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Abstract
A sufficient level of data processing performance is important for real digital forensics use cases, where 
data should be processed as fast as possible to streamline the forensic analysis process and reduce crucial  
delays.  While  constantly  improving  the  hardware  is  a  simple  and  intuitive  method  to  achieve 
performance increases, the software optimization provides significantly higher performance gains. This 
paper  presents  a  comparative  analysis  of  mainstream  programming  languages  applicability  for  the 
statistic analysis of encrypted data. A set of statistical data test programs were developed in Python and 
Go programming languages in order to compare their performance and utilization metrics—execution 
time, CPU utilization and RAM usage. The comparison was performed on two separate computers—the 
first one employing a server-oriented AMD EPYC central processing unit, and the second one employing  
a mobile AMD Ryzen CPU. Overall, four independent tests were performed, the results of which were 
averaged from two samples. Results were consistent with expectations—a mostly compiled programming 
language with better optimization techniques, such as Go, provides significantly better time metrics than 
the Python version of the same data encryption detection algorithm—the Go version is 2.5 to 5 times  
faster than the Python version.
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1. Introduction

Nowadays,  more  and  more  crimes  are  carried  out  partially  or  entirely  in  cyberspace.  Digital 
forensics processes have become an important part of investigations. Modern mobile devices are 
equipped with large amounts of memory, often more than 128 gigabytes, and in the case of forensic 
analysis of such data dumps, the time factor becomes important, especially when the discovery 
process has to be performed in a limited amount of time, often days and hours instead of months.

The reliable detection of data encryption is an important part of the digital forensics process as 
well, and it determines the direction of the following actions and tests. For example, an analysis of 
a smartphone’s internal memory is being performed. If the internal memory is not encrypted and a 
valid file system structure is found, the analysis can go down to the file system level. Otherwise, if  
the data block is determined as encrypted with a valid file system, a conclusion is made that the file  
system uses FBE (File-Based Encryption); if data encryption is detected, but without a valid file 
system, that means a high probability of a full-disk encryption being used. Data retrieval strategies 
significantly differ for all of the described cases. A variety of statistical and non-statistical methods 
are being used for data encryption detection. Statistical analysis methods often utilize an empirical  
byte distribution model and a theoretical uniform distribution model to determine whether these 
models are similar. Non-statistical methods can employ different data analysis algorithms, which 
do not use empirical distribution models or any statistical models. Such methods can use pattern 
analysis,  rule-based  searches,  etc.  Data  encryption  detection  methods’  performance  is  highly 
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dependent on a number of factors, originating from both hardware and software limitations, but  
the most important factor is software optimization.

2. Literature review

The  problem  of  programming  languages’  differences  in  execution  optimization  is  actively 
researched for various use cases.

For example, a 2020 research study, carried out by Paweł Dymora and Andrzej Paszkiewicz from 
Rzeszów  University  of  Technology  (Rzeszów,  Poland)  [1],  includes  Python,  Java,  and  Go 
programming languages in the context of supporting Industry 4.0 decision-making processes, a 
process especially critical in minimizing time delays. The results demonstrate a non-linear increase 
in execution time and resource usage for each programming language,  with Python being the 
fastest language for the large decision tree algorithm. On the other hand, the Java programming 
language performed the worst  in  execution time and resource utilization.  The Go version has 
displayed intermediate results.

A 2023 research by Atishay Jain from Dr. Akhilesh Das Gupta Institute of Technology and 
Management (New Delhi, India) [2] focuses on the applicability of Java and Python programming 
languages for machine learning purposes. The results display that the Java programming language 
is significantly faster for basic operations and slightly faster for complex programs, such as the Tic-
Tac-Toe player algorithm.

