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Abstract
This paper presents a lightweight and reproducible method for integrating container security scanning 
into CI/CD pipelines using fully open-source components. While many modern DevSecOps workflows 
incorporate  vulnerability  scanners  such  as  Trivy,  their  output  is  typically  used  in  a  point-in-time 
manne —alerts are generated, acted upon, and forgotten. In contrast, this work introduces the concept of 
security  regression  tracking:  a  simple  yet  effective  mechanism  to  persist,  visualize,  and  analyze 
vulnerability trends across multiple builds over time. Our approach logs the number of vulnerabilities 
detected at each severity level (Critical, High, Medium, Low) per build, stores them in a time-series CSV 
file,  and  renders  them  using  a  Chart.js-based  dashboard  hosted  on  GitHub  Pages.  This  enables 
development teams to assess whether their security posture is improving or regressing as images evolve, 
dependencies change, and patches are applied. To demonstrate the viability of the system, we conduct a 
structured  experiment  using  a  deliberately  vulnerable  container  image.  We  simulate  five  typical 
development stages,  including partial  fixes,  regressions,  and full  remediations.  The dashboard clearly 
illustrates the impact of these changes, offering visual feedback that can guide technical decisions and risk 
prioritization. This solution is infrastructure-free, transparent, and extensible, making it well suited for 
small  to  medium-sized  teams,  open-source  projects,  and  educational  use.  By  shifting  vulnerability 
tracking from reactive to historical and strategic, it empowers DevSecOps teams with actionable temporal 
insight.
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1. Introduction

The  acceleration  of  software  development  through  Continuous  Integration  and  Continuous 
Deployment (CI/CD) pipelines has profoundly reshaped the way modern applications are built,  
tested,  and  delivered.  These  practices  enable  rapid  iteration,  frequent  releases,  and  faster 
innovation—but they also introduce new security risks [1–4]. In environments where container 
images  are  rebuilt  and  deployed  multiple  times  a  day,  even  a  small  vulnerability  can  rapidly 
propagate into production unless adequate controls are in place [5, 6].

In response to these concerns, the DevSecOps paradigm promotes the integration of security 
measures  directly  into  the  development  pipeline  [7].  Rather  than  applying  security  as  a  final 
checkpoint,  DevSecOps encourages embedding tools  for  static  and dynamic analysis  early  and 
continuously. Open-source scanners such as Trivy [8], Grype [9], and Semgrep make it possible to 
detect vulnerabilities in codebases, dependencies, and container images as part of the automated 
build process [10].

However, despite the availability of these tools, most scanning implementations operate in a 
point-in-time fashion: a vulnerability is detected, an alert is issued, and developers either fix it or  
suppress it. There is rarely any mechanism to retain and analyze scan data across builds, nor to 
assess whether the overall security posture is improving or regressing over time. This temporal 
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blindness creates a missed opportunity for strategic decision-making, especially in long-running 
projects with frequent deployments and changing dependencies [11].

In real-world development,  the security profile of an application evolves continuously. Base 
images are patched (or go unpatched), third-party libraries are updated, and insecure patterns may 
be introduced or removed. Without visibility into these changes, teams are forced to react to each 
issue in isolation, with no sense of whether their system is becoming more secure or accumulating 
technical security debt [12].

In this paper,  we propose a lightweight,  fully open-source approach for security regression 
tracking in containerized applications. Using Trivy by Aqua Security [8], we integrate vulnerability 
scanning directly into the CI/CD pipeline via GitHub Actions [13]. Each scan extracts severity-level 
vulnerability counts (Critical, High, Medium, Low), which are appended to a time-series CSV log.  
This data is then rendered using a web-based dashboard (Chart.js) that visualizes how vulnerability 
levels change across builds.

Our system is:

1. Self-contained and infrastructure-free (hosted entirely within the GitHub repository).
2. Reproducible, with every scan logged and versioned.
3. And extensible, allowing future integrations such as SBOM correlation, badge generation, 

or full CVE tracing.

To validate the approach, we conducted an experiment with a deliberately vulnerable container 
image. We introduced five progressive modifications, mimicking common development scenarios—
partial fixes, regressions, dependency updates—and tracked the resulting scan output over time. 
This  demonstrated  the  system’s  ability  to  capture  both  improvements  and  degradations  in  a 
project’s security posture.

The primary goal of this research is to develop and evaluate a practical and transparent method 
to visualize the evolution of vulnerabilities in container images over time—something that is rarely 
supported out of the box in existing security tools. We aim to bridge the gap between DevSecOps  
automation and historical awareness, empowering development teams to track not just if they are 
secure, but how that security is evolving with each build.

