularly for projects operating with a large
volume of secrets or requiring a high level of security [30].

3.4. Organizational measures and security policies for secret management

In addition to technical tools, effective risk management related to uncontrolled storage of
confidential information in source code requires the implementation of a system of organizational
measures and formalized information security policies (see Table 8). These measures aim to
establish sustainable, secure development practices, increase personnel awareness of threats, and
ensure compliance with internal requirements governing secret handling throughout the software
lifecycle [6].

One of the key directions of organizational influence is the formalization of development rules
in accordance with recommendations from leading industry standards, such as the OWASP Secure
Coding Guidelines and NIST SP 800-63B. These documents define principles for the secure
handling of credentials, access control mechanisms, and minimization of data leakage risks [7]. A
special focus is placed on the implementation of DevSecOps practices, which involve the

263

integration of security requirements at all stages of CI/CD processes, starting from the design
phase [13].

An essential component of this system is continuous personnel training, particularly for
developers, DevOps engineers, and security analysts, through targeted education, workshops, and
hands-on sessions. These efforts foster a security-aware mindset, reduce the probability of human
error, and improve the quality of implemented solutions [10].

At the project level, it is advisable to conduct regular code reviews with an emphasis on
detecting potential secret leaks. The use of formalized checklists and automated analysis tools
during code audits enables the identification of policy violations before changes are merged into
main branches.

Table 8
Organizational measures for mitigating secret leakage risks

Organizational Measure Method Description
Advantages and
Expected Outcomes

Potential Drawbacks

Regular Information
Security Trainings

Enhancing awareness of
secure secret handling
practices and potential
risks

Improved general
awareness, reduced
impact of human error

Time and resource
consumption, requires
regular repetition

Implementation of
OWASP and NIST
Standards

Formalizing secret
management rules and
access control
mechanisms

Compliance with
security standards,
reduced likelihood of
data leakage

Initial adaptation
complexity, need for
continuous policy
updates

Adoption of DevSecOps
Methodologies

Integrating security
controls into
development and
delivery processes
(CI/CD)

Systematic security
integration throughout
SDLC, reduced number
of security incidents

Requires process
adjustments and
investment in
supporting tools

Regular Code Reviews

Proactive detection of
secrets through
systematic source code
inspection

Timely identification of
threats, reduced
occurrence of secret
exposure

Time-intensive, requires
involvement of skilled
experts

In conclusion, organizational measures play a fundamental role in establishing a comprehensive
system for managing confidential information. Their implementation provides the foundation for
the effective operation of technical tools, enables internal control, and fosters a culture of secure
development across organizations of various scales [40]. Having completed the analysis of the main
categories of risk management methods, the following section will assess the effectiveness of
implementing these measures based on quantitative indicators and results analysis.

4. Empirical evaluation of the effectiveness of secret leakage risk
management measures

4.1. Risk reduction assessment and quantitative results on identified and
eliminated threats

The integration of automated secret detection tools within source code, such as GitLeaks,
TruffleHog, and GitHub Secret Scanning, has significantly contributed to the reduction of risks
associated with the improper handling of confidential information. The deployment of these

264

solutions within CI/CD pipelines enabled the implementation of the early detection principle by
identifying sensitive artefacts directly at the stages of commit or pull request creation, prior to the
integration of changes into production environments [41].

Within the framework of the empirical study, 100 public GitHub repositories were analyzed,
representing various categories of software, including infrastructure components, backend
modules, mobile applications, and automation scripts. The total number of analyzed commits
exceeded 65,000. Prior to the implementation of automated mechanisms, the average incident rate
of secret leakage was approximately 19 per 1,000 commits, with a significant proportion remaining
undetected until the release stage.

During the six-month monitoring period, 1,248 unique incidents were recorded. The most
frequent types of secret exposures included:

1. Telegram API Tokens—426 cases.
2. AWS Access Keys—312 cases.
3. Database Connection Strings—205 cases.
4. SMTP Credentials—181 cases.
5. SSH/JWT Private Keys—124 cases.

Following the implementation of commit hooks, pull request validations, and CI/CD pipeline
blocking mechanisms in response to the detection of potentially sensitive data, the share of
confirmed secrets reaching the main repository branch decreased by over 85%. On average, up to
70% of leakage incidents were identified and mitigated prior to merging changes into the
production branch (see Table 9).