A 2022 study by Luka and Luca Olivari from the Šibenik University of Applied Science (Šibenik, 
Croatia)  [3]  is  mainly  focused  on  the  performance  of  the  Ant  Colony  Optimization  (ACO) 
algorithm for the Traveling Salesman Problem. The algorithm was implemented in Python, C, C#, 
R,  and MATLAB languages and tested on a high-performance laptop.  The Python version has 
exhibited the worst result,  being on average 12 times slower than the pure C implementation. 
MATLAB, C#, and R versions of the same algorithm displayed a non-linear relationship between 
data size and performance relative to the base C version, with the MATLAB version displaying the  
highest non-linearity.

A common conclusion of these studies is that the interpreted implementations of programming 
languages (such as R, MATLAB, and default CPython for Python) are noticeably slower and more 
resource-intensive  than  more  minimalistic  and  compiled  programming  languages  and  their 
implementations (C#, Go, C, etc).

In  addition  to  the  general  performance  of  languages,  the  implementation  of  cryptographic 
algorithms is an important factor. For example, studies show that methods for analyzing encrypted 
data, in particular using cryptographic structures such as hybrid crypto-code structures based on 
false codes, can differ significantly in efficiency [4]. The development and implementation of post-
quantum cryptographic algorithms is a separate research area that requires attention to practical 
challenges  and  solutions  [5,  6].  Ensuring  security  in  software  is  also  an  important  aspect,  as 
confirmed by the analysis of vulnerabilities in mobile frameworks [7] and the search for hard-
coded credentials [8]. The generation of reliable pseudo-random sequences, which are the basis for 
many cryptographic systems [8–10], also requires careful design to increase their cryptographic 
robustness [11–13]. All these studies emphasize that the choice of tools and their implementation 
have a direct impact on the ultimate efficiency and security of systems.

3. Data analysis speed variability factors

As mentioned before, the performance of statistical and non-statistical data encryption detection 
methods depends on a number of factors, such as CPU performance (measured in operations per 
second), data storage sequential and random access speed (measured in megabytes per second) and 
latency  (measured  in  milliseconds),  target  operating  system  threads/processes  management 
strategies  and the  level  of  the  program optimization,  that  is,  if  the  data  analysis  algorithm is 
implemented in an efficient way using efficient and highly optimized tools [14–16].
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Modern  programming  languages  have  different  levels  of  source  code  and  binary  optimization 
methods.  Also,  the  level  and  quality  of  the  optimizations  depend  on  the  used  compiler  or  
interpreter (in case of the existence of multiple compilers or interpreters, such as with C/C++ and 
Python). For example, a standard CPython Python interpreter [17] generally performs worse than 
optimized, but unmaintained PyPy interpreter [18], which employs JIT compilation.

3.1. Compiled and interpreted programming languages

Programming languages can be differentiated into two main categories: compiled and interpreted. 
It  is  possible  to  create  a  compiler  for  an  interpreted  language  and  vice  versa,  but  most  
programming languages usually utilize one of the two program execution methods.

Compiled programming languages perform the compilation process to transform the source 
code  into  a  binary  file  (so-called  ahead-of-time  compilation  [19]).  The  resulting  binary  file  is 
usually platform-dependent, with the main portability limitations being the operating system and 
the  target  computer’s  architecture.  Compiled  programming  languages  typically  offer  high 
performance levels, direct hardware access, and advanced parallelism support.

Interpreted programming languages are  programming languages  that  use  an interpreter  for 
code execution [20]. The interpreter is a program that directly executes the written code without 
precompiling it,  usually by converting the source code into an intermediate representation and 
running it line by line. Because of that, interpreted languages are highly portable and versatile, as 
the code can be run directly on multiple platforms with a small number of adaptation changes or  
no  changes.  However,  interpreted  programming  languages  usually  have  worse  performance 
metrics than compiled languages, which is caused by the intermediary layer between the hardware 
and the program itself. Also, some interpreters (for example, CPython) severely limit the program’s 
ability to use multi-threading and multi-processing, because they can only run in one thread.