2. Related work

The integration of security scanning within CI/CD pipelines has become a cornerstone of modern 
DevSecOps practices [14].  Numerous tools—including Trivy,  Grype,  and Snyk—offer automated 
vulnerability scanning at build time, enabling teams to shift security left and detect issues early in 
the software development lifecycle (SDLC). However, while static analysis and container scanning 
are now widely adopted, relatively few approaches provide mechanisms for tracking how security 
posture evolves over time.

A growing body of  research has  addressed vulnerability  detection in  container  ecosystems. 
These  studies  typically  focus  on  quantifying  vulnerability  prevalence,  comparing  scanner 
effectiveness, and assessing the impact of base-image choices [15].

Wist, Helsem, and Gligoroski [16] analyzed more than 2,500 Docker Hub images and discovered 
a high density of vulnerabilities in publicly available containers. Their findings showed that even 
official  images  are  not  immune  to  risk,  though  they  generally  fared  better  than  community-
maintained  variants.  Importantly,  they  also  highlighted  a  lack  of  correlation  between  image 
popularity and security, which implies that trusted sources may still harbor critical flaws.

Haque and Babar [17], in their empirical study Well Begun is Half Done, explored base image 
inheritance chains across 64,579 real-world GitHub projects. They found that a small number of 
vulnerable  base  images  led  to  wide  vulnerability  propagation  downstream,  emphasizing  the 
cascading risk of unpatched root layers. Their analysis demonstrates the importance of selecting 
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and maintaining secure foundational images—yet,  again, their focus was on static analysis,  not 
temporal tracking.

Kaur et al. [18] extended this line of inquiry into scientific computing environments, evaluating 
container images used in disciplines such as neuroscience.  Using four scanning tools including 
Trivy,  they  demonstrated  that  regular  updates  and  minimal  image  design  could  reduce 
vulnerabilities by up to two-thirds. This reinforces the practice of image hygiene but also showed  
that scanner outputs vary significantly, introducing complexity when comparing risk across time 
or tools.

Another critical angle is explored by Zerouali et al. [19], who introduced the notion of technical 
lag—the  difference  between  package  versions  in  containers  and  their  upstream releases.  They 
studied  over  7,300  Debian-based  containers  and  concluded  that  even  “latest”  tags  are  often 
outdated, contributing to latent vulnerabilities and bug exposure. This illustrates that freshness 
alone is not a guarantee of security and that visibility into versioning gaps is essential.

Despite these contributions, most existing research provides a static snapshot of security status. 
Studies  often  benchmark  a  set  of  containers  at  one  point  in  time  without  exploring  how 
vulnerability  profiles  shift  due  to  code  changes,  dependency  updates,  or  changes  in  upstream 
images. As such, temporal awareness—how vulnerabilities increase or decrease across commits or  
builds—remains underexplored.

In  addition  to  container-specific  studies,  recent  research  emphasizes  the  importance  of 
integrating multi-layered security approaches within complex software ecosystems. Milevskyi et al. 
[20] propose a multi-contour security methodology for sociocyberphysical systems, highlighting 
the  benefits  of  combining  automated  detection  with  layered  protective  controls.  Similarly, 
Shevchuk  et al.  [21]  demonstrate  the  design  of  secured  authentication,  authorization,  and 
accounting services,  which can be extended to  CI/CD pipelines  to  enforce  access  policies  and 
prevent misconfigurations that may introduce vulnerabilities. Lakhno et al. [22] further stress the 
role of decision-support systems in managing information protection, suggesting that automated 
guidance can improve security response times and reduce human error. Additionally, Vakhula et al. 
[23] explore cloud security challenges under dynamic orchestration, advocating for “security-as-
code” approaches that  can complement vulnerability tracking over time.  Finally,  Harasymchuk 
et al. [24, 25] show that structured information classification frameworks and predictive assessment 
with  LLMs  can  aid  in  prioritizing  remediation  efforts,  which  aligns  with  the  objective  of 
monitoring how vulnerability profiles evolve across CI/CD builds. 

Furthermore,  few open-source  projects  address  this  gap in  a  reproducible,  dashboard-based 
format  that  integrates  directly  with  CI/CD.  Available  enterprise  solutions  (e.g.,  Snyk  Monitor, 
GitHub Advanced Security) offer partial historical views, but they are often opaque, require paid 
plans, and do not easily integrate into custom DevSecOps workflows.

