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Abstract
The paper is devoted to the development of a method for verifying the integrity of firmware for IoT 
devices, focused on the conditions of limited computing resources and minimal power consumption. The 
method is based on the use of lightweight hash functions, such as SPONGENT, PHOTON, QUARK and 
LESAMNTA-LW,  which  provide  computational  efficiency  on  low-end  microcontrollers.  A  multi-level 
approach is proposed, in which firmware segments are evaluated by weight coefficients depending on 
their  criticality  for  security,  and  the  aggregated  control  value  is  formed  taking  into  account  the 
importance of each segment. To increase protection against replay attacks, session markers are integrated 
into hashing, which add context dependency. The adaptive nature of the check allows you to dynamically 
change the depth of analysis depending on the state of the device—for example, the battery charge level  
or  processor  load.  The  experimental  part  of  the  work  covers  testing  the  method  on  popular 
microcontrollers STM32F072, ESP8266 and ATmega328P. The study included an assessment of verification 
time, memory consumption, power consumption, and resistance to firmware modification attacks and 
reuse of  previous values attacks.  Special  attention is  paid to  partial  verification scenarios,  which are 
relevant for devices with limited resources. The proposed method is considered suitable for a wide range 
of IoT applications, including autonomous sensors, energy modules, medical devices, and transportation 
systems.  The  results  demonstrate  the  possibility  of  effective  secure  boot  even  on  platforms  without 
hardware cryptography support.
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1. Introduction

The Internet of Things (IoT) today encompasses a vast array of devices, from consumer electronics 
to medical implants and industrial sensors [1–6]. As the number of IoT devices increases, so does 
the level of threats to them, especially when it comes to firmware modification, which is one of the 
key targets of attacks [7, 8]. Firmware modification or replacement can lead to loss of functionality, 
leakage  of  confidential  data,  or  complete  device  takeover  [9].  Ensuring  firmware  integrity  is 
becoming a prerequisite for Secure Boot, but in practice its implementation is complicated by the  
limited resources of IoT devices, in particular limitations in terms of memory, processing power, 
and power consumption [10, 11].

Traditional cryptographic hash functions, such as SHA-2 or SHA-3, demonstrate high resistance 
to attacks, but their use in resource-constrained environments is of little use [12]. They consume a 
significant amount of RAM, require a powerful processor, and increase the overall boot time [13–
15].  These limitations have encouraged research groups to develop lightweight hash functions 
aimed at IoT needs, including SPONGENT, PHOTON, QUARK, and LESAMNTA-LW [16–18]. They 
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allow for significant reductions in computational costs and power consumption while maintaining 
an acceptable level of resistance to cryptanalytic attacks.

Against the background of these limitations, there is considerable scientific interest in analyzing 
the possibility of using lightweight hash functions for integrity verification, as they are specifically  
designed for resource-constrained environments.  Their application opens up new prospects for 
embedded  systems,  allowing  for  secure  booting  even  where  the  use  of  classical  algorithms  is 
impractical or technically impossible.

Figure 1 presents a general diagram of a secure boot of an IoT device using a lightweight hash 
function,  showing  the  main  stages—storing  a  check  hash,  calculating  the  hash  of  the  loaded 
firmware, and comparing the values before launching the main program. 

Figure 1: General scheme of verifying the integrity of  the firmware of  an IoT device using a  
lightweight hash function

The scheme clearly shows the sequence of actions: first, a reference hash value is read from 
non-volatile memory, then a hash of the current firmware version is calculated, after which both 
values  are  compared.  In  case  of  a  match,  the  system  proceeds  to  the  next  stage  of  loading, 
otherwise it blocks the loading or activates recovery procedures.

The specified scheme illustrates the key stages of implementing Secure Boot in an IoT device, 
emphasizing the role of the hash function as the central  element responsible for verifying the 
authenticity  of  the  loaded  code.  Importantly,  this  approach  allows  integrating  the  verification 
mechanism at the software level without the need for hardware crypto modules, while maintaining 
the limited amount of memory and low power consumption that are critical for autonomous sensor 
nodes, medical implants and other similar systems.