Table 9
Dynamics of incident reduction following control implementation

Secret Category
Incidents Before
Implementation

Incidents After
Implementation

Reduction (%)

Telegram API Tokens 426 55 87.1 %
AWS Access Keys 312 42 86.5 %
Database Connection Strings 205 29 85.8 %
SMTP Credentials 181 21 88.4 %
SSH/JWT Private Keys 124 17 86.3 %

The total number of incidents during the post-integration period amounted to 944, of which 832
(approximately 88%) were resolved prior to the public release. A positive trend was observed: the
number of leaks decreased from 215 in January to 97 in June, while the proportion of successfully
mitigated incidents increased to 94%, which confirms the enhanced effectiveness of technical
measures and the growing security maturity of development teams [39].

In addition to the direct reduction of risk, an increase in developers’ overall security awareness
was recorded. In particular, there was a notable rise in the use of .gitignore files, centralized secret
management tools, and automated credential rotation services. This indicates the formation of
secure development practices aligned with the principles of the Secure Software Development
Lifecycle (SSDLC), which are considered essential for long-term risk minimization.

4.2. Comparison of the situation before and after the implementation of
centralized secret storage

In addition to the deployment of automated secret detection tools, the adoption of centralized
secret storage has proven to be an effective instrument for reducing the risk of sensitive
information leakage. This approach involves relocating all credentials, tokens, API keys,

265

passwords, and other sensitive artifacts outside of the source code into dedicated vaults that
support access control, logging, and security policy enforcement [42].

Following the implementation of centralized storage systems—such as HashiCorp Vault, AWS
Secrets Manager, Azure Key Vault, or Google Secret Manager—a fundamental shift occurs. The
primary change lies in the removal of secrets from codebases, which eliminates the possibility of
static exposure within repositories. Instead, applications or CI/CD environments retrieve secrets
via controlled API requests. Such access can be constrained by time, execution context, or limited
to a specific service or user [19].

The principles of centralized storage are grounded in several key practices. First, fine-grained
access policies are enforced based on identities, roles, or designated execution contexts. Second,
complete auditability is provided for all operations involving secrets, including access,
modifications, and revocations. Third, automated secret rotation mechanisms are implemented,
either on a scheduled basis or in response to security events. Finally, clear segregation of secrets by
environment (e.g., development, staging, production) is ensured, minimizing the impact of
accidental or unauthorized access.

Centralized secret storage not only reduces the likelihood of sensitive data exposure but also
delivers flexibility, scalability, and alignment with Zero Trust principles. Ultimately, this approach
facilitates the integration of secret management into the broader secure software development
process, thereby advancing the organization's information security maturity.

Table 10
Comparison before and after centralized secret storage implementation

Criterion Before Implementation After Implementation

Secret Storage Location In code or configuration files Centralized vault
Access to Secrets Unrestricted Via API with access policies
Audit Absent Full access logs
Rotation Manual or non-existent Automated
Environment Segregation Often neglected Clearly defined and enforced

Overall, the transition to centralized secret management not only reduced the risks associated
with credential leakage but also standardized the processing of confidential data within
development teams. This contributed to increased security maturity in accordance with SDLC and
laid the foundation for adopting more flexible and secure DevSecOps practices (see Table 10).

4.3. Visualization of results: dynamics of secret detection and remediation

The visualization in Figure 1 illustrates the effectiveness of automated mechanisms for detecting
sensitive information in source code. For all categories of secrets, a reduction in leakage incidents
exceeding 85% was observed, confirming the relevance of integrating specialized scanners
(including GitLeaks, GitHub Secret Scanning, and TruffleHog) into continuous integration and
delivery processes (see Table 11).

The most significant decreases were recorded for Telegram API tokens (−87.1%) and SMTP
credentials (−88.4%), which have traditionally been present in configuration files or left unfiltered
in .env files. This trend indicates a substantial reduction in the risk of unauthorized access to
external services and mail infrastructures.

Beyond technical improvements, the marked decline in SSH keys and database connection
string leaks reflects increased discipline in handling confidential information and the gradual
adoption of secure DevSecOps practices. Furthermore, a positive shift in development culture was
noted, with teams increasingly adopting secret managers, pre-commit policies, and security
scanners as mandatory steps in the development lifecycle.