This paper proposes a solution to fill this void: a lightweight, automated, and fully open method 
for vulnerability trend monitoring in CI/CD. By leveraging Trivy for scanning, GitHub Actions for  
automation, and Chart.js [25] for visualization, we create a transparent and extensible framework 
that  tracks  vulnerability  counts  over  time.  This  enables  teams  to  assess  not  just  whether 
vulnerabilities exist, but how their posture is evolving—bringing measurable, historical awareness 
into security automation.

3. Methodology

3.1. CI/CD Integration

We used GitHub Actions as the automation platform for our pipeline due to its accessibility, tight 
integration with  version control,  and support  for  public  repositories.  The pipeline is  triggered 
either on code pushes to the main branch or on a scheduled daily basis.
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The pipeline performs the following steps:

1. Docker image build: using a Dockerfile, we generate the container image to be tested.
2. Security scan: we run Trivy in JSON [26] output mode to scan the image for vulnerabilities 

in operating system packages and application dependencies.
3. Parsing step: a custom Python script extracts key statistics from Trivy’s output (number of 

Critical, High, Medium, and Low vulnerabilities) and appends them as a new row in a CSV 
file [27].

3.2. Scan Result Archiving

To enable tracking over time, the pipeline stores results in a CSV file (history.csv), where each row 
corresponds to a specific scan. The format includes a UTC timestamp and severity-level counts:

Figure 1: history.csv file

The Python script appends new scan data to the file and ensures that only the most recent seven 
entries  are  retained.  This  windowed  history  simplifies  visualization  while  capturing  trends  in 
vulnerability evolution.

To  persist  this  history  across  runs,  the  workflow  restores  the  previous  docs/data.csv  file 
(committed  to  the  repository)  and copies  it  into  the  working directory  before  appending new 
results.

3.3. Scan Result Archiving

For intuitive tracking of risk changes, we developed a web-based dashboard using static HTML and 
the Chart.js JavaScript library [28]. The dashboard reads data.csv from the /docs/ folder via a client-
side CSV parser and renders two visualizations:

 A line chart showing changes in vulnerability count over time.
 A point-only chart  that  emphasizes  identical  data points to  reveal  when values remain 

unchanged.

In addition, we compute and display a mathematical summary below the charts. This includes:

 The difference in vulnerability counts from the first to the last scan.
 Whether each category (e.g., Critical) has improved, worsened, or remained constant.
 The total change in overall vulnerability counts.

This summary gives  immediate insight into the effectiveness of recent remediation efforts or 
regressions.

3.4. Experiment Design

To simulate real-world security posture evolution, we created a sequence of five Docker image [29] 
versions with controlled modifications:
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Table 1
Docker image versions with controlled modifications

Version Description Expected Trend

v1 Baseline image with known vulnerable packages High vulnerability count
v2 Some vulnerable packages removed Slight improvement
v3 New risky dependencies added Spike in vulnerabilities
v4 Updated base image and minimized packages Strong improvement
v5 Clean Alpine-based image with minimal footprint Very low vulnerability count

Each image is built and scanned in order, with results logged and visualized. This controlled 
scenario emulates typical development lifecycle iterations and demonstrates the system’s ability to 
track both improvement and degradation.

4. Results

To evaluate the effectiveness of our approach, we applied the pipeline to a series of deliberately 
crafted Docker  images  (v1  to  v5),  each  representing  different  stages  of  software  hardening or 
regression. For each version, a Trivy scan was performed via GitHub Actions, and results were 
appended to a CSV log, forming the data foundation for trend visualization.

4.1. Vulnerability Trends over Time

The dashboard rendered the following timeline of scan results, displaying changes in vulnerability 
counts segmented by severity:

Figure 2: file with history results

 v1 shows a high baseline of vulnerabilities across all severities.
 v2 demonstrates slight improvements due to the removal of several risky packages.
 v3 introduces a spike, reflecting added vulnerable dependencies.
 v4 significantly reduces all counts by replacing the base image and optimizing installed 

packages.
 v5 results in near-clean output using Alpine and minimal footprint design.
 V6 is v5.

These changes are visualized via a line and point-based chart, clearly reflecting both security 
regressions (v3) and improvements (v4, v5).

4.2. Mathematical Summary

An automatic calculation in the dashboard summarizes the difference between the first and last 
scan:
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Figure 3: Vulnerability Improvement Summary

This  quantitative  summary  confirms  the  effectiveness  of  progressive  hardening  steps  and 
validates the system’s ability to track security posture changes in a meaningful and interpretable  
manner.