The aim of the research is to develop a method for verifying firmware integrity for IoT devices,  
based on the use of lightweight hash functions and taking into account the specifics of resource-
constrained  environments,  in  particular,  minimizing  computational  costs,  memory,  and  power 
consumption while ensuring an appropriate level of cryptographic stability.
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2. Related works

Providing Secure  Boot  in  IoT devices  has  attracted  considerable  attention  from researchers  in 
recent years [19–21]. The main goal of Secure Boot is to ensure that only verified and authentic  
code is executed by the device during startup. According to  [22],  the principle of operation of 
Secure Boot is based on cryptographic verification of digital signatures or hash values of program 
code stored in the trusted memory of the device. Works [23, 24] demonstrate the implementation of 
such approaches based on microcontrollers with hardware support for cryptography, for example,  
Trusted Platform Module (TPM) or ARM TrustZone, however, these solutions are not suitable for 
low-end microcontrollers due to their high cost and power consumption.

Current methods for ensuring integrity in microcontrollers are mostly focused on a compromise 
between the level of security, computational costs and resource consumption. For example, [25] 
describes  a  software  implementation  of  Secure  Boot  for  STM32  microcontrollers,  where  the 
SHA-256 hash function is used to verify the integrity of the firmware. The results of the study 
showed that the use of SHA-256 allows for high cryptographic stability, but leads to an increase in 
the device boot time by 30–50% depending on the firmware size, and also requires a significant 
amount of RAM (several tens of kilobytes), which is critical for microcontrollers with limited RAM. 
The article [26] considers approaches to optimizing such solutions, including partial hashing, when 
only the most critical code segments are checked, or a phased integrity check per segment, which 
allows distributing the load on computing resources. However, the authors emphasize that such 
simplifications  potentially  create  new  attack  vectors,  for  example,  selective  substitution  of 
uncontrolled segments or attacking actions during intermediate checks.

The development of lightweight hash functions has become a separate research area, since they 
are specifically designed for use in embedded and sensor systems [27]. In [28], a classification of 
such functions by design approaches was carried out: sponge-constructions, Davies–Meyer block 
schemes  and  double-block  Hirose.  SPONGENT  [29],  which  belongs  to  sponge-constructions, 
demonstrates a noticeable reduction in computational costs compared to SHA-2 due to the use of a 
compact  state block and simple bitwise operations XOR, AND, ROT, which allows minimizing 
memory consumption to the level of 1–2 kB. PHOTON [30], built on the principle of Substitution–
Permutation Network (SPN), combines a small hardware implementation area and resistance to the 
main  types  of  attacks,  such  as  differential  and  linear  cryptanalysis,  which  is  confirmed  by 
numerous  studies  on  ARM  Cortex-M  and  AVR  microcontrollers.  QUARK  [31],  designed  as  a 
serialized  stream  cipher-like  design,  is  particularly  effective  in  scenarios  with  tight  energy 
constraints, as it requires a minimum number of clock cycles per byte of data. LESAMNTA-LW 
[32] is positioned as a solution for ARM Cortex-M platforms, providing a balance between speed 
(due to extensive modular addition and permutation operations) and resistance to collisions and 
preimage attacks, while maintaining a small code size and low memory consumption. 

Despite the presence of a significant amount of research, there are open problems that need to  
be  solved.  These  include  choosing  the  optimal  hash  function  for  specific  IoT  scenarios, 
mathematical modeling of the security-resources ratio, adapting Secure Boot for microcontrollers 
without hardware cryptography support, and providing protection against attacks at the physical 
level  (e.g.,  fault  injection).  Recent  advances  in  access  control  mechanisms  emphasize  the 
importance  of  integrating  policy-as-code  frameworks  to  enforce  role-based and attribute-based 
access  control,  thereby  enhancing  the  security  of  IoT  environments  [33].  Additionally, 
improvements in device identification and authentication accuracy through electromagnetic (EM) 
measurements  provide  promising  avenues  for  strengthening  hardware-level  trustworthiness  in 
constrained  IoT  devices  [34].  Furthermore,  the  design  of  combined  pseudo-random  sequence 
generators, as well as generators based on mathematical constants such as ln 2, contribute to the 
development of lightweight and secure cryptographic primitives suitable for IoT firmware integrity
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verification  [35,  36].  These  approaches  collectively  support  the  enhancement  of  secure  boot 
processes and firmware integrity validation under resource constraints. Further research should 
focus on finding methods that consider the balance between cryptographic robustness, hardware 
platform limitations, and practical time and power consumption requirements.