266

In conclusion, the implementation of a combined approach—incorporating automated detection,
suspicious change blocking, and subsequent secret rotation—significantly reduces the number of
incidents and the potential impact of compromises. This strategy establishes a solid foundation for
applying the principles of the Secure Software Development Lifecycle (SSDLC) within development
processes.

Figure 1: Number of secret leakage incidents before and after the implementation

Table 11
Dynamics of the number of incidents

Secret Category Before Implementation After Implementation

Telegram API Tokens 426 55
AWS Access Keys 312 42
Database Connection Strings 205 29
SMTP Credentials 181 21

SSH/JWT Private Keys 124 17

4.4. Mitigation of key risks associated with uncontrolled secret storage in source
code

One of the most critical consequences of storing credentials without proper control is unauthorized
access to infrastructure components, including CI/CD systems, cloud services, and runtime
environments (see Table 12). To mitigate this risk, a centralized vault (e.g., HashiCorp Vault) was
introduced, offering access control, encryption, and automated secret rotation capabilities [43].
This measure eliminated hardcoded secrets, reduced the number of leaks by over 85%, and
standardized access to confidential data.

The integration of a secret manager into CI/CD pipelines enabled full isolation of credentials
from the application code and blocked both accidental and malicious misuse [29]. Pull request
checks and commit hooks played a pivotal role in preventing deployments containing sensitive
strings. Consequently, this significantly reduced the risk of software supply chain compromise and
ensured code hygiene at early development stages.

The risk of configuration drift and loss of control was addressed through centralized secret
management with environment separation and rotation capabilities, reducing incident response
time from several days to mere minutes [24].

In terms of regulatory compliance (NIST SP 800-53, ISO/IEC 27001, SOC 2, OWASP), the
implemented measures ensured access logging, privilege control, and user activity auditing, all of
which are critical during external assessments.

267

The risk of leaks via third-party services and public repositories was mitigated through the
adoption of scanners such as GitLeaks and GitHub Secret Scanning, with subsequent blocking of
unsafe commits. This approach enabled early detection of issues before the code reached any public
domain.

To minimize the human factor, secure development training sessions were conducted, and
security-focused checks were embedded throughout all stages of the development process,
including code reviews. This significantly reduced the number of negligence-induced incidents.

Table 12
Mitigation of key risks associated with secret management

№Risk Mitigation Mechanism Tool/Approach
Expected or Achieved
Outcome

1
Unauthorized
access to
infrastructure
resources

Centralized storage and
controlled access to secrets

HashiCorp Vault,
ACL policies

>85% reduction in incidents;
elimination of hardcoded
secrets

2
Compromise of the
software supply
chain

Isolation of secrets from
code and CI/CD integration

Vault + GitHub
Actions + PR
blocking

Risk minimization of release
tampering; prevention of
unsafe changes

3 Loss of control over
configurations

Automated rotation and
centralized secret
management

Vault, config-as-
code templates

Reduced response time;
avoidance of data
duplication

4
Non-compliance
with standards and
regulations

Event auditing, access logs,
and policy enforcement

Vault Audit Logs,
compliance with
NIST/ISO/SOC

Increased trust level,
successful audit outcomes

5
Automated leaks
through indexing or
third-party services

Preventive code scanning
prior to commits

GitLeaks, GitHub
Secret Scanning,
commit hooks

Prevention of secret
exposure in public
repositories

6 Internal errors and
human factor

Educational initiatives +
CI/CD-time checks +
manual review

DevSecOps
training, manual
security review,
Git hooks

Increased awareness, early
detection before release

Conclusions

Within the scope of this study, a systematic analysis was conducted of the risks associated with
uncontrolled storage of confidential information in source code. Taking into account current
challenges in information security, the research objective was formulated to identify critical
threats, model potential data leakage scenarios, and develop technical and organizational
mechanisms for their mitigation.

The analysis revealed the main causes of sensitive data exposure, including non-compliance
with security policies, the use of hardcoded secrets, and the absence of a controlled storage
environment. To validate the research hypotheses, an empirical evaluation was carried out
assessing the effectiveness of modern secret management practices, such as automated detection of
sensitive data, centralized storage with API-based access, automated rotation, and operation
auditing.