4.3. Dashboard Evaluation

The final dashboard provides:

 Clear visual representation of vulnerability fluctuations.
 Contextual feedback on security regression or improvement.
 Instant visibility into build history with minimal manual effort.

Despite its simplicity, this solution proved to be highly effective in practice. The use of GitHub-
hosted infrastructure enabled easy sharing and reproduction of results, while the use of static CSV 
logging avoided the complexity of full-fledged databases or dashboards.

Figure 4: Trivy Vulnerability Trend (Lines)
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Figure 5: Trivy Vulnerability Trend (Points Only)

5. Discussion

The results demonstrate that even with minimal infrastructure, it is possible to gain significant 
insight into the evolving security posture of containerized applications. Our approach offers several 
practical  advantages  and  surfaces  important  considerations  regarding  real-world  DevSecOps 
adoption.

5.1. Practical Benefits

 Lightweight and accessible: The system uses only GitHub Actions, Trivy, and static CSV 
logs.  It  avoids  the  overhead  of  database  backends,  paid  dashboards,  or  proprietary 
integrations.

 Visual awareness: By introducing time-series analysis, security becomes less reactive and 
more proactive. Teams can immediately see if a new dependency causes a spike in risk or if 
hardening measures produce measurable improvements.

 Zero infrastructure requirements:  The entire  solution is  self-contained within a  GitHub 
repository. No external hosting, containers, or cloud resources are needed.

5.2. Reproducibility Transparency

The full pipeline, data history, and rendered dashboard are stored in the same version-controlled 
project. This enables:

 Auditable security regression history (e.g., for compliance or security reviews).
 Collaboration between developers and security engineers.
 Educational use in teaching secure CI/CD practices [30].

Unlike  commercial  tools  that  hide  scanning  logic  and  history  behind  dashboards,  our 
implementation allows full control and customization by the user.

5.3. Limitations

 Metric granularity: The current approach aggregates vulnerability counts by severity, but 
does  not  distinguish  between  fixed  vs.  unfixed  CVEs,  affected  package  names,  or  risk 
contexts.
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 No direct correlation to code changes: Vulnerability increases may stem from base image 
changes or dependency drift unrelated to intentional development decisions.

 Limited historic window: By default, only the latest seven scans are stored to reduce CSV 
complexity.  Larger  history  sizes  may  require  adaptation  of  storage  and  visualization 
strategies.

5.4. Opportunities for Extension

Several enhancements could strengthen this solution:

 Storing full Trivy JSON per scan, enabling deep drill-down and historical forensics.
 SBOM integration, aligning scan results with specific software bills of materials.
 Correlation with Git commits or PRs, so spikes or improvements can be traced to specific 

changes.
 GitHub badges, e.g., to display current vulnerability counts in README.
 Multi-project support, allowing monitoring of several services from one dashboard.

This  approach  provides  a  compelling  entry  point  for  teams  aiming  to  adopt  DevSecOps 
incrementally, enabling observability over time without disrupting existing workflows or requiring 
extensive investment.

Conclusions

This  paper  presents  a  practical,  reproducible  method  for  visualizing  vulnerability  trends  in 
containerized applications within CI/CD pipelines. By integrating Trivy scans with GitHub Actions 
and  storing  results  in  a  time-series  CSV  format,  we  enable  lightweight  security  regression 
trackin —a critical but often missing component of modern DevSecOps practices.

Unlike  most  point-in-time  vulnerability  detection  tools,  our  implementation  focuses  on 
temporal  awareness:  understanding  how  a  container’s  risk  profile  evolves.  This  empowers 
development teams to make informed decisions, prioritize remediation, and identify the security 
impact of changes between builds.

The  method  is  especially  suitable  for  small  teams,  open-source  projects,  educational 
environments,  and early-stage DevSecOps adoption.  It  lowers  the barrier  to  historical  security 
monitoring without requiring cloud-native platforms or commercial licenses.

In future work, we aim to extend the system to support full scan traceability, software bill of 
materials  (SBOM) analysis,  commit-to-scan correlation,  and GitHub-based alerting mechanisms. 
Our goal is to make historical security awareness as integral to CI/CD as build status and test 
coverage are today.

Declaration on Generative AI

While  preparing this  work,  the  authors  used the  AI  programs Grammarly  Pro  to  correct  text 
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors 
reviewed and edited the content as needed and took full responsibility for the publication’s content.
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