3. Method for verifying firmware integrity in IoT devices

The proposed method for verifying the integrity of firmware in IoT devices is based on the concept  
of multi-level, weighted and context-dependent verification, which allows taking into account the 
heterogeneity of the importance of individual sections of the code, the hardware limitations of the 
device  and  the  current  mode  of  its  operation.  A feature  of  the  method is  that  for  each  code  
segment,  weight  coefficients  are  determined that  reflect  its  criticality  for  system security.  The 
aggregated control value is formed on the basis of calculated local hashes taking into account these 
weights,  which allows increasing the depth of verification for the most vulnerable components 
without a significant increase in the load on the system. 

Unlike  classic  Secure  Boot  schemes,  where  a  single  hash  value  of  the  entire  firmware  is  
compared,  the  proposed  method  uses  lightweight  hash  functions,  for  example,  SPONGENT, 
PHOTON, QUARK or LESAMNTA-LW, which provide a balance between cryptographic stability 
and resource efficiency. This opens up the possibility of implementing integrity checking even on 
low-power microcontrollers, such as STM32F0, ESP8266, AVR, which have a limited amount of 
RAM (up to several kilobytes) and computing resources. The method takes into account not only 
memory limitations,  but  also  minimizing  power  consumption,  which  is  especially  relevant  for 
autonomous sensors, medical implants, IoT modules in power grids and transport systems.

A key element of the approach is the adaptive selection of the depth of the check depending on 
the state of the device, for example, the battery charge level, temperature regime or processor load. 
In scenarios with limited energy resources, a partial check mode is activated, where only the most 
critical  segments  are  checked,  while  under  normal  conditions  a  full  check  is  performed.  This 
approach  allows  the  IoT  device  to  dynamically  balance  between  protection  and  autonomy, 
maintaining the appropriate level of security in conditions of limited resources.

Additionally, the method involves the implementation of context markers (e.g., time tokens or 
session  identifiers)  that  are  integrated  into  the  hashing  process.  This  increases  the  system's 
resistance to replay attacks, since the verification is carried out not only on the basis of the code, 
but also taking into account the session context, which significantly complicates the preparation of 
fake  firmware.  The  proposed  approach  combines  the  concepts  of  cryptographic  robustness, 
resource  efficiency,  and  adaptability,  which  allows  it  to  be  scaled  for  a  wide  range  of  IoT 
applications. 

The algorithm of  the proposed method for  verifying the integrity  of  the firmware includes 
multi-level hashing with weighted aggregation, adaptive selection of the verification depth, and the 
use  of  context  markers  to  protect  against  replay  attacks.  Let  the  firmware  F  be  divided  into 

segments  F = {f 1 , f 2 , .. , f n}, each  of  which  is  assigned  a  weight  coefficient  wi, reflecting  its 

criticality, with ∑
i=1

n

w i=1.

The choice of an aggregation model based on weight coefficients is associated with the need to 
take into account the criticality of functional modules. The coefficients wi are formed based on a 
preliminary risk analysis, which takes into account the role of the segment in system security, the  
frequency  of  access  to  resources  and  the  probability  of  attacks.  This  approach  allows  you  to 
achieve a flexible balance between security and resource costs.
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To form the aggregated control value, the weighted average aggregation model (1) is used.