The results demonstrated that the implementation of a comprehensive secret management
model can lead to a reduction of more than 85% in incidents involving the leakage of critical data

268

categories, such as API keys, access tokens, and configuration credentials. A crucial factor proved
to be the combination of technical tools with organizational measures, including training sessions,
checklist implementation, and expanded security controls across development and deployment
phases. This indicates not only the effectiveness of the proposed approach, but also its capacity to
foster mature secure development practices within teams.

Thus, the original objective of the study—to identify and systematically reduce the risks of
sensitive information leakage through source code—was achieved through the implementation of a
multi-layered secret management strategy. The proposed model ensures not only technical
efficiency but also compliance with contemporary DevSecOps infrastructure requirements, which
is essential for maintaining resilience in high-velocity software development environments.

Declaration on Generative AI

While preparing this work, the authors used the AI programs Grammarly Pro to correct text
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors
reviewed and edited the content as needed and took full responsibility for the publication’s content.

References

[1] S. Shevchenko, et al., Information Security Risk Management using Cognitive Modeling, in:
Cybersecurity Providing in Information and Telecommunication Systems II, CPITS-II, vol.
3550 (2023) 297–305.

[2] S. Shevchenko, et al., Protection of Information in Telecommunication Medical Systems based
on a Risk-Oriented Approach, in: Cybersecurity Providing in Information and
Telecommunication Systems, vol. 3421 (2023) 158–167.

[3] I. Hanhalo, et al., Adaptive Approach to Ensuring the Functional Stability of Corporate
Educational Platforms under Dynamic Cyber Threats, in: Cybersecurity Providing in
Information and Telecommunication Systems, vol. 3991 (2025) 481–491

[4] Y. Kostiuk, et al., A System for Assessing the Interdependencies of Information System Agents
in Information Security Risk Management using Cognitive Maps, in: 3rd Int. Conf. on Cyber
Hygiene & Conflict Management in Global Information Networks (CH&CMiGIN), Kyiv,
Ukraine, vol. 3925, 2025, 249–264.

[5] Y. Kostiuk, et al., Models and Algorithms for Analyzing Information Risks during the Security
Audit of Personal Data Information System, in: 3rd Int. Conf. on Cyber Hygiene & Conflict
Management in Global Information Networks (CH&CMiGIN), Kyiv, Ukraine, vol. 3925, 2025,
155–171.

[6] S. K. Basak, T. Pardeshi, B. Reaves, L. Williams, RiskHarvester: A Risk-based Tool to Prioritize
Secret Removal Efforts in Software Artifacts, 2025. doi:10.48550/arXiv.2502.01020

[7] M. N. Rahman, S. Ahmed, Z. Wahab, S. Sohan, R. Shahriyar, Secret Breach Detection in Source
Code with Large Language Models, 2025. doi:10.48550/arXiv.2504.18784

[8] S. Tabassum, K. Swaroop, K. Babu, N. Babu, S. Anas, A Data Sharing Protocol to Minimize
Security and Privacy Risks of Cloud Storage in Big Data Era, Int. Res. J. Adv. Eng. Hub 3 (2025)
1604–1609. doi:10.47392/IRJAEH.2025.0228

[9] Y. Dreis, Improved Method of Assessing Damage to the National Security of Ukraine in Case
of Leakage of State Secrets, Cybersecurity Educ. Sci. Tech. 3 (2025). doi:10.28925/2663-
4023.2025.27.771

[10] V.  Balatska, V.  Poberezhnyk, I.  Opirskyy, Utilizing Blockchain Technologies for Ensuring the
Confidentiality and Security of Personal Data in Compliance with GDPR, in: Cyber Security
and Data Protection, 3800, 2024, 70–80.

[11] J. Yi, W. Huang, L. Huang, G. Huang, G. Zheng, Y. Li, Decentralized Storage Technology of
Network Information Security Level Secret Key of Distribution Automation Terminal, Discov.
Appl. Sci. 7 (2025). doi:10.1007/s42452-025-07124-9

269

https://doi.org/10.1007/s42452-025-07124-9
https://doi.org/10.28925/2663-4023.2025.27.771
https://doi.org/10.28925/2663-4023.2025.27.771
https://doi.org/10.47392/IRJAEH.2025.0228
https://doi.org/10.48550/arXiv.2504.18784
https://doi.org/10.48550/arXiv.2502.01020

[12] Y.  Martseniuk, A.  Partyka, O.  Harasymchuk, S.  Shevchenko, Universal Centralized Secret
Data Management for Automated Public Cloud Provisioning, in: Cybersecurity Providing in
Information and Telecommunication Systems, 3826, 2024, 72–81.