3.1.1. JIT compilation for interpreted languages

JIT (just-in-time) compilation is a form of dynamic compilation, which performs the compilation of 
the code at  run time,  unlike classic ahead-of-time compilation [21].  This allows for immediate 
performance optimizations. A common JIT tactic is as follows:

 Initial  interpretation—the program is  being compiled into an unoptimized bytecode and 
executed.

 Performance monitoring—while the unoptimized program is running, it is being analyzed 
for commonly reused code sections (also known as “hot spots”) and execution patterns.

 Optimization—detected  “hot  spots”  and  patterns  are  being  dynamically  compiled  with 
optimizations  applied.  An  optimized  variant  can  include  data  type  changes,  idiom 
simplification, code reordering and exclusion, conditional statements optimization, etc.

 Execution—unoptimized bytecode is replaced with an optimized variant.
 Re-evaluation  and  decision  making—if  the  optimized  version  performs  worse  or  emits 

errors, it is replaced by another optimization variation or by the initial version.

In  general,  JIT  compilation  combines  both  positive  and  negative  aspects  of  the  ahead-of-time 
compilation  and  straight  interpretation.  It  is  commonly  used  in  Java,  JavaScript,  PHP, 
WebAssembly,  Ruby,  C#,  Python  (as  an  experimental  branch  in  the  3.14  release),  and  other  
languages.

4. Data Test Suite composition and components

Data Test Suite (DTS) is a program that implements a previously developed complex method for  
detecting data encryption (Figure 1). DTS utilizes both statistical and non-statistical methods to 
determine whether the provided partition image file (Mode 1) or a set of individual files (Mode 2) is 
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encrypted. Two versions of this program were developed: version 1 was written in Python 3.12 and 
uses various external libraries for data manipulation and analysis, such as NumPy [22], SciPy [23], 
Seaborn [24], Matplotlib [25], and others; version 2 is a complete rewrite of the previous version in 
Go 1.24.1, which uses a minimal number of external libraries. Most notably, this version employs 
the github.com/burntsushi/rure-go [26] binding package for a fast regular expression engine found 
in  the  Rust  programming  language’s  standard  library  [27],  the  github.com/montanaflynn/stats 
package for statistical functions [28], and the github.com/vimeo/go-magic interface package for the 
libmagic library, used for MIME type extraction [29].

4.1. Autocorrelation test

The autocorrelation function is  a  correlation of  a signal  (or,  in our case,  a  data block) with a  
delayed (shifted) copy of itself [30]. This method is commonly used for detecting hidden and/or 
weak periodicities in a data set. This method (without prior data normalization) can be used to 
detect structured and repeatable sections in data blocks. The standard deviation value for the set of 
average  autocorrelation  coefficient  values  (per  block)  is  calculated.  Encrypted  and  highly 
compressed data blocks exhibit low autocorrelation coefficient results and low standard deviation 
of the set of points (large input data is split into smaller blocks), while plaintext blocks exhibit  
varying values of the coefficient and high standard deviation values. In the DTS, a block size of 1  
kibibyte is being used with a maximum lag value of 50 bytes.

4.2. Image file system detection test

This test uses the GNU Parted disk management utility [31] to determine if the input file contains a 
valid partition or partition table. GNU Parted is an advanced open-source command-line partition 
management software that supports both block devices and image files. The output of the utility is 
parsed in order to determine the file system type. This test is used to branch the analysis strategies 
using the following rule set:

 IF a file system is detected and the autocorrelation test result is “not encrypted”—the image 
is not encrypted and can be mounted for further analysis.

 ELSE IF a file system is detected and the autocorrelation test  result is  “encrypted”—the 
image is a product of a file-based encryption software.

 ELSE IF no file system is detected—the image is a product of a full-disk encryption or is not 
an image.

4.3. Compression test

As is known, encrypted data are hard to compress. This property can be used to determine if input 
data  is  encrypted or  not.  It  is  worth mentioning that  this  test  does  not  differentiate  between 
encrypted and already compressed data,  as  they exhibit  similar statistical  parameters.  A set  of 
compression utilities is used to calculate the average compression ratio of the input data. If the 
average compression ratio is below 1,1, the data are considered encrypted. Compression ratio can 
be less than 1,0, which means that the compression algorithm has added a layer of redundancy 
(block structures, recovery data, etc).