H agg=
∑
i= 1

n

wi ∙ H i

∑
i= 1

n

wi

, (1)

where H i is the local hash value of the i-th segment, wi is its weighting factor, n is the number 
of segments. This scheme allows to increase the contribution of critical components to the final 
result,  while reducing the influence of secondary modules.  Alternatively,  for devices with very 
tight constraints, it is possible to use a simple additive model (2).

H agg= ∑
i ∈ S

H i , (2)

where  S ⊆ { 1 , … , n }  is a subset of the most important segments selected by the criterion wi 
exceeds the set threshold value.  The aggregation model is selected at the system configuration 
stage in accordance with the target usage scenario.

At the reference profile formation stage, the following is performed:

1. Calculation of  local  hashes  H ( f i ) for  each segment using a  lightweight  hash function 

H ( x ), such as SPONGENT or PHOTON.

2. Formation of an aggregated hash value—H agg= ∑
i= 1

n

wi ∙ H ( f i ).

3. Writing H agg to trusted non-volatile memory together with a time or session token T  used 
as a salt value.

During device boot, the following is performed:

1. Reading H agg
c  and T e from trusted memory.

2. Depending on the state of the device (e.g., battery level), determine the set C ( F )⊆ F  to be 
tested.

3. Calculation—H agg
c = ∑

j ∈ C ( F )

w j ∙ H ( f j ∨ T e ),  where  ∨  is  a  concatenation  operation  that 

binds hashing to the session token.

4. Compare H agg
c  and H agg

e  and make a decision (3).

D (H agg
c , H agg

e )= {1 , if H agg
c = H agg

e

0 , if H agg
c ≠ H agg

e
. (3)

The computational complexity of the algorithm for full verification is estimated as O ( n∙C H ), 

where n is the number of segments, C H  is the average complexity of calculating the hash for one 
segment. For partial verification, which is activated when resources are reduced, the complexity 
decreases in proportion to the number of verified segments  C ( F )∨ .  This allows reducing the 
verification time by 30–60% depending on the selected configuration.

Particular  attention  is  paid  to  the  selection  of  optimal  wi—for  example,  larger  values  are 
assigned to areas responsible for communications, hardware control, or secure data storage, while 
auxiliary  modules  (e.g.,  user  interfaces)  are  given  minimal  weight.  The  method  is  focused  on 
checking only static segments, i.e. parts of the code that do not change during execution. Dynamic 
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modules  that  are  loaded  during  operation  are  not  covered  by  the  current  model  and  require  
separate solutions, such as digital signature verification or runtime integrity monitoring.

Figure 2 presents a flowchart of the algorithm, which demonstrates the process of multi-level 
validation, adaptive segment selection, and the use of session tokens. This algorithm allows for 
high scalability—it  is  suitable  for both simple sensors  and more powerful  edge devices,  where 
advanced cryptographic operations are available. The introduction of weighting factors and context 
markers  increases  resistance  to  attacks  even  in  scenarios  with  limited  energy  and  computing 
power.

If a mismatch in control values is detected, the device enters a protected mode, which involves 
blocking the launch of  the main code,  recording the event  in  the system log and,  if  possible,  
transmitting  a  message  to  an external  monitoring  system.  For  some categories  of  devices,  for 
example,  in  medical  applications,  automatic  activation  of  the  firmware  recovery  mode  with 
restoration of a previously saved valid firmware version is provided.

Figure  2: Block  diagram  of  the  firmware  integrity  verification  algorithm  with  weighted 
aggregation and adaptive checking

4. Experimental evaluation of the effectiveness of the method

4.1. Experimental conditions

The experimental evaluation of the method’s effectiveness was carried out on hardware platforms 
representing typical classes of resource-constrained IoT devices. Three microcontrollers were used 
for the study:



111

 STM32F072 (32-bit, Cortex-M0, 48 MHz frequency, 64 KB Flash, 16 KB SRAM, 12-bit ADC, 
USB, SPI, I2C);

 ESP8266 (32-bit, Tensilica L106, 80 MHz frequency, 64 KB instruction memory, 96 KB data 
RAM, Wi-Fi 2.4 GHz, UART, SPI);

 ATmega328P (8-bit, AVR, 20 MHz frequency, 32 KB Flash, 2 KB SRAM, 10-bit ADC, UART, 
SPI, I2C).