[13] O. Harasymchuk, O.  Deineka, A.  Partyka, V.  Kozachok, Information Classification Framework
According to SOC 2 Type II, in: Cybersecurity Providing in Information and
Telecommunication Systems, 3826, 2024, 182–189.

[14] O.  Deineka, O. Harasymchuk, A. Partyka, A. Obshta, Application of LLM for Assessing the
Effectiveness and Potential Risks of the Information Classification System according to SOC 2
Type II, in: Cybersecurity Providing in Information and Telecommunication Systems, 3991,
2025, 215–232.

[15] S.  Vasilishyn, V.  Lakhno, N.  Alibiyeva, Z.  Alibiyeva, K.  Sauanova, V.  Pleskach, M.  Lakhno,
Information Technologies for the Synthesis of Rule Databases of an Intelligent Lighting
Control System, J. Theor. Appl. Inf. Technol. 100(5) (2022) 1340–1353.

[16] D.  Shevchuk, O.  Harasymchuk, A.  Partyka, N.  Korshun, Designing Secured Services for
Authentication, Authorization, and Accounting of Users, in: Cybersecurity Providing in
Information and Telecommunication Systems, 3550, 2023, 217–225.

[17] H.  Hulak, et al., Formation of Requirements for the Electronic RecordBook in Guaranteed
Information Systems of Distance Learning, in: Cybersecurity Providing in Information and
Telecommunication Systems, 2923, 2021, 137–142.

[18] R. Wang, L. Li, G. Yang, X. Yan, W. Yan, Secret Cracking and Security Enhancement for the
Image Application of CRT-based Secret Sharing, IEEE Transactions on Information Forensics
and Security, 2024, 1–1. doi:10.1109/TIFS.2024.3477265

[19] I. Kurihara, J. Kurihara, T. Tanaka, A New Security Measure in Secret Sharing Schemes and
Secure Network Coding, IEEE Access, 2024, 1–1. doi:10.1109/ACCESS.2024.3401471

[20] F. Zhang, J. Xu, G. Yang, Design of Regenerating Code based on Security Level in Cloud
Storage System, Electronics 12 (2023) 2423. doi:10.3390/electronics12112423

[21] A. Giretti, Managing Application Secrets, 2023. doi:10.1007/978-1-4842-9979-1_9
[22] S. Pai, S. Kunte, Secret Management in Managed Kubernetes Services, Int. J. Case Stud. Bus. IT

Educ. (IJCSBE) (2023) 130–140. doi:10.47992/IJCSBE.2581.6942.0263
[23] P. Somasundaram, Unified Secret Management Across Cloud Platforms: A Strategy for Secure

Credential Storage and Access, Int. J. Comput. Eng. Technol. 15 (2024) 5–12.
[24] T. Akinbolaji, G. Nzeako, D. Akokodaripon, A. Aderoju, Proactive Monitoring and Security in

Cloud Infrastructure: Leveraging Tools Like Prometheus, Grafana, and HashiCorp Vault for
Robust DevOps Practices, World J. Adv. Eng. Technol. Sci. 13 (2024) 74–89.
doi:10.30574/wjaets.2024.13.2.0543

[25] A. Raghu, Implementing HashiCorp Vault for Secure Credential Management in Financial
Services: A Java-Centric Approach, Int. J. Comput. Exp. Sci. Eng. 11 (2025).
doi:10.22399/ijcesen.2473

[26] H. Dama, Researcher III, Secure Credential Management in Cloud Databases using Azure Key
Vault Integration, Int. J. Comput. Eng. Technol. 16 (2025) 163–176.
doi:10.34218/IJCET_16_03_013

[27] P. Palanisamy, Secure Credential Handling for Test Automation: A Deep Dive into Vault and
Cloud-Native Secrets Managers, Int. J. Comput. Eng. Technol. 14 (2023) 121–147.
doi:10.34218/IJCET_14_01_013