4.4. Kolmogorov-Smirnov test

The Kolmogorov-Smirnov goodness-of-fit test is a statistical test used to determine how well a set  
of observations corresponds to a statistical model [32]. Encrypted data exhibit near-uniform byte 
distribution patterns, while non-encrypted data usually have some discrepancies in their patterns. 
The Kolmogorov-Smirnov test result is a maximum value of the distance between empirical and 
theoretical models, although the P-value is the most commonly used criterion.
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4.5. MIME type test

MIME string is a unified data type descriptor, originally designed to describe email attachment  
types [33]. A MIME string consists of two parts: type and subtype, separated by a slash symbol. 
Main MIME type entries are “application”, “audio”, “image”, “message”, “multipart”, “text”, “video”, 
“font”,  “example”,  “model”,  and  “haptics”.  MIME strings  can  be  used  to  determine  if  a  file  is  
previously compressed and can be excluded from a batch scan, because compressed files, as was 
mentioned  before,  compressed  and  encrypted  files  have  similar  statistical  properties.  MIME 
detection  is  implemented  using  the  vimeo/go-magic  binding  to  the  highly  optimized  libmagic 
library and has high levels of performance. This makes the performance testing redundant, and this 
test is excluded from the performance testing. MIME type detection test branches the batch mode 
file evaluation process as follows: IF the file MIME string corresponds to compressed data (archived 
or not), THEN the test for this file is skipped, ELSE the file is being analyzed as usual.

4.6. Signature detection test

File signatures are sequences of bytes, which are embedded in the file structure to denote its type 
and properties. The file signature analysis is used to find such bytes in a file system image. If the  
data file is encrypted (or contains random data), the number of signatures per megabyte is usually  
low  (below  150  signatures  per  MB,  usually  around  60-70  signatures  per  MB).  Images  with 
unencrypted data and without empty blocks usually demonstrate significantly higher signature 
values  per  MB  because  they  contain  individual  files.  Signature  search  test  in  Go  version  is 
implemented using the rure-go binding package, which is claimed to be faster than the native Go 
implementation  of  the  regular  expressions  matching  engine.  The  Python  version  utilizes  the 
standard library regex functionality.

5. Performance testing

5.1. Testing methodology

The  performance  testing  will  be  carried  out  on  two  separate  computers  with  processors  for 
different use cases. Both Python and Go versions will be tested in Mode 1 (Mode 2 uses statistical 
tests, identical to Test 1, and non-statistical tests, such as MIME type or file system detection, are 
negligibly fast). Speed of individual tests, RAM usage, and CPU utilization will be measured using 
built-in time count functions and top software.. Two passes of every benchmark were performed,  
with  the  results  being  averaged.  A  1-gibibyte  random  data  file  was  used  to  compare  the 
performance of both tests on both systems.

5.2. Test system specifications

Test system 1:

 HP 255 G9 laptop.
 AMD Ryzen 5 5625U CPU (6 cores, 12 threads, Zen3 architecture, 2.3 GHz base clock, 4.3 

GHz boost clock, 14830 Passmark points in multi-core, 2877 Passmark points in single-core 
[34]).

 OpenSUSE Tumbleweed operating system.
 16 GB DDR4-3200 RAM in dual-channel mode.
 Kingston XS1000 external SSD for dataset storage.

Test system 2:

 Remote virtual server on Microsoft Hyper-V hypervisor.
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 8 virtual cores of AMD EPYC 7513 CPU (32 cores, 64 threads, 2.6 GHz base clock, 3.65 GHz 
boost clock, 59330 Passmark points in multi-core, 2479 Passmark points in single-core [35]).