The choice of these microcontrollers is justified by their representativeness for a wide range of  
IoT applications: STM32F072 represents a class of energy-efficient 32-bit MCUs, ESP8266—devices 
with wireless data transmission, and ATmega328P—popular 8-bit MCUs, widely used in low-end 
sensor nodes. Such a set provides comprehensive coverage of various architectures and classes of  
resource constraints.

The  software  environment  included  the  IDE  STM32CubeIDE  (version  1.14.1),  Arduino  IDE 
(version 2.3.2) and ESP-IDF (version 5.1.2), compilers gcc-arm-none-eabi, avr-gcc and xtensa-lx106-
elf-gcc, respectively. To measure the indicators, the internal timers of the microcontrollers were 
used, as well as an external current consumption meter Nordic Power Profiler Kit II, connected to a 
3.3 V power supply.

The collection of energy and time indicators was carried out with an average error of ±2%,  
confirmed by the calibration of the Nordic Power Profiler Kit II. To ensure the repeatability of the 
experiment, automated launch and measurement scripts were used, which allowed minimizing the 
influence of the human factor.

The following hash functions were used in the experiment: SPONGENT-160, PHOTON-128/16, 
QUARK-D,  LESAMNTA-LW  and  for  comparison  SHA-256.  The  firmware  for  testing  included 
segmented areas: system drivers, network stacks, program kernel, data processing modules. The 
total  size  of  the  firmware  varied:  STM32F072—32  KB,  ESP8266—48  KB,  ATmega328P—28  KB. 
Experimental options with full  hashing and with partial (critical segments only) were used for 
evaluation.

The weighting factors for the segments were determined based on a preliminary risk analysis:  
the highest values were assigned to the communication and control modules, the middle ones to 
the  program core,  and  the  lowest  values  to  the  auxiliary  interface  components.  This  allowed 
emulating the real operating conditions of IoT devices.

The following indicators were measured: execution time of the full integrity check and partial  
(with weighting factors), the amount of RAM used, the average power consumption per session, 
the additional load on the CPU, the number of detected modification attempts. Additionally, the 
impact of the partial hashing mode on the overall system performance was assessed, in particular,  
delays in the start  sequence (boot  delay)  and the frequency of  false  positive or  false  negative 
activations of the integrity detector.

Figure 3 shows a fragment of the experimental environment—STM32CubeIDE with a running 
project, where the multi-level integrity check function is implemented.
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Figure  3: STM32CubeIDE  experimental  environment  with  implemented  integrity  checking 
function

Figure 4 shows an example of a UART log showing the results of a test run on the ESP8266, with  
segmentation and local hash calculation. 

Figure 4: ESP8266 UART log with partial and full segment check results

Special attention was paid to modeling scenarios with real threats, in particular, attempts to  
modify the firmware at the critical segment level and replay attacks using previously stored hash 
values without taking into account the session context.  This  allowed not only to estimate the 
overall  resources  required  for  the  algorithm  to  work,  but  also  to  test  its  stability  in  typical  
application conditions of IoT devices

4.2. Experiment results

The results of the experimental verification are presented in the table, which shows the average  
time for a full firmware integrity check using different algorithms, as well as the time for partial  
verification of critical segments. For SHA-256, the time on the STM32F072 was 184 ms, on the 
ESP8266—242 ms,  on the ATmega328P—315 ms.  For  SPONGENT-160,  the time was 96 ms,  for 
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PHOTON-128/16—103  ms,  for  QUARK-D—112  ms,  for  LESAMNTA-LW—98  ms.  In  the  partial 
verification mode (approximately 30% of the segments), the time decreased to 58 ms, 69 ms, and 84 
ms, respectively.

The distribution of verification execution time for full and partial modes using different hash 
functions is shown in Figure 5. It shows a performance comparison on three hardware platforms, 
demonstrating the advantages of lightweight algorithms over the classic SHA-256, as well as the 
effect of using partial hashing of critical segments.