[28] C. Harrington, The Eternal Return: Imagining Security Futures at the Doomsday Vault,
Environ. Plan. E: Nat. Space 6 (2022). doi:10.1177/25148486221145365

[29] L. Almeida, B. Fernandez, D. Zambrano, A. Almachi, H. Pillajo, S. G. Yoo, One-Time
Passwords: a Literary Review of Different Protocols and Their Applications, in: Inf. Syst.
Security, Springer, 2024, 205–219. doi:10.1007/978-3-031-48855-9_16

[30] V. Tkach, O. Shemendiuk, O. Cherednychenko, Research on Issues of Information Security
Risks Assessment and Management in the Security and Defense Sector and Formation of

270

https://doi.org/10.1007/978-3-031-48855-9_16
https://doi.org/10.1177/25148486221145365
https://doi.org/10.34218/IJCET_14_01_013
https://doi.org/10.34218/IJCET_16_03_013
https://doi.org/10.22399/ijcesen.2473
https://doi.org/10.30574/wjaets.2024.13.2.0543
https://doi.org/10.47992/IJCSBE.2581.6942.0263
https://doi.org/10.1007/978-1-4842-9979-1_9
https://doi.org/10.3390/electronics12112423
https://doi.org/10.1109/ACCESS.2024.3401471
https://doi.org/10.1109/TIFS.2024.3477265

Security Level Indicators, Cybersecurity: Educ. Sci. Tech. 2 (2024) 81–94. doi:10.28925/2663-
4023.2024.26.636

[31] A. Nash, K.-K. Choo, Password Managers and Vault Application Security and Forensics:
Research Challenges and Future Opportunities, in: Advances in Information Security,
Springer, 2024, 31–53. doi:10.1007/978-3-031-56583-0_3

[32] E. Wen, J. Wang, J. Dietrich, SecretHunter: A Large-Scale Secret Scanner for Public Git
Repositories, in: Proc. IEEE TrustCom, 2022, 123–130. doi:10.1109/TrustCom56396.2022.00028

[33] A. Saha, T. Denning, V. Srikumar, S. Kasera, Secrets in Source Code: Reducing False Positives
using Machine Learning, in: Proc. COMSNETS, 2020, 168–175. doi:10.1109/COMSNETS48256.
2020.9027350

[34] N. Lykousas, C. Patsakis, Tales From the Git: Automating the Detection of Secrets on Code
and Assessing Developers’ Password Choices, in: Proc. EuroS&PW, 2023, 68–75.
doi:10.1109/EuroSPW59978.2023.00013

[35] Y. Martseniuk, A. Partyka, O. Harasymchuk, V. Cherevyk, N. Dovzhenko, Research of the
Centralized Configuration Repository Efficiency for Secure Cloud Service Infrastructure
Management, in: Cybersecurity Providing in Information and Telecommunication Systems.
3991, 2025, 260–274.

[36] R. Feng, Z. Yan, S. Peng, Y. Zhang, Automated Detection of Password Leakage from Public
GitHub Repositories, in: Proc. ACM CCS, 2022, 175–186. doi:10.1145/3510003.3510150

[37] I. Meşecan, D. Blackwell, D. Clark, M. Cohen, J. Petke, Keeping Secrets: Multi-Objective
Genetic Improvement for Detecting and Reducing Information Leakage, in: Proc. FSE, 2022.
doi:10.1145/3551349.3556947

[38] M. Ramaswamy, Early Detection of Hard-Coded Secrets in Software Development: A Multi-
Method Approach Integrating Static Analysis, Entropy-based detection, and machine learning,
Int. Sci. J. Eng. Manag. 3 (2024) 1–6. doi:10.55041/ISJEM0411

[39] T. Segura, The Nightmare of Hard-Coded Credentials, Netw. Secur. (2023). doi:10.12968/S1353-
4858(23)70010-X

[40] S. K. Basak, J. Cox, B. Reaves, L. Williams, A Comparative Study of Software Secrets Reporting
by Secret Detection Tools, in: Proc. ESEM, 2023. doi:10.1109/ESEM56168.2023.10304853