 Ubuntu 24.04 LTS operating system.
 8 GB of virtual RAM.
 200 GB of virtual disk space (allocated on a solid-state drive).

5.3. Testing results

Performance test results are shown in Table 1.

Table 1
Performance test results

Test name System 1, 
Python 

(s)

System 1, 
Go (s)

System 1, 
difference 

(%)

System 2, 
Python 

(s)

System 2, 
Go (s)

System 2, 
difference 

(%)

System 2 
to 1, 

difference, 
Python 

(%)

System 2 
to 1, 

difference, 
Go (%)

Autocorr 318.81 278.04 114.66 503.24 722.24 69.68 157.85 259.76

Counter 41.87 22.09 189.55 78.07 53.09 147.07 186.47 240.32

K-S 2.31E-04 1.98E-05 1163.46 2.36E-04 2.96E-05 797.37 102.38 149.38

Comp-
ression

63.92 62.61 102.09 145.33 143.32 101.40 227.37 228.91

Signatures 3160.30 353.58 893.81 5454.62 913.91 596.84 172.60 258.48

Entropy 4.76E-03 2.17E-05 21895.65 9.95E-03 5.34E-05 18634.35 209.01 245.59

Total 3584.90 716.32 500.46 6181.27 1832.56 337.30 172.43 255.83

CPU utilization for autocorrelation, entropy and other statistical tests average is at 100% with 
fluctuations between 90% and 140% for single core (average 12.5% per whole CPU with 8 cores), as 
they utilize only one thread and one core for calculations (Figures 1 and 2).

Figure 1: CPU utilization plot of the Go version of the test suite
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Figure 2: CPU utilization plot of the Python version of the test suite

RAM usage for the Python version of the test suite is at 140-181 MiB for autocorrelation and 
counter calculation phases and 143 MiB for the signature search test (Figure 3).

Figure 3: RAM usage plot of the Go version of the test suite

RAM usage for Go version of the test suite with 1 MiB block size is 25-56 MiB (fluctuating) for 
autocorrelation and counter calculation phases and 68-69 MiB for signature search test (Figure 4).
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Figure 4: RAM usage plot of the Python version of the test suite

6. Results analysis

As is clearly visible, performance test results are highly dependent on the programming language’s 
internal optimization mechanisms, such as runtime code optimization, garbage collection, etc. The 
Go version of the test suite performs 4.2 times better on average than the Python version.

System 1, counterintuitively, demonstrates better results than System 2, despite having a laptop 
CPU instead of the more powerful server type. This can be explained by the fact that server CPUs  
are optimized to handle a large number of parallel tasks with lower core performance expectations.  
Consumer CPUs are targeted for strong single-core workloads, such as games. This claim is further  
confirmed by the lower single-core score for the System 2 (Section 4.2).

A sudden drop of CPU utilization to 0 is due to the compression test execution: this test does  
not  run in the main thread,  but  is  performed using exec()  calls,  and computing processes  are 
separate for each compression algorithm.
RAM usage  plots  also  show better  optimization techniques  (garbage  collection,  dereferencing), 
applied during the build process of the Go version, as its RAM usage is 2 times lower on average. 
The Python interpreter does not employ advanced memory usage optimization techniques, which 
explains almost constant RAM usage for most of the run.

Conclusions

This comparative analysis  clearly demonstrates the fact  of  prevalence of  the Go programming 
language compared to the Python programming language in data encryption analysis tasks. This 
claim is supported by the performed double testing on computers with different usage scenarios.

The  Go  version  of  the  Data  Test  Suite  is  on  average four  times  faster  than  its  Python 
counterpart  and  has  better  resource  handling  patterns,  induced  by  the  highly-optimized  Go 
compiler with advanced compiling techniques and code optimizations. The performance increase 
and resource optimizations of the Go version are deemed significant.

Also,  a  distinctive  difference  between  the  performance  of  consumer  and  server  CPUs  was 
identified and explained. The main cause of a such performance difference is explained by different  
work load scenarios for these processors.
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