Figure 5: Integrity check time chart for different MCUs and algorithms

In addition to time,  the amount of  RAM was measured,  which ranged from 2.1–2.8 KB for 
lightweight algorithms, while SHA-256 required 6.4–7.1 KB, exceeding the resource capabilities of 
the ATmega328P. Power consumption during partial verification was reduced by 35–50% compared 
to  full  SHA-256  verification.  Resistance  to  attacks  was  high:  the  algorithm  detected  100%  of  
modifications of critical segments and 96% of replay attacks without a valid session token.

5. Discussion

The results show that the proposed method of verifying the integrity of the firmware based on 
lightweight hash functions provides a significant reduction in verification time, memory usage, and 
power consumption compared to classical algorithms such as SHA-256. The effect of using partial 
hashing  of  critical  segments  is  particularly  noticeable,  which  allows  reducing  resource 
consumption  by  30–60%  depending  on  the  configuration,  while  maintaining  a  high  level  of 
cryptographic stability.

The analysis showed that the use of a weighted average hash value aggregation model increases 
the sensitivity of verification to modifications of the most important components, while simple 
additive aggregation may be appropriate for scenarios with minimal resources. The introduction of 
session  tokens  significantly  increases  resistance  to  replay  attacks,  which  is  confirmed  by 
experimental simulation.

Comparison with existing approaches described in the literature demonstrates the advantages of 
the proposed solution: in [25, 26], classic Secure Boot schemes based on SHA-256 provide a high 
level of protection, but are not adapted to microcontrollers with limited resources due to significant 
computational costs and memory size. In turn, partial hashing without weight analysis, as in [26], 
potentially  opens  up  new  attack  vectors.  The  proposed  method  combines  the  advantages  of 
lightweight hashing with adaptive selection of the check depth, which allows for a flexible balance 
between security and efficiency. At the same time, the method has certain limitations. The current  
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implementation is focused exclusively on checking static firmware segments, while dynamically 
loaded  modules  remain  outside  its  scope.  For  such  components,  it  is  advisable  to  use  digital 
signatures or runtime integrity monitoring, which is planned to be investigated in future works. 
Another  aspect  is  the integration of  the proposed method into typical  IoT device bootloaders,  
which may require additional optimization for specific hardware architectures. Overall, the results 
of the experimental evaluation confirm the high practical significance of the developed method for 
use in autonomous sensor systems, medical implants, smart energy modules, and transport IoT 
solutions, where not only the level of security, but also the efficiency of use of computing and  
energy resources is critical. 

Conclusions

The paper develops and investigates a method for verifying firmware integrity for IoT devices that  
takes into account the specifics of environments with limited computing resources. The proposed 
approach  combines  the  use  of  lightweight  hash  functions  (SPONGENT,  PHOTON,  QUARK, 
LESAMNTA-LW),  weighted  average  aggregation  of  hash  values,  and  adaptive  selection  of 
verification segments depending on the current state of the device, for example, the battery level or 
processor  load.  The  introduction  of  session  tokens  additionally  enhances  resistance  to  replay 
attacks, which is an important advantage compared to other existing solutions.

The results of experimental evaluation on different hardware platforms (STM32F072, ESP8266, 
ATmega328P) demonstrated a significant reduction in verification time, power consumption, and 
occupied RAM compared to classical algorithms such as SHA-256. The efficiency of partial hashing 
of critical segments allows for flexible adaptation of the verification to the limitations of a specific  
device, while maintaining high accuracy of modification detection. It is important to emphasize 
that the method can be scaled for different classes of IoT devices—from low-end sensors to edge  
platforms with advanced capabilities. 

Prospects  for  further  research  include  the  development  of  mechanisms  for  checking 
dynamically loaded modules, integration with digital signatures, and research into the system's 
resistance to attacks at the physical level, in particular fault injection. A separate direction is the  
optimization of  the  software  implementation of  the  method to  minimize  overhead and ensure 
compatibility with typical microcontroller loaders.
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