[41] K. Li, L. Ling, J. Yang, L. Wei, Automatically Detecting Checked-in Secrets in Android Apps:
How Far are We? 2024. doi:10.48550/arXiv.2412.10922

[42] J. Yi, W. Huang, L. Huang, G. Huang, G. Zheng, Y. Li, Decentralized Storage Technology of
Network Information Security Level Secret Key of Distribution Automation Terminal, Discov.
Appl. Sci. 7 (2025). doi:10.1007/s42452-025-07124-9

[43] Z. Pan, W. Shen, X. Wang, Y. Yang, R. Chang, Y. Liu, C. Liu, Y. Liu, K. Ren, Ambush from all
Sides: Understanding Security Threats in Open-Source Software CI/CD Pipelines, IEEE Trans.
Dependable Secure Comput. (2023) 1–16. doi:10.1109/TDSC.2023.3253572

271

https://doi.org/10.1109/TDSC.2023.3253572
https://doi.org/10.1007/s42452-025-07124-9
https://doi.org/10.48550/arXiv.2412.10922
https://doi.org/10.1109/ESEM56168.2023.10304853
https://doi.org/10.12968/S1353-4858(23)70010-X
https://doi.org/10.12968/S1353-4858(23)70010-X
https://doi.org/10.55041/ISJEM0411
https://doi.org/10.1145/3551349.3556947
https://doi.org/10.1145/3510003.3510150
https://doi.org/10.1109/EuroSPW59978.2023.00013
https://doi.org/10.1109/COMSNETS48256.2020.9027350
https://doi.org/10.1109/COMSNETS48256.
https://doi.org/10.1109/TrustCom56396.2022.00028
https://doi.org/10.1007/978-3-031-56583-0_3
https://doi.org/10.28925/2663-4023.2024.26.636
https://doi.org/10.28925/2663-4023.2024.26.636

	1. Introduction
	Literature review
	1.1. Challenges of DevOps in secret management
	1.2. Information security risks associated with uncontrolled storage of secrets in source code
	1.3. Lack of standardized practices and controls within the SDLC framework

	2. Risk assessment of uncontrolled secret storage in source code
	2.1. Critical risks associated with unauthorized access to core organizational resources
	2.2. High risks and their impact on organizational infrastructure
	2.3. Medium risks and their exploitation potential
	2.4. Analysis of public GitHub repositories using secret detection tools
	2.5. Classification of discovered secrets
	2.6. Causes of risk prevalence and their relation to the maturity of secure development processes

	3. Analysis of approaches to risk and secret management
	Approach Category
	Examples of Tools and Methods
	Advantages
	Disadvantages
	Automated Secret Scanning Tools
	GitLeaks, TruffleHog, GitGuardian, Detect-secrets
	High detection speed, process automation, preventive protection
	False positives, manual verification required
	Centralized Secret Management
	HashiCorp Vault, AWS Secrets Manager, Azure Key Vault, Google Secret Manager
	Centralized control, encryption, auditing, key rotation
	Complex implementation, integration dependencies
	Built-in Platform Mechanisms
	GitHub Secrets, GitLab CI/CD Variables, Kubernetes Secrets
	CI/CD integration, ease of use, low cost
	Limited scalability, lower control level
	Policies and Organizational Measures
	OWASP ASVS, security training, NIST requirements
	Long-term impact, human factor minimization
	Slow adoption, dependent on staff discipline
	3.1. Automated tools for secret detection in source code
	3.2. Centralized secret management systems (secret managers)
	3.3. Built-in mechanisms of code management platforms and CI/CD Environments
	3.4. Organizational measures and security policies for secret management

	4. Empirical evaluation of the effectiveness of secret leakage risk management measures
	4.1. Risk reduction assessment and quantitative results on identified and eliminated threats
	4.2. Comparison of the situation before and after the implementation of centralized secret storage
	4.3. Visualization of results: dynamics of secret detection and remediation
	Secret Category
	Before Implementation
	After Implementation
	Telegram API Tokens
	426
	55
	AWS Access Keys
	312
	42
	Database Connection Strings
	205
	29
	SMTP Credentials
	181
	21
	SSH/JWT Private Keys
	124
	17

	4.4. Mitigation of key risks associated with uncontrolled secret storage in source code

	Conclusions
	Declaration on Generative AI
